Exemplo n.º 1
0
 def make(self, key):
     #%
     # key = { 'subject_id': 462149, 'session':1,'cell_number':1,'movie_number':11}
     session_time = (experiment.Session() & key).fetch('session_time')[0]
     cell_time = (ephys_patch.Cell() & key).fetch('cell_recording_start')[0]
     cell_sweep_start_times = (ephys_patch.Sweep()
                               & key).fetch('sweep_start_time')
     cell_sweep_end_times = (ephys_patch.Sweep()
                             & key).fetch('sweep_end_time')
     time_start = float(
         np.min(cell_sweep_start_times)) + cell_time.total_seconds(
         ) - session_time.total_seconds()
     time_end = float(
         np.max(cell_sweep_end_times)) + cell_time.total_seconds(
         ) - session_time.total_seconds()
     try:
         movie = (imaging.Movie()) & key & 'movie_start_time > ' + str(
             time_start) & 'movie_start_time < ' + str(time_end)
         sweep_start_times, sweep_end_times, sweep_nums = (
             ephys_patch.Sweep() & key).fetch('sweep_start_time',
                                              'sweep_end_time',
                                              'sweep_number')
         sweep_start_times = np.asarray(sweep_start_times,
                                        float) + cell_time.total_seconds(
                                        ) - session_time.total_seconds()
         sweep_end_times = np.asarray(sweep_end_times,
                                      float) + cell_time.total_seconds(
                                      ) - session_time.total_seconds()
         #for movie in movies_now:
         frametimes = (imaging.MovieFrameTimes
                       & movie).fetch1('frame_times')
         needed_start_time = frametimes[0]
         needed_end_time = frametimes[-1]
         sweep_nums_needed = sweep_nums[
             ((sweep_start_times > needed_start_time) &
              (sweep_start_times < needed_end_time)) |
             ((sweep_end_times > needed_start_time) &
              (sweep_end_times < needed_end_time)) |
             ((sweep_end_times > needed_end_time) &
              (sweep_start_times < needed_start_time))]
         if len(sweep_nums_needed) > 0:
             key['sweep_numbers'] = sweep_nums_needed
             self.insert1(key, skip_duplicates=True)
     except:
         pass
Exemplo n.º 2
0
def plot_precision_recall(key_cell,binwidth =  30,frbinwidth = 0.01,firing_rate_window = 3,save_figures = True,xlimits =None):
    #%%
    session_time, cell_recording_start = (experiment.Session()*ephys_patch.Cell()&key_cell).fetch1('session_time','cell_recording_start')
    first_movie_start_time =  np.min(np.asarray(((imaging.Movie()*imaging_gt.GroundTruthROI())&key_cell).fetch('movie_start_time'),float))
    first_movie_start_time_real = first_movie_start_time + session_time.total_seconds()
    #%
    fr_kernel = np.ones(int(firing_rate_window/frbinwidth))/(firing_rate_window/frbinwidth)
    first_movie_start_time = np.min(np.asarray(((imaging.Movie()*imaging_gt.GroundTruthROI())&key_cell).fetch('movie_start_time'),float))
    ephys_matched_ap_times,ephys_unmatched_ap_times,ophys_matched_ap_times,ophys_unmatched_ap_times = (imaging_gt.GroundTruthROI()&key_cell).fetch('ephys_matched_ap_times','ephys_unmatched_ap_times','ophys_matched_ap_times','ophys_unmatched_ap_times')
    #%
    ephys_matched_ap_times = np.concatenate(ephys_matched_ap_times) - first_movie_start_time 
    ephys_unmatched_ap_times = np.concatenate(ephys_unmatched_ap_times) - first_movie_start_time 
    all_ephys_ap_times = np.concatenate([ephys_matched_ap_times,ephys_unmatched_ap_times])
    ophys_matched_ap_times = np.concatenate(ophys_matched_ap_times) - first_movie_start_time 
    ophys_unmatched_ap_times = np.concatenate(ophys_unmatched_ap_times) - first_movie_start_time 
    all_ophys_ap_times = np.concatenate([ophys_matched_ap_times,ophys_unmatched_ap_times])
    all_times = np.concatenate([ephys_matched_ap_times,ephys_unmatched_ap_times,ophys_matched_ap_times,ophys_unmatched_ap_times])
    maxtime = np.max(all_times)
    #%
    fr_bincenters = np.arange(frbinwidth/2,maxtime+frbinwidth,frbinwidth)
    fr_binedges = np.concatenate([fr_bincenters-frbinwidth/2,[fr_bincenters[-1]+frbinwidth/2]])
    fr_e = np.histogram(all_ephys_ap_times,fr_binedges)[0]/frbinwidth
    fr_e = np.convolve(fr_e, fr_kernel,'same')
    fr_o = np.histogram(all_ophys_ap_times,fr_binedges)[0]/frbinwidth
    fr_o = np.convolve(fr_o, fr_kernel,'same')
    #%
    bincenters = np.arange(binwidth/2,maxtime+binwidth,binwidth)
    binedges = np.concatenate([bincenters-binwidth/2,[bincenters[-1]+binwidth/2]])
    ephys_matched_ap_num_binned,tmp = np.histogram(ephys_matched_ap_times,binedges)
    ephys_unmatched_ap_num_binned,tmp = np.histogram(ephys_unmatched_ap_times,binedges)
    ophys_matched_ap_num_binned,tmp = np.histogram(ophys_matched_ap_times,binedges)
    ophys_unmatched_ap_num_binned,tmp = np.histogram(ophys_unmatched_ap_times,binedges)
    precision_binned = ophys_matched_ap_num_binned/(ophys_matched_ap_num_binned+ophys_unmatched_ap_num_binned)
    recall_binned = ephys_matched_ap_num_binned/(ephys_matched_ap_num_binned+ephys_unmatched_ap_num_binned)
    f1_binned = 2*precision_binned*recall_binned/(precision_binned+recall_binned)
    #%
    if xlimits == None:
        xlimits = [binedges[0],binedges[-1]]
    
    fig=plt.figure()#figsize=(50,0)
    ax_rates = fig.add_axes([0,1.4,2,.3])
    ax_spikes = fig.add_axes([0,1,2,.3])
    ax = fig.add_axes([0,0,2,.8])
    ax_snratio = fig.add_axes([0,-1,2,.8])
    ax_latency = fig.add_axes([0,-2,2,.8])
    ax_latency_hist = fig.add_axes([.5,-3,1,.8])
    
