Exemplo n.º 1
0
def populatemetadata():
    #%% save metadata from google drive if necessairy
    lastmodify = online_notebook.fetch_lastmodify_time_animal_metadata()
    with open(dj.config['locations.metadata_surgery_experiment'] +
              'last_modify_time.json') as timedata:
        lastmodify_prev = json.loads(timedata.read())
    if lastmodify != lastmodify_prev:
        print('updating surgery and WR metadata from google drive')
        dj.config['locations.metadata_surgery_experiment']
        df_surgery = online_notebook.fetch_animal_metadata()
        df_surgery.to_csv(dj.config['locations.metadata_surgery_experiment'] +
                          'Surgery.csv')
        IDs = df_surgery['ID'].tolist()
        for ID in IDs:
            df_wr = online_notebook.fetch_water_restriction_metadata(ID)
            if type(df_wr) == pd.DataFrame:
                df_wr.to_csv(
                    dj.config['locations.metadata_surgery_experiment'] + ID +
                    '.csv')
        with open(
                dj.config['locations.metadata_surgery_experiment'] +
                'last_modify_time.json', "w") as write_file:
            json.dump(lastmodify, write_file)
        print('surgery and WR metadata updated')

    lastmodify = online_notebook.fetch_lastmodify_time_lab_metadata()
    with open(dj.config['locations.metadata_lab'] +
              'last_modify_time.json') as timedata:
        lastmodify_prev = json.loads(timedata.read())
    if lastmodify != lastmodify_prev:
        print('updating Lab metadata from google drive')
        dj.config['locations.metadata_lab']
        IDs = ['Experimenter', 'Rig', 'Virus']
        for ID in IDs:
            df_wr = online_notebook.fetch_lab_metadata(ID)
            if type(df_wr) == pd.DataFrame:
                df_wr.to_csv(dj.config['locations.metadata_lab'] + ID + '.csv')

        with open(
                dj.config['locations.metadata_lab'] + 'last_modify_time.json',
                "w") as write_file:
            json.dump(lastmodify, write_file)
        print('Lab metadata updated')

    #%% add users
    df_experimenters = pd.read_csv(dj.config['locations.metadata_lab'] +
                                   'Experimenter.csv')
    experimenterdata = list()
    for experimenter in df_experimenters.iterrows():
        experimenter = experimenter[1]
        dictnow = {
            'username': experimenter['username'],
            'fullname': experimenter['fullname']
        }
        experimenterdata.append(dictnow)
    print('adding experimenters')
    for experimenternow in experimenterdata:
        try:
            lab.Person().insert1(experimenternow)
        except dj.errors.DuplicateError:
            print('duplicate. experimenter: ', experimenternow['username'],
                  ' already exists')

    #%% add rigs
    df_rigs = pd.read_csv(dj.config['locations.metadata_lab'] + 'Rig.csv')
    rigdata = list()
    for rig in df_rigs.iterrows():
        rig = rig[1]
        dictnow = {
            'rig': rig['rig'],
            'room': rig['room'],
            'rig_description': rig['rig_description']
        }
        rigdata.append(dictnow)
    print('adding rigs')
    for rignow in rigdata:
        try:
            lab.Rig().insert1(rignow)
        except dj.errors.DuplicateError:
            print('duplicate. rig: ', rignow['rig'], ' already exists')