    ax.plot(bincenters,precision_binned,'go-',label = 'precision')    
    ax.plot(bincenters,recall_binned,'ro-',label = 'recall')    
    ax.plot(bincenters,f1_binned,'bo-',label = 'f1 score')    
    ax.set_xlim([binedges[0],binedges[-1]])
    ax.set_ylim([0,1])
    ax.legend()
    ax_spikes.plot(ephys_unmatched_ap_times,np.zeros(len(ephys_unmatched_ap_times)),'r|', ms = 10)
    ax_spikes.plot(all_ephys_ap_times,np.zeros(len(all_ephys_ap_times))+.33,'k|', ms = 10)
    ax_spikes.plot(ophys_unmatched_ap_times,np.ones(len(ophys_unmatched_ap_times)),'r|',ms = 10)
    ax_spikes.plot(all_ophys_ap_times,np.ones(len(all_ophys_ap_times))-.33,'g|', ms = 10)
    ax_spikes.set_yticks([0,.33,.67,1])
    ax_spikes.set_yticklabels(['false negative','ephys','ophys','false positive'])
    ax_spikes.set_ylim([-.2,1.2])
    ax_spikes.set_xlim(xlimits)
    
    t,sn = (ephysanal.ActionPotential()*imaging_gt.GroundTruthROI()*imaging_gt.ROIAPWave()&key_cell).fetch('ap_max_time','apwave_snratio')
    t= np.asarray(t,float) + cell_recording_start.total_seconds() - first_movie_start_time_real
    ax_snratio.plot(t,sn,'ko')
    ax_snratio.set_ylabel('signal to noise ratio')
    ax_snratio.set_ylim([0,20])
    ax_snratio.set_xlim(xlimits)
    ax_rates.plot(fr_bincenters,fr_e,'k-',label = 'ephys')
    ax_rates.plot(fr_bincenters,fr_o,'g-',label = 'ophys')
    ax_rates.legend()
    ax_rates.set_xlim(xlimits)
    ax_rates.set_ylabel('Firing rate (Hz)')
    ax_rates.set_title('subject_id: %d, cell number: %s' %(key_cell['subject_id'],key_cell['cell_number']))
    ax_latency.plot(ephys_matched_ap_times,1000*(ophys_matched_ap_times-ephys_matched_ap_times),'ko')
    ax_latency.set_ylabel('ephys-ophys spike latency (ms)')
    ax_latency.set_ylim([0,10])
    ax_latency.set_xlabel('time from first movie start (s)')
    ax_latency.set_xlim(xlimits)
    
    ax_latency_hist.hist(1000*(ophys_matched_ap_times-ephys_matched_ap_times),np.arange(-5,15,.1))
    ax_latency_hist.set_xlabel('ephys-ophys spike latency (ms)')
    ax_latency_hist.set_ylabel('matched ap count')
    
    data = list()
    data.append(plot_ephys_ophys_trace(key_cell,ephys_matched_ap_times[0],trace_window = 1,show_e_ap_peaks = True,show_o_ap_peaks = True))
    data.append(plot_ephys_ophys_trace(key_cell,ephys_unmatched_ap_times[0],trace_window = 1,show_e_ap_peaks = True,show_o_ap_peaks = True))
    data.append(plot_ephys_ophys_trace(key_cell,ophys_unmatched_ap_times[0],trace_window = 1,show_e_ap_peaks = True,show_o_ap_peaks = True))
    if save_figures:
        fig.savefig('./figures/{}_cell_{}_roi_type_{}.png'.format(key_cell['subject_id'],key_cell['cell_number'],key_cell['roi_type']), bbox_inches = 'tight')
        for data_now,fname in zip(data,['matched','false_negative','false_positive']):
            data_now['figure_handle'].savefig('./figures/{}_cell_{}_roi_type_{}_{}.png'.format(key_cell['subject_id'],key_cell['cell_number'],key_cell['roi_type'],fname), bbox_inches = 'tight')
Exemplo n.º 3
0
def plot_ephys_ophys_trace(key_cell,time_to_plot=None,trace_window = 1,show_stimulus = False,show_e_ap_peaks = False, show_o_ap_peaks = False):
    #%%
# =============================================================================
#     key_cell = {'session': 1,
#                 'subject_id': 456462,
#                 'cell_number': 3,
#                 'motion_correction_method': 'VolPy',
#                 'roi_type': 'VolPy'}
#     time_to_plot=None
#     trace_window = 100
#     show_stimulus = False
#     show_e_ap_peaks = True
#     show_o_ap_peaks = True
# =============================================================================
    
    
    fig=plt.figure()
    ax_ophys = fig.add_axes([0,0,2,.8])
    ax_ephys = fig.add_axes([0,-1,2,.8])
    if show_stimulus:
        ax_ephys_stim = fig.add_axes([0,-1.5,2,.4])
        
    #%
    session_time, cell_recording_start = (experiment.Session()*ephys_patch.Cell()&key_cell).fetch1('session_time','cell_recording_start')
    first_movie_start_time =  np.min(np.asarray(((imaging.Movie()*imaging_gt.GroundTruthROI())&key_cell).fetch('movie_start_time'),float))
    first_movie_start_time_real = first_movie_start_time + session_time.total_seconds()
    if not time_to_plot:
        time_to_plot = trace_window/2#ephys_matched_ap_times[0]
    session_time_to_plot = time_to_plot+first_movie_start_time  # time relative to session start
    cell_time_to_plot= session_time_to_plot + session_time.total_seconds() -cell_recording_start.total_seconds() # time relative to recording start
    #%
    sweep_start_times,sweep_end_times,sweep_nums = (ephys_patch.Sweep()&key_cell).fetch('sweep_start_time','sweep_end_time','sweep_number')
    needed_start_time = cell_time_to_plot - trace_window/2
    needed_end_time = cell_time_to_plot + trace_window/2
    #%
    sweep_nums = sweep_nums[((sweep_start_times > needed_start_time) & (sweep_start_times < needed_end_time)) |
                            ((sweep_end_times > needed_start_time) & (sweep_end_times < needed_end_time)) | 
                            ((sweep_end_times > needed_end_time) & (sweep_start_times < needed_start_time)) ]

    ephys_traces = list()
    ephys_trace_times = list()
    ephys_sweep_start_times = list()
    ephys_traces_stim = list()
    for sweep_num in sweep_nums:
        sweep = ephys_patch.Sweep()&key_cell&'sweep_number = %d' % sweep_num
        trace,sr= (ephys_patch.SweepMetadata()*ephys_patch.SweepResponse()&sweep).fetch1('response_trace','sample_rate')
        trace = trace*1000
        sweep_start_time  = float(sweep.fetch('sweep_start_time')) 
        trace_time = np.arange(len(trace))/sr + sweep_start_time + cell_recording_start.total_seconds() - first_movie_start_time_real
        
        trace_idx = (time_to_plot-trace_window/2 < trace_time) & (time_to_plot+trace_window/2 > trace_time)
                
        ax_ephys.plot(trace_time[trace_idx],trace[trace_idx],'k-')
        
        ephys_traces.append(trace)
        ephys_trace_times.append(trace_time)
        ephys_sweep_start_times.append(sweep_start_time)
        
        if show_e_ap_peaks:

            ap_max_index = (ephysanal.ActionPotential()&sweep).fetch('ap_max_index')
            aptimes = trace_time[np.asarray(ap_max_index,int)]
            apVs = trace[np.asarray(ap_max_index,int)]
            ap_needed = (time_to_plot-trace_window/2 < aptimes) & (time_to_plot+trace_window/2 > aptimes)
            aptimes  = aptimes[ap_needed]
            apVs  = apVs[ap_needed]
            ax_ephys.plot(aptimes,apVs,'ro')

        
        if show_stimulus:
            trace_stim= (ephys_patch.SweepMetadata()*ephys_patch.SweepStimulus()&sweep).fetch1('stimulus_trace')
            trace_stim = trace_stim*10**12
            ax_ephys_stim.plot(trace_time[trace_idx],trace_stim[trace_idx],'k-')
            ephys_traces_stim.append(trace_stim)
            
        
    ephysdata = {'ephys_traces':ephys_traces,'ephys_trace_times':ephys_trace_times}
    if show_stimulus:
        ephysdata['ephys_traces_stimulus'] = ephys_traces_stim

    movie_nums, movie_start_times,movie_frame_rates,movie_frame_nums = ((imaging.Movie()*imaging_gt.GroundTruthROI())&key_cell).fetch('movie_number','movie_start_time','movie_frame_rate','movie_frame_num')
    movie_start_times = np.asarray(movie_start_times, float)
    movie_end_times = np.asarray(movie_start_times, float)+np.asarray(movie_frame_nums, float)/np.asarray(movie_frame_rates, float)
    needed_start_time = session_time_to_plot - trace_window/2
    needed_end_time = session_time_to_plot + trace_window/2

    movie_nums = movie_nums[((movie_start_times >= needed_start_time) & (movie_start_times <= needed_end_time)) |
                            ((movie_end_times >= needed_start_time) & (movie_end_times <= needed_end_time)) | 
                            ((movie_end_times >= needed_end_time) & (movie_start_times <= needed_start_time)) ]
    dffs=list()
    frametimes = list()
    for movie_num in movie_nums:
    #movie_num = movie_nums[(session_time_to_plot>movie_start_times)&(session_time_to_plot<movie_end_times)][0]
        key_movie = key_cell.copy()
        key_movie['movie_number'] = movie_num

        dff,gt_roi_number = ((imaging.ROI()*imaging_gt.GroundTruthROI())&key_movie).fetch1('roi_dff','roi_number')
        dff_all,roi_number_all = (imaging.ROI()&key_movie).fetch('roi_dff','roi_number')
        dff_all =dff_all[roi_number_all!=gt_roi_number]
        frame_times = ((imaging.MovieFrameTimes()*imaging_gt.GroundTruthROI())&key_movie).fetch1('frame_times') + (session_time).total_seconds() - first_movie_start_time_real #modified to cell time
        frame_idx = (time_to_plot-trace_window/2 < frame_times) & (time_to_plot+trace_window/2 > frame_times)
        
        dff_list = [dff]
        dff_list.extend(dff_all)
        prevminval = 0
        for dff_now,alpha_now in zip(dff_list,np.arange(1,1/(len(dff_list)+1),-1/(len(dff_list)+1))):
            dfftoplotnow = dff_now[frame_idx] + prevminval
            ax_ophys.plot(frame_times[frame_idx],dfftoplotnow,'g-',alpha=alpha_now)
            prevminval = np.min(dfftoplotnow) -.005
        #ax_ophys.plot(frame_times[frame_idx],dff[frame_idx],'g-')
        dffs.append(dff)
        frametimes.append(frame_times)
        if show_o_ap_peaks:
            if 'raw' in key_cell['roi_type']:
                apidxes = ((imaging.ROI()*imaging_gt.GroundTruthROI())&key_movie).fetch1('roi_spike_indices')
            else:
                apidxes = ((imaging.ROI()*imaging_gt.GroundTruthROI())&key_movie).fetch1('roi_spike_indices')-1
            oap_times = frame_times[apidxes]
            oap_vals = dff[apidxes]
            oap_needed = (time_to_plot-trace_window/2 < oap_times) & (time_to_plot+trace_window/2 > oap_times)
            oap_times = oap_times[oap_needed]
            oap_vals = oap_vals[oap_needed]
            ax_ophys.plot(oap_times,oap_vals,'ro')

    ophysdata = {'ophys_traces':dffs,'ophys_trace_times':frametimes}
    ax_ophys.autoscale(tight = True)
    
# =============================================================================
#     dfff = np.concatenate(dffs)
#     dfff[np.argmin(dfff)]=0
#     ax_ophys.set_ylim([min(dfff),max(dfff)])
# =============================================================================
    ax_ophys.set_xlim([time_to_plot-trace_window/2,time_to_plot+trace_window/2])
    ax_ophys.set_ylabel('dF/F')
    ax_ophys.spines["top"].set_visible(False)
    ax_ophys.spines["right"].set_visible(False)
    
    ax_ophys.invert_yaxis()
    
    
    ax_ephys.autoscale(tight = True)
    ax_ephys.set_xlim([time_to_plot-trace_window/2,time_to_plot+trace_window/2])
    ax_ephys.set_ylabel('Vm (mV))')
    ax_ephys.spines["top"].set_visible(False)
    ax_ephys.spines["right"].set_visible(False)
    
    if show_stimulus:
       # ax_ephys_stim.autoscale(tight = True)
        ax_ephys_stim.set_xlim([time_to_plot-trace_window/2,time_to_plot+trace_window/2])
        ax_ephys_stim.set_ylabel('Injected current (pA))')
        ax_ephys_stim.set_xlabel('time from first movie start (s)')
        ax_ephys_stim.spines["top"].set_visible(False)
        ax_ephys_stim.spines["right"].set_visible(False)
    else:
        ax_ephys.set_xlabel('time from first movie start (s)')
    outdict = {'ephys':ephysdata,'ophys':ophysdata,'figure_handle':fig}
#%%
    return outdict
Exemplo n.º 4
0
matplotlib.rc('font', **font)
from pathlib import Path

homefolder = dj.config['locations.mr_share']
#%% ephys parameters at different expression times and different viruses
ephys_data=dict()
ephys_data = {'cell_dict':list(),
              'virus':list(),
              'expression_time':list(),
              'RS':list(),
              'Rin':list(),
              'AP_amplitude':list(),
              'AP_halfwidth':list(),
              'AP_threshold':list(),
              'resting':list()}
cells = ephys_patch.Cell()
APs_needed = 50
AP_max_RS = 40
AP_max_baseline = -40 #mV
max_baseline_current = 100*10**-12 #A
max_v0 = -.04 #V
min_current = -40*10**-12 #A
min_pulse_time = 0.3 #s
integration_window = .04 #sec
for cell in cells:
    if len((lab.Surgery()&'subject_id = {}'.format(cell['subject_id'])).fetch('start_time'))==1:
        continue # if there is only one surgery, we don't care
    expression_time = np.diff((lab.Surgery()&'subject_id = {}'.format(cell['subject_id'])).fetch('start_time'))[0].days
    virus_id = (lab.Surgery.VirusInjection()&'subject_id = {}'.format(cell['subject_id'])).fetch('virus_id')[0]
    if virus_id == 238:
        virus = 'Voltron 1'
Exemplo n.º 5
0
    def make(self, key):
        #%
        #key = {'subject_id': 454597, 'session': 1, 'cell_number': 0, 'motion_correction_method': 'Matlab', 'roi_type': 'SpikePursuit', 'roi_number': 1}
        #key = {'subject_id': 456462, 'session': 1, 'cell_number': 5, 'movie_number': 3, 'motion_correction_method': 'VolPy', 'roi_type': 'VolPy', 'roi_number': 1}
        if len(
                ROIEphysCorrelation & key
        ) > 0:  #  and key['roi_type'] == 'SpikePursuit' #only spikepursuit for now..
            key_to_compare = key.copy()
            del key_to_compare['roi_number']
            #print(key)
            #%
            roinums = np.unique(
                (ROIEphysCorrelation() & key_to_compare).fetch('roi_number'))
            snratios_mean = list()
            snratios_median = list()
            snratios_first50 = list()
            for roinum_now in roinums:

                snratios = (ROIAPWave() & key_to_compare
                            & 'roi_number = {}'.format(roinum_now)
                            ).fetch('apwave_snratio')
                snratios_mean.append(np.mean(snratios))
                snratios_median.append(np.median(snratios))
                snratios_first50.append(np.mean(snratios[:50]))

            #%%
            if np.max(
                (ROIEphysCorrelation() & key).fetch('roi_number')
            ) == roinums[np.argmax(
                    snratios_first50
            )]:  #np.max((imaging_gt.ROIEphysCorrelation()&key).fetch('roi_number')) == np.min((imaging_gt.ROIEphysCorrelation&key_to_compare).fetch('roi_number')):#np.max(np.abs((ROIEphysCorrelation&key).fetch('corr_coeff'))) == np.max(np.abs((ROIEphysCorrelation&key_to_compare).fetch('corr_coeff'))):
                print('this is it')
                print(key['roi_type'])
                cellstarttime = (ephys_patch.Cell()
                                 & key).fetch1('cell_recording_start')
                sessionstarttime = (experiment.Session()
                                    & key).fetch1('session_time')
                aptimes = np.asarray(
                    (ephysanal.ActionPotential() & key).fetch('ap_max_time'),
                    float) + (cellstarttime -
                              sessionstarttime).total_seconds()
                sweep_start_times, sweep_end_times = (ephys_patch.Sweep()
                                                      & key).fetch(
                                                          'sweep_start_time',
                                                          'sweep_end_time')
                sweep_start_times = np.asarray(sweep_start_times, float) + (
                    cellstarttime - sessionstarttime).total_seconds()
                sweep_end_times = np.asarray(sweep_end_times, float) + (
                    cellstarttime - sessionstarttime).total_seconds()
                frame_timess, roi_spike_indicess = (
                    imaging.MovieFrameTimes() * imaging.Movie() *
                    imaging.ROI() & key).fetch('frame_times',
                                               'roi_spike_indices')
                movie_start_times = list()
                movie_end_times = list()
                roi_ap_times = list()
                for frame_times, roi_spike_indices in zip(
                        frame_timess, roi_spike_indicess):
                    movie_start_times.append(frame_times[0])
                    movie_end_times.append(frame_times[-1])
                    roi_ap_times.append(frame_times[roi_spike_indices])
                movie_start_times = np.sort(movie_start_times)
                movie_end_times = np.sort(movie_end_times)
                roi_ap_times = np.sort(np.concatenate(roi_ap_times))
                #%
                ##delete spikes in optical traces where there was no ephys recording
                for start_t, end_t in zip(
                        np.concatenate([sweep_start_times, [np.inf]]),
                        np.concatenate([[0], sweep_end_times])):
                    idxtodel = np.where((roi_ap_times > end_t)
                                        & (roi_ap_times < start_t))[0]
                    if len(idxtodel) > 0:
                        roi_ap_times = np.delete(roi_ap_times, idxtodel)
                ##delete spikes in ephys traces where there was no imaging
                for start_t, end_t in zip(
                        np.concatenate([movie_start_times, [np.inf]]),
                        np.concatenate([[0], movie_end_times])):
                    idxtodel = np.where((aptimes > end_t)
                                        & (aptimes < start_t))[0]
                    if len(idxtodel) > 0:
                        #print(idxtodel)
                        aptimes = np.delete(aptimes, idxtodel)
                        #%
                D = np.zeros([len(aptimes), len(roi_ap_times)])
                for idx, apt in enumerate(aptimes):
                    D[idx, :] = (roi_ap_times - apt) * 1000
                D_test = np.abs(D)
                D_test[D_test > 15] = 1000
                D_test[D < -1] = 1000
                X = scipy.optimize.linear_sum_assignment(D_test)
                #%
                cost = D_test[X[0], X[1]]
                unmatched = np.where(cost == 1000)[0]
                X0_final = np.delete(X[0], unmatched)
                X1_final = np.delete(X[1], unmatched)
                ephys_ap_times = aptimes[X0_final]
                ophys_ap_times = roi_ap_times[X1_final]
                false_positive_time_imaging = list()
                for roi_ap_time in roi_ap_times:
                    if roi_ap_time not in ophys_ap_times:
                        false_positive_time_imaging.append(roi_ap_time)
                false_negative_time_ephys = list()
                for aptime in aptimes:
                    if aptime not in ephys_ap_times:
                        false_negative_time_ephys.append(aptime)

                key['ephys_matched_ap_times'] = ephys_ap_times
                key['ophys_matched_ap_times'] = ophys_ap_times
                key['ephys_unmatched_ap_times'] = false_negative_time_ephys
                key['ophys_unmatched_ap_times'] = false_positive_time_imaging
                #print(imaging.ROI()&key)
                #print([len(aptimes),'vs',len(roi_ap_times)])
                #%%
                self.insert1(key, skip_duplicates=True)
Exemplo n.º 6
0
def populateelphys():
    #%%
    df_subject_wr_sessions = pd.DataFrame(lab.WaterRestriction() *
                                          experiment.Session() *
                                          experiment.SessionDetails)
    df_subject_ids = pd.DataFrame(lab.Subject())
    if len(df_subject_wr_sessions) > 0:
        subject_names = df_subject_wr_sessions[
            'water_restriction_number'].unique()
        subject_names.sort()
    else:
        subject_names = list()
    subject_ids = df_subject_ids['subject_id'].unique()
    #%
    sumdata = list()
    basedir = Path(dj.config['locations.elphysdata_acq4'])
    for setup_dir in basedir.iterdir():
        setup_name = setup_dir.name
        sessions = np.sort(
            os.listdir(setup_dir)
        )  #configfile.readConfigFile(setup_dir.joinpath('.index'))
        for session_acq in sessions[::-1]:  #.keys():
            if session_acq != '.' and session_acq != 'log.txt':
                session_dir = setup_dir.joinpath(session_acq)
                try:
                    cells = configfile.readConfigFile(
                        session_dir.joinpath('.index'))
                except:  # if there is no file
                    cells = None
                if cells and 'WR_name/ID' in cells['.'].keys(
                ):  # it needs to have WRname
                    wrname_ephys = cells['.']['WR_name/ID']
                    wrname = None
                    for wrname_potential in subject_names:  # look for water restriction number
                        if wrname_potential.lower() in wrname_ephys.lower():
                            wrname = wrname_potential
                            subject_id = (df_subject_wr_sessions.loc[
                                df_subject_wr_sessions[
                                    'water_restriction_number'] == wrname,
                                'subject_id']).unique()[0]
                    if wrname == None:  # look for animal identifier:
                        for wrname_potential in subject_ids:  # look for water restriction number
                            if str(wrname_potential) in wrname_ephys.lower():
                                subject_id = wrname_potential
                                if len(df_subject_wr_sessions) > 0 and len(
                                    (df_subject_wr_sessions.loc[
                                        df_subject_wr_sessions['subject_id'] ==
                                        subject_id, 'water_restriction_number']
                                     ).unique()) > 0:
                                    wrname = (df_subject_wr_sessions.loc[
                                        df_subject_wr_sessions['subject_id'] ==
                                        subject_id, 'water_restriction_number']
                                              ).unique()[0]
                                else:
                                    wrname = 'no water restriction number for this mouse'