    #%% add viruses
    df_viruses = pd.read_csv(dj.config['locations.metadata_lab'] + 'Virus.csv')
    virusdata = list()
    serotypedata = list()
    for virus in df_viruses.iterrows():
        virus = virus[1]
        if type(virus['remarks']) != str:
            virus['remarks'] = ''
        dictnow = {
            'virus_id': virus['virus_id'],
            'virus_source': virus['virus_source'],
            'serotype': virus['serotype'],
            'username': virus['username'],
            'virus_name': virus['virus_name'],
            'titer': virus['titer'],
            'order_date': virus['order_date'],
            'remarks': virus['remarks']
        }
        virusdata.append(dictnow)
        dictnow = {'serotype': virus['serotype']}
        serotypedata.append(dictnow)
    print('adding rigs')
    for virusnow, serotypenow in zip(virusdata, serotypedata):
        try:
            lab.Serotype().insert1(serotypenow)
        except dj.errors.DuplicateError:
            print('duplicate serotype: ', serotypenow['serotype'],
                  ' already exists')
        try:
            lab.Virus().insert1(virusnow)
        except dj.errors.DuplicateError:
            print('duplicate virus: ', virusnow['virus_name'],
                  ' already exists')
    #%% populate subjects, surgeries and water restrictions
    print('adding surgeries and stuff')
    df_surgery = pd.read_csv(
        dj.config['locations.metadata_surgery_experiment'] + 'Surgery.csv')
    #%%
    for item in df_surgery.iterrows():
        if item[1]['project'] == dj.config['project'] and (
                item[1]['status'] == 'training'
                or item[1]['status'] == 'sacrificed'):
            subjectdata = {
                'subject_id': item[1]['animal#'],
                'cage_number': item[1]['cage#'],
                'date_of_birth': item[1]['DOB'],
                'sex': item[1]['sex'],
                'username': item[1]['experimenter'],
            }
            try:
                lab.Subject().insert1(subjectdata)
            except dj.errors.DuplicateError:
                print('duplicate. animal :', item[1]['animal#'],
                      ' already exists')
            surgeryidx = 1
            while 'surgery date (' + str(surgeryidx) + ')' in item[1].keys(
            ) and item[1]['surgery date (' + str(surgeryidx) + ')'] and type(
                    item[1]['surgery date (' + str(surgeryidx) + ')']) == str:
                start_time = datetime.strptime(
                    item[1]['surgery date (' + str(surgeryidx) + ')'] + ' ' +
                    item[1]['surgery time (' + str(surgeryidx) + ')'],
                    '%Y-%m-%d %H:%M')
                end_time = start_time + timedelta(
                    minutes=int(item[1]['surgery length (min) (' +
                                        str(surgeryidx) + ')']))
                surgerydata = {
                    'surgery_id':
                    surgeryidx,
                    'subject_id':
                    item[1]['animal#'],
                    'username':
                    item[1]['experimenter'],
                    'start_time':
                    start_time,
                    'end_time':
                    end_time,
                    'surgery_description':
                    item[1]['surgery type (' + str(surgeryidx) + ')'] +
                    ':-: comments: ' +
                    str(item[1]['surgery comments (' + str(surgeryidx) + ')']),
                }
                try:
                    lab.Surgery().insert1(surgerydata)
                except dj.errors.DuplicateError:
                    print('duplicate. surgery for animal ', item[1]['animal#'],
                          ' already exists: ', start_time)
                #checking craniotomies
                #%
                cranioidx = 1
                while 'craniotomy diameter (' + str(
                        cranioidx) + ')' in item[1].keys() and item[1][
                            'craniotomy diameter (' + str(cranioidx) +
                            ')'] and (
                                type(item[1]['craniotomy surgery id (' +
                                             str(cranioidx) + ')']) == int or
                                type(item[1]['craniotomy surgery id (' +
                                             str(cranioidx) + ')']) == float):
                    if item[1]['craniotomy surgery id (' + str(cranioidx) +
                               ')'] == surgeryidx:
                        proceduredata = {
                            'surgery_id':
                            surgeryidx,
                            'subject_id':
                            item[1]['animal#'],
                            'procedure_id':
                            cranioidx,
                            'skull_reference':
                            item[1]['craniotomy reference (' + str(cranioidx) +
                                    ')'],
                            'ml_location':
                            item[1]['craniotomy lateral (' + str(cranioidx) +
                                    ')'],
                            'ap_location':
                            item[1]['craniotomy anterior (' + str(cranioidx) +
                                    ')'],
                            'surgery_procedure_description':
                            'craniotomy: ' + item[1]['craniotomy comments (' +
                                                     str(cranioidx) + ')'],
                        }
                        try:
                            lab.Surgery.Procedure().insert1(proceduredata)
                        except dj.errors.DuplicateError:
                            print('duplicate cranio for animal ',
                                  item[1]['animal#'], ' already exists: ',
                                  cranioidx)
                    cranioidx += 1
                #%