                    if wrname:
                        session_date = (
                            session_acq[0:session_acq.find('_')]).replace(
                                '.', '-')

                        print('animal: ' + str(subject_id) + '  -  ' +
                              wrname)  ##
                        if setup_name == 'Voltage_rig_1P':
                            setupname = 'Voltage-Imaging-1p'
                        else:
                            print('unkwnown setup, please add')
                            timer.wait(1000)
                        if 'experimenter' in cells['.'].keys():
                            username = cells['.']['experimenter']
                        else:
                            username = '******'
                            print(
                                'username not specified in acq4 file, assuming rozsam'
                            )
                        ### check if session already exists
                        sessiondata = {
                            'subject_id':
                            subject_id,  #(lab.WaterRestriction() & 'water_restriction_number = "'+df_behavior_session['subject'][0]+'"').fetch()[0]['subject_id'],
                            'session': np.nan,
                            'session_date': session_date,
                            'session_time':
                            np.nan,  #session_time.strftime('%H:%M:%S'),
                            'username': username,
                            'rig': setupname
                        }
                        for cell in cells.keys():
                            if cell != '.' and cell != 'log.txt':
                                ephisdata_cell = list()
                                sweepstarttimes = list()
                                cell_dir = session_dir.joinpath(cell)
                                serieses = configfile.readConfigFile(
                                    cell_dir.joinpath('.index'))
                                cellstarttime = datetime.datetime.fromtimestamp(
                                    serieses['.']['__timestamp__'])
                                for series in serieses.keys():
                                    if series != '.' and series != 'log.txt':
                                        series_dir = cell_dir.joinpath(series)
                                        sweeps = configfile.readConfigFile(
                                            series_dir.joinpath('.index'))
                                        if 'Clamp1.ma' in sweeps.keys():
                                            protocoltype = 'single sweep'
                                            sweepkeys = ['']
                                        else:
                                            protocoltype = 'multiple sweeps'
                                            sweepkeys = sweeps.keys()
                                        for sweep in sweepkeys:
                                            if sweep != '.' and '.txt' not in sweep and '.ma' not in sweep:
                                                sweep_dir = series_dir.joinpath(
                                                    sweep)
                                                sweepinfo = configfile.readConfigFile(
                                                    sweep_dir.joinpath(
                                                        '.index'))
                                                if sweep == '':
                                                    sweep = '0'
                                                for file in sweepinfo.keys():
                                                    if '.ma' in file:
                                                        try:  # old file version

                                                            #print('new file version')
                                                            #%
                                                            ephysfile = h5.File(
                                                                sweep_dir.
                                                                joinpath(file),
                                                                "r")
                                                            data = ephysfile[
                                                                'data'][()]
                                                            metadata_h5 = ephysfile[
                                                                'info']
                                                            metadata = read_h5f_metadata(
                                                                metadata_h5)
                                                            daqchannels = list(
                                                                metadata[2]
                                                                ['DAQ'].keys())
                                                            sweepstarttime = datetime.datetime.fromtimestamp(
                                                                metadata[2]
                                                                ['DAQ']
                                                                [daqchannels[
                                                                    0]]
                                                                ['startTime'])
                                                            relativetime = (
                                                                sweepstarttime
                                                                - cellstarttime
                                                            ).total_seconds()
                                                            if len(
                                                                    ephisdata_cell
                                                            ) > 0 and ephisdata_cell[
                                                                    -1]['sweepstarttime'] == sweepstarttime:
                                                                ephisdata = ephisdata_cell.pop(
                                                                )
                                                            else:
                                                                ephisdata = dict(
                                                                )
                                                            if 'primary' in daqchannels:  # ephys data
                                                                ephisdata[
                                                                    'V'] = data[
                                                                        1]
                                                                ephisdata[
                                                                    'stim'] = data[
                                                                        0]
                                                                ephisdata[
                                                                    'data'] = data
                                                                ephisdata[
                                                                    'metadata'] = metadata
                                                                ephisdata[
                                                                    'time'] = metadata[
                                                                        1]['values']
                                                                ephisdata[
                                                                    'relativetime'] = relativetime
                                                                ephisdata[
                                                                    'sweepstarttime'] = sweepstarttime
                                                                ephisdata[
                                                                    'series'] = series
                                                                ephisdata[
                                                                    'sweep'] = sweep
                                                                sweepstarttimes.append(
                                                                    sweepstarttime
                                                                )
                                                            else:  # other daq stuff
                                                                #%
                                                                for idx, channel in enumerate(
                                                                        metadata[
                                                                            0]
                                                                    ['cols']):
                                                                    channelname = channel[
                                                                        'name'].decode(
                                                                        )
                                                                    if channelname[
                                                                            0] == 'u':
                                                                        channelname = channelname[
                                                                            2:
                                                                            -1]
                                                                        if channelname in [
                                                                                'OrcaFlashExposure',
                                                                                'Temperature',
                                                                                'LED525',
                                                                                'FrameCommand',
                                                                                'NextFileTrigger'
                                                                        ]:
                                                                            ephisdata[
                                                                                channelname] = data[
                                                                                    idx]
                                                                            #print('{} added'.format(channelname))
                                                                        else:
                                                                            print(
                                                                                'waiting in the other daq'
                                                                            )
                                                                            timer.sleep(
                                                                                1000
                                                                            )
                                                            ephisdata_cell.append(
                                                                ephisdata)
                                                            #%

                                                        except:  # new file version
                                                            print(
                                                                'old version')
                                                            ephysfile = MetaArray(
                                                            )
                                                            ephysfile.readFile(
                                                                sweep_dir.
                                                                joinpath(file))
                                                            data = ephysfile.asarray(
                                                            )
                                                            metadata = ephysfile.infoCopy(
                                                            )
                                                            sweepstarttime = datetime.datetime.fromtimestamp(
                                                                metadata[2]
                                                                ['startTime'])
                                                            relativetime = (
                                                                sweepstarttime
                                                                - cellstarttime
                                                            ).total_seconds()
                                                            ephisdata = dict()
                                                            ephisdata[
                                                                'V'] = data[1]
                                                            ephisdata[
                                                                'stim'] = data[
                                                                    0]
                                                            ephisdata[
                                                                'data'] = data
                                                            ephisdata[
                                                                'metadata'] = metadata
                                                            ephisdata[
                                                                'time'] = metadata[
                                                                    1]['values']
                                                            ephisdata[
                                                                'relativetime'] = relativetime
                                                            ephisdata[
                                                                'sweepstarttime'] = sweepstarttime
                                                            ephisdata[
                                                                'series'] = series
                                                            ephisdata[
                                                                'sweep'] = sweep
                                                            sweepstarttimes.append(
                                                                sweepstarttime)
                                                            ephisdata_cell.append(
                                                                ephisdata)

    # ============================================================================
    #                             if wrname == 'FOR04':
    # =============================================================================
    # add session to DJ if not present
                                if len(ephisdata_cell) > 0:

                                    # =============================================================================
                                    #                                     print('waiting')
                                    #                                     timer.sleep(1000)
                                    # =============================================================================
                                    #%
                                    if len(experiment.Session()
                                           & 'subject_id = "' +
                                           str(sessiondata['subject_id']) + '"'
                                           & 'session_date = "' +
                                           str(sessiondata['session_date']) +
                                           '"') == 0:
                                        if len(experiment.Session()
                                               & 'subject_id = "' +
                                               str(sessiondata['subject_id']) +
                                               '"') == 0:
                                            sessiondata['session'] = 1
                                        else:
                                            sessiondata['session'] = len(
                                                (experiment.Session()
                                                 & 'subject_id = "' +
                                                 str(sessiondata['subject_id'])
                                                 + '"').fetch()['session']) + 1
                                        sessiondata['session_time'] = (
                                            sweepstarttimes[0]
                                        ).strftime(
                                            '%H:%M:%S'
                                        )  # the time of the first sweep will be the session time
                                        experiment.Session().insert1(
                                            sessiondata)
                                    #%
                                    session = (
                                        experiment.Session()
                                        & 'subject_id = "' +
                                        str(sessiondata['subject_id']) + '"'
                                        & 'session_date = "' +
                                        str(sessiondata['session_date']) +
                                        '"').fetch('session')[0]
                                    cell_number = int(cell[cell.find('_') +
                                                           1:])
                                    #add cell if not added already
                                    celldata = {
                                        'subject_id': subject_id,
                                        'session': session,
                                        'cell_number': cell_number,
                                    }
                                    #%
                                    if len(ephys_patch.Cell() & celldata
                                           ) == 0 or len(ephys_patch.Cell() *
                                                         ephys_patch.Sweep()
                                                         & celldata) < len(
                                                             ephisdata_cell):
                                        if len(ephys_patch.Cell() *
                                               ephys_patch.Sweep() & celldata
                                               ) < len(ephisdata_cell):
                                            print('finishing a recording:')
                                        else:
                                            print('adding new recording:')
                                        print(celldata)
                                        if 'type' in serieses['.'].keys():
                                            if serieses['.'][
                                                    'type'] == 'interneuron':
                                                celldata['cell_type'] = 'int'
                                            elif serieses['.'][
                                                    'type'] == 'unknown' or serieses[
                                                        '.']['type'] == 'fail':
                                                celldata[
                                                    'cell_type'] = 'unidentified'
                                            else:
                                                print('unhandled cell type!!')
                                                timer.sleep(1000)
                                        else:
                                            celldata[
                                                'cell_type'] = 'unidentified'
                                        celldata['cell_recording_start'] = (
                                            sweepstarttimes[0]
                                        ).strftime('%H:%M:%S')
                                        if 'depth' in serieses['.'].keys(
                                        ) and len(serieses['.']['depth']) > 0:
                                            celldata['depth'] = int(
                                                serieses['.']['depth'])
                                        else:
                                            celldata['depth'] = -1
                                        try:
                                            ephys_patch.Cell().insert1(
                                                celldata,
                                                allow_direct_insert=True)
                                        except dj.errors.DuplicateError:
                                            pass  #already uploaded
                                        if 'notes' in serieses['.'].keys():
                                            cellnotes = serieses['.']['notes']
                                        else:
                                            cellnotes = ''
                                        cellnotesdata = {
                                            'subject_id': subject_id,
                                            'session': session,
                                            'cell_number': cell_number,
                                            'notes': cellnotes
                                        }
                                        try:
                                            ephys_patch.CellNotes().insert1(
                                                cellnotesdata,
                                                allow_direct_insert=True)
                                        except dj.errors.DuplicateError:
                                            pass  #already uploaded

                                        #%
                                        for i, ephisdata in enumerate(
                                                ephisdata_cell):

                                            #%
                                            sweep_number = i
                                            print('sweep {}'.format(
                                                sweep_number))
                                            sweep_data = {
                                                'subject_id':
                                                subject_id,
                                                'session':
                                                session,
                                                'cell_number':
                                                cell_number,
                                                'sweep_number':
                                                sweep_number,
                                                'sweep_start_time':
                                                (ephisdata['sweepstarttime'] -
                                                 sweepstarttimes[0]
                                                 ).total_seconds(),
                                                'sweep_end_time':
                                                (ephisdata['sweepstarttime'] -
                                                 sweepstarttimes[0]
                                                 ).total_seconds() +
                                                ephisdata['time'][-1],
                                                'protocol_name':
                                                ephisdata[
                                                    'series'],  #[:ephisdata['series'].find('_')],
                                                'protocol_sweep_number':
                                                int(ephisdata['sweep'])
                                            }

                                            if 'mode' in ephisdata['metadata'][
                                                    2]['ClampState']:  # old file version
                                                recmode = ephisdata[
                                                    'metadata'][2][
                                                        'ClampState']['mode']
                                            else:
                                                recmode = ephisdata[
                                                    'metadata'][2]['Protocol'][
                                                        'mode']

                                            if 'IC' in str(recmode):
                                                recording_mode = 'current clamp'
                                            else:
                                                print(
                                                    'unhandled recording mode, please act..'
                                                )
                                                timer.sleep(10000)