                virusinjidx = 1
                while 'virus inj surgery id (' + str(
                        virusinjidx) + ')' in item[1].keys() and item[1][
                            'virus inj virus id (' + str(virusinjidx) +
                            ')'] and item[1]['virus inj surgery id (' +
                                             str(virusinjidx) + ')']:
                    if item[1]['virus inj surgery id (' + str(virusinjidx) +
                               ')'] == surgeryidx:
                        # =============================================================================
                        #                     print('waiting')
                        #                     timer.sleep(1000)
                        # =============================================================================
                        if '[' in item[1]['virus inj lateral (' +
                                          str(virusinjidx) + ')']:
                            virus_ml_locations = eval(
                                item[1]['virus inj lateral (' +
                                        str(virusinjidx) + ')'])
                            virus_ap_locations = eval(
                                item[1]['virus inj anterior (' +
                                        str(virusinjidx) + ')'])
                            virus_dv_locations = eval(
                                item[1]['virus inj ventral (' +
                                        str(virusinjidx) + ')'])
                            virus_volumes = eval(
                                item[1]['virus inj volume (nl) (' +
                                        str(virusinjidx) + ')'])
                        else:
                            virus_ml_locations = [
                                int(item[1]['virus inj lateral (' +
                                            str(virusinjidx) + ')'])
                            ]
                            virus_ap_locations = [
                                int(item[1]['virus inj anterior (' +
                                            str(virusinjidx) + ')'])
                            ]
                            virus_dv_locations = [
                                int(item[1]['virus inj ventral (' +
                                            str(virusinjidx) + ')'])
                            ]
                            virus_volumes = [
                                int(item[1]['virus inj volume (nl) (' +
                                            str(virusinjidx) + ')'])
                            ]

                        for virus_ml_location, virus_ap_location, virus_dv_location, virus_volume in zip(
                                virus_ml_locations, virus_ap_locations,
                                virus_dv_locations, virus_volumes):
                            injidx = len(lab.Surgery.VirusInjection()
                                         & surgerydata) + 1
                            virusinjdata = {
                                'surgery_id':
                                surgeryidx,
                                'subject_id':
                                item[1]['animal#'],
                                'injection_id':
                                injidx,
                                'virus_id':
                                item[1]['virus inj virus id (' +
                                        str(virusinjidx) + ')'],
                                'skull_reference':
                                item[1]['virus inj reference (' +
                                        str(virusinjidx) + ')'],
                                'ml_location':
                                virus_ml_location,
                                'ap_location':
                                virus_ap_location,
                                'dv_location':
                                virus_dv_location,
                                'volume':
                                virus_volume,
                                'dilution':
                                item[1]['virus inj dilution (' +
                                        str(virusinjidx) + ')'],
                                'description':
                                'virus injection: ' +
                                item[1]['virus inj comments (' +
                                        str(virusinjidx) + ')'],
                            }
                            try:
                                lab.Surgery.VirusInjection().insert1(
                                    virusinjdata)
                            except dj.errors.DuplicateError:
                                print('duplicate virus injection for animal ',
                                      item[1]['animal#'], ' already exists: ',
                                      injidx)
                    virusinjidx += 1
                #%