                                            channelnames = list()
                                            channelunits = list()
                                            for line_now in ephisdata[
                                                    'metadata'][0]['cols']:
                                                if type(line_now['name']
                                                        ) == bytes:
                                                    channelnames.append(
                                                        line_now['name'].
                                                        decode().strip("'"))
                                                    channelunits.append(
                                                        line_now['units'].
                                                        decode().strip("'"))
                                                else:
                                                    channelnames.append(
                                                        line_now['name'])
                                                    channelunits.append(
                                                        line_now['units'])
                                            commandidx = np.where(
                                                np.array(channelnames) ==
                                                'command')[0][0]
                                            dataidx = np.where(
                                                np.array(channelnames) ==
                                                'primary')[0][0]
                                            #%
                                            clampparams_data = ephisdata[
                                                'metadata'][2]['ClampState'][
                                                    'ClampParams'].copy()
                                            clampparams_data_new = dict()
                                            for clampparamkey in clampparams_data.keys(
                                            ):  #6004 is true for some reason.. changing it back to 1
                                                if type(clampparams_data[
                                                        clampparamkey]
                                                        ) == np.int32:
                                                    if clampparams_data[
                                                            clampparamkey] > 0:
                                                        clampparams_data[
                                                            clampparamkey] = int(
                                                                1)
                                                    else:
                                                        clampparams_data[
                                                            clampparamkey] = int(
                                                                0)
                                                else:
                                                    clampparams_data[
                                                        clampparamkey] = float(
                                                            clampparams_data[
                                                                clampparamkey])
                                                clampparams_data_new[
                                                    clampparamkey.lower(
                                                    )] = clampparams_data[
                                                        clampparamkey]
                                                #%
                                            sweepmetadata_data = {
                                                'subject_id':
                                                subject_id,
                                                'session':
                                                session,
                                                'cell_number':
                                                cell_number,
                                                'sweep_number':
                                                sweep_number,
                                                'recording_mode':
                                                recording_mode,
                                                'sample_rate':
                                                np.round(1 / np.median(
                                                    np.diff(
                                                        ephisdata['metadata']
                                                        [1]['values'])))
                                            }
                                            sweepmetadata_data.update(
                                                clampparams_data_new)
                                            sweepdata_data = {
                                                'subject_id':
                                                subject_id,
                                                'session':
                                                session,
                                                'cell_number':
                                                cell_number,
                                                'sweep_number':
                                                sweep_number,
                                                'response_trace':
                                                ephisdata['data'][dataidx, :],
                                                'response_units':
                                                ephisdata['metadata'][0]
                                                ['cols'][dataidx]['units']
                                            }

                                            sweepstimulus_data = {
                                                'subject_id':
                                                subject_id,
                                                'session':
                                                session,
                                                'cell_number':
                                                cell_number,
                                                'sweep_number':
                                                sweep_number,
                                                'stimulus_trace':
                                                ephisdata['data'][
                                                    commandidx, :],
                                                'stimulus_units':
                                                ephisdata['metadata'][0]
                                                ['cols'][commandidx]['units']
                                            }
                                            #print('waiting')
                                            #timer.sleep(10000)
                                            try:
                                                ephys_patch.Sweep().insert1(
                                                    sweep_data,
                                                    allow_direct_insert=True)
                                            except dj.errors.DuplicateError:
                                                pass  #already uploaded
                                            try:  # maybe it's a duplicate..
                                                ephys_patch.ClampParams(
                                                ).insert1(
                                                    clampparams_data_new,
                                                    allow_direct_insert=True)
                                            except dj.errors.DuplicateError:
                                                pass  #already uploaded
                                            try:
                                                ephys_patch.SweepMetadata(
                                                ).insert1(
                                                    sweepmetadata_data,
                                                    allow_direct_insert=True)
                                            except dj.errors.DuplicateError:
                                                pass  #already uploaded
                                            try:
                                                ephys_patch.SweepResponse(
                                                ).insert1(
                                                    sweepdata_data,
                                                    allow_direct_insert=True)
                                            except dj.errors.DuplicateError:
                                                pass  #already uploaded
                                            try:
                                                ephys_patch.SweepStimulus(
                                                ).insert1(
                                                    sweepstimulus_data,
                                                    allow_direct_insert=True)
                                            except dj.errors.DuplicateError:
                                                pass  #already uploaded
                                            #%
                                            if 'OrcaFlashExposure' in ephisdata.keys(
                                            ):
                                                sweepimagingexposuredata = {
                                                    'subject_id':
                                                    subject_id,
                                                    'session':
                                                    session,
                                                    'cell_number':
                                                    cell_number,
                                                    'sweep_number':
                                                    sweep_number,
                                                    'imaging_exposure_trace':
                                                    ephisdata[
                                                        'OrcaFlashExposure']
                                                }
                                                try:
                                                    ephys_patch.SweepImagingExposure(
                                                    ).insert1(
                                                        sweepimagingexposuredata,
                                                        allow_direct_insert=True
                                                    )
                                                except dj.errors.DuplicateError:
                                                    pass  #already uploaded
                                            if 'Temperature' in ephisdata.keys(
                                            ):
                                                sweeptemperaturedata = {
                                                    'subject_id':
                                                    subject_id,
                                                    'session':
                                                    session,
                                                    'cell_number':
                                                    cell_number,
                                                    'sweep_number':
                                                    sweep_number,
                                                    'temperature_trace':
                                                    ephisdata['Temperature'] *
                                                    10,
                                                    'temperature_units':
                                                    'degC'
                                                }
                                                try:
                                                    ephys_patch.SweepTemperature(
                                                    ).insert1(
                                                        sweeptemperaturedata,
                                                        allow_direct_insert=True
                                                    )
                                                except dj.errors.DuplicateError:
                                                    pass  #already uploaded
                                            if 'LED525' in ephisdata.keys():
                                                sweepLEDdata = {
                                                    'subject_id':
                                                    subject_id,
                                                    'session':
                                                    session,
                                                    'cell_number':
                                                    cell_number,
                                                    'sweep_number':
                                                    sweep_number,
                                                    'imaging_led_trace':
                                                    ephisdata['LED525']
                                                }
                                                try:
                                                    ephys_patch.SweepLED(
                                                    ).insert1(
                                                        sweepLEDdata,
                                                        allow_direct_insert=True
                                                    )
                                                except dj.errors.DuplicateError:
                                                    pass  #already uploaded
Exemplo n.º 7
0
        plot_precision_recall(key_cell,binwidth =  binwidth ,frbinwidth = frbinwidth,firing_rate_window =  firing_rate_window)    
# =============================================================================
#         data = plot_ephys_ophys_trace(key_cell,time_to_plot=None,trace_window = 50,show_stimulus = True,show_e_ap_peaks = True,show_o_ap_peaks = True)
#         data['figure_handle'].savefig('./figures/{}_cell_{}_roi_type_{}_long.png'.format(key_cell['subject_id'],key_cell['cell_number'],key_cell['roi_type']), bbox_inches = 'tight')
#         print(cell)
# =============================================================================
#%%    #%%
data = plot_ephys_ophys_trace(key_cell,time_to_plot=25,trace_window = 1,show_e_ap_peaks = True,show_o_ap_peaks = True)
#%%
session = 1
subject_id = 456462
cell_number = 5
roi_type = 'Spikepursuit'#'Spikepursuit'#'VolPy_denoised'#'SpikePursuit'#'VolPy_dexpF0'#'VolPy'#'SpikePursuit_dexpF0'#'VolPy_dexpF0'#''Spikepursuit'#'VolPy'#
key_cell = {'session':session,'subject_id':subject_id,'cell_number':cell_number,'roi_type':roi_type }

session_time, cell_recording_start = (experiment.Session()*ephys_patch.Cell()&key_cell).fetch1('session_time','cell_recording_start')
first_movie_start_time =  np.min(np.asarray(((imaging.Movie()*imaging_gt.GroundTruthROI())&key_cell).fetch('movie_start_time'),float))
first_movie_start_time_real = first_movie_start_time + session_time.total_seconds()
threshold,apmaxtime = (imaging_gt.ROIAPWave()*ephysanal.ActionPotential()*ephysanal.ActionPotentialDetails()&key_cell&'ap_real=1').fetch('ap_threshold','ap_max_time')
threshold=np.asarray(threshold,float)
apmaxtime=np.asarray(apmaxtime,float)

# =============================================================================
# session_time_to_plot = time_to_plot+first_movie_start_time  # time relative to session start
# cell_time_to_plot= session_time_to_plot + session_time.total_seconds() -cell_recording_start.total_seconds() # time relative to recording start
# =============================================================================

#%
time_to_plot = apmaxtime[np.argmin(threshold)]+cell_recording_start.total_seconds() - first_movie_start_time_real
data = plot_ephys_ophys_trace(key_cell,
                              time_to_plot=time_to_plot,
Exemplo n.º 8
0
    virus_name = (lab.Virus()&'virus_id = {}'.format(virus_id)).fetch1('virus_name')
    if virus_name != 'syn-FLEX-Voltron-ST':
        continue
    if len(lab.Surgery()&'subject_id = {}'.format(subject_id))!=2:
        print('only {} surgery for {}'.format(len(lab.Surgery()&'subject_id = {}'.format(subject_id)),subject_id))
        continue
    movie_num_list.append(len(imaging.Movie()&'subject_id = {}'.format(subject_id)))
    date_of_birth,sex = (lab.Subject()&'subject_id = {}'.format(subject_id)).fetch1('date_of_birth','sex')
    surgery_times = (lab.Surgery()&'subject_id = {}'.format(subject_id)).fetch('start_time')
    ml,ap = (lab.Surgery.Procedure()&'subject_id = {}'.format(subject_id)).fetch1('ml_location','ap_location')
    ml_list.append(int(ml))
    ap_list.append(int(ap))
    age_first_surgery_list.append((np.min(surgery_times).date()-date_of_birth).days)
    expression_time_list.append(np.diff(surgery_times)[0].days)
    sex_list.append(sex)
    depth_list.extend((ephys_patch.Cell()&'subject_id = {}'.format(subject_id)).fetch('depth'))
  
depth_list = np.asarray(depth_list)
ap_list = np.asarray(ap_list)
ml_list = np.asarray(ml_list)
movie_num_list = np.asarray(movie_num_list)
sex_list = np.asarray(sex_list)
age_first_surgery_list = np.asarray(age_first_surgery_list)
expression_time_list = np.asarray(expression_time_list)   
print('{} mice'.format(len(sex_list)))  
print('{} males, {} females'.format(sum(sex_list=='M'), sum(sex_list=='F')))  
print('ages at first surgery: {}'.format(np.sort(age_first_surgery_list)))
print('ml cranio locations: {}, ap cranio locations {}'.format(ml_list,ap_list))
print('exression times:{}'.format(np.sort(expression_time_list)))
print('cell depths:{}'.format(np.sort(depth_list)))
    #break
Exemplo n.º 9
0
                              time_to_plot=25,
                              trace_window=1,
                              show_e_ap_peaks=True,
                              show_o_ap_peaks=True)
#%%
data = plot_ephys_ophys_trace(key_cell,
                              time_to_plot=None,
                              trace_window=50,
                              show_stimulus=True,
                              show_e_ap_peaks=True,
                              show_o_ap_peaks=True)
#%%

#%%plot time offset between 1st ROI and real elphys
min_corr_coeff = .1
subject_ids = ephys_patch.Cell().fetch('subject_id')
sessions = ephys_patch.Cell().fetch('session')
cellnums = ephys_patch.Cell().fetch('cell_number')
roi_types = ['Spikepursuit', 'VolPy']
for roi_type_idx, roi_type in enumerate(roi_types):
    fig = plt.figure()
    axs_delay_sweep = list()
    axs_delay_coeff = list()
    axs_coeff_sweep = list()
    axs_delay_sweep.append(fig.add_axes([0, -roi_type_idx, .8, .8]))
    axs_coeff_sweep.append(fig.add_axes([1, -roi_type_idx, .8, .8]))
    axs_delay_coeff.append(fig.add_axes([2, -roi_type_idx, .8, .8]))
    for subject_id, session, cellnum in zip(subject_ids, sessions, cellnums):
        key = {
            'subject_id': subject_id,
            'session': session,
 for movie in movies:
     print(movie)
     if len(imaging_gt.GroundTruthROI()&movie&'roi_type = "VolPy"') == 0:
         print('no groundtruth.. skipped')
     else:
         movie_dict = dict((imaging.Movie()&movie).fetch1())
         for keynow in movie_dict.keys():
             if type(movie_dict[keynow]) == decimal.Decimal:
                 movie_dict[keynow] = float(movie_dict[keynow])
         save_dir_base = os.path.join(gt_package_directory,str(key['subject_id']),'Cell_{}'.format(key['cell_number']),movie_dict['movie_name'])
         if ((os.path.isdir(save_dir_base) and (len(os.listdir(save_dir_base))>3 and not overwrite))):
             print('already exported, skipped')
         else:
             sweep_numbers = movie['sweep_numbers']
             del movie['sweep_numbers']
             session_time, cell_recording_start = (experiment.Session()*ephys_patch.Cell()&key).fetch1('session_time','cell_recording_start')
             first_movie_start_time =  np.min(np.asarray(((imaging.Movie()*imaging_gt.GroundTruthROI())&key).fetch('movie_start_time'),float))
             first_movie_start_time_real = first_movie_start_time + session_time.total_seconds()
             frame_times = (imaging.MovieFrameTimes()&movie).fetch1('frame_times') - cell_recording_start.total_seconds() + session_time.total_seconds()
             movie_dict['movie_start_time'] = frame_times[0]        
             movie_files = list()
             repositories , directories , fnames = (imaging.MovieFile() & movie).fetch('movie_file_repository','movie_file_directory','movie_file_name')
             for repository,directory,fname in zip(repositories,directories,fnames):
                 movie_files.append(os.path.join(dj.config['locations.{}'.format(repository)],directory,fname))
             sweepdata_out = list()
             sweepmetadata_out = list()
             for sweep_number in sweep_numbers:
                 #%
                 key_sweep = key.copy()
                 key_sweep['sweep_number'] = sweep_number