                surgeryidx += 1

                #%
            if item[1]['ID']:
                #df_wr = online_notebook.fetch_water_restriction_metadata(item[1]['ID'])
                try:
                    df_wr = pd.read_csv(
                        dj.config['locations.metadata_surgery_experiment'] +
                        item[1]['ID'] + '.csv')
                except:
                    df_wr = None
                if type(df_wr) == pd.DataFrame:
                    wrdata = {
                        'subject_id': item[1]['animal#'],
                        'water_restriction_number': item[1]['ID'],
                        'cage_number': item[1]['cage#'],
                        'wr_start_date': df_wr['Date'][0],
                        'wr_start_weight': df_wr['Weight'][0],
                    }
                    try:
                        lab.WaterRestriction().insert1(wrdata)
                    except dj.errors.DuplicateError:
                        print('duplicate. water restriction :',
                              item[1]['animal#'], ' already exists')
Exemplo n.º 2
0
def mockdata():
    print('populating with mock data')
    reload(ccf)
    reload(lab)
    reload(experiment)
    reload(ephys)
    reload(publication)
    try:
        # TODO: these should be loaded in a more 'official' way
        lab.Person().insert1({
            'username': '******',
            'fullname': 'Dave Liu'
        },
                             skip_duplicates=True)
        lab.ModifiedGene().insert1(
            {
                'gene_modification': 'VGAT-Chr2-EYFP Jax',
                'gene_modification_description': 'VGAT'
            },
            skip_duplicates=True)
        lab.ModifiedGene().insert1(
            {
                'gene_modification': 'PV-ires-Cre X Ai32',
                'gene_modification_description': 'PV'
            },
            skip_duplicates=True)
        lab.ModifiedGene().insert1(
            {
                'gene_modification':
                'Rosa26 Cag lsl reachR-citrine 1A4 X PV-ires-Cre',
                'gene_modification_description': 'reachR PV'
            },
            skip_duplicates=True)
        # Subject 399752 / dl7
        lab.Subject().insert1(
            {
                'subject_id': 399752,
                'username': '******',
                'cage_number': 145375,
                'date_of_birth': '2017-08-03',
                'sex': 'M',
                'animal_source': 'Jackson labs'
            },
            skip_duplicates=True)
        lab.Subject.GeneModification().insert1(
            {
                'subject_id': 399752,
                'gene_modification': 'VGAT-Chr2-EYFP Jax'
            },
            skip_duplicates=True)
        lab.Surgery().insert1(
            {
                'subject_id': 399752,
                'surgery_id': 1,
                'username': '******',
                'start_time': '2017-11-03',
                'end_time': '2017-11-03',
                'surgery_description': 'Headbar anterior'
            },
            skip_duplicates=True)
        lab.Surgery.Procedure().insert1(
            {
                'subject_id': 399752,
                'surgery_id': 1,
                'procedure_id': 1,
                'skull_reference': 'Bregma',
                'ml_location': 0,
                'ap_location': -4,
                'surgery_procedure_description': 'Fiducial marker'
            },
            skip_duplicates=True)
        lab.WaterRestriction().insert1(
            {
                'subject_id': 399752,
                'water_restriction_number': 'dl7',
                'cage_number': 148861,
                'wr_start_date': '2017-11-07',
                'wr_start_weight': 25
            },
            skip_duplicates=True)
        # Subject 397853 / dl14
        lab.Subject().insert1(
            {
                'subject_id': 397853,
                'username': '******',
                'cage_number': 144545,
                'date_of_birth': '2017-07-15',
                'sex': 'M',
                'animal_source': 'Allen Institute'
            },
            skip_duplicates=True)
        lab.Subject.GeneModification().insert1(
            {
                'subject_id': 397853,
                'gene_modification': 'PV-ires-Cre X Ai32'
            },
            skip_duplicates=True)
        lab.Surgery().insert1(
            {
                'subject_id': 397853,
                'surgery_id': 1,
                'username': '******',
                'start_time': '2017-11-20',
                'end_time': '2017-11-20',
                'surgery_description': 'Headbar posterior'
            },
            skip_duplicates=True)
        lab.Surgery.Procedure().insert1(
            {
                'subject_id': 397853,
                'surgery_id': 1,
                'procedure_id': 1,
                'skull_reference': 'Bregma',
                'ml_location': 0,
                'ap_location': -1.75,
                'surgery_procedure_description': 'Fiducial marker'
            },
            skip_duplicates=True)
        lab.WaterRestriction().insert1(
            {
                'subject_id': 397853,
                'water_restriction_number': 'dl14',
                'cage_number': 149595,
                'wr_start_date': '2017-11-27',
                'wr_start_weight': 24.1
            },
            skip_duplicates=True)
        # Subject 400480 / dl15
        lab.Subject().insert1(
            {
                'subject_id': 400480,
                'username': '******',
                'cage_number': 145700,
                'date_of_birth': '2017-08-09',
                'sex': 'M',
                'animal_source': 'Allen Institute'
            },
            skip_duplicates=True)
        lab.Subject.GeneModification().insert1(
            {
                'subject_id': 400480,
                'gene_modification': 'PV-ires-Cre X Ai32'
            },
            skip_duplicates=True)
        lab.Surgery().insert1(
            {
                'subject_id': 400480,
                'surgery_id': 1,
                'username': '******',
                'start_time': '2017-11-21',
                'end_time': '2017-11-21',
                'surgery_description': 'Headbar posterior'
            },
            skip_duplicates=True)
        lab.Surgery.Procedure().insert1(
            {
                'subject_id': 400480,
                'surgery_id': 1,
                'procedure_id': 1,
                'skull_reference': 'Bregma',
                'ml_location': 0,
                'ap_location': -1.75,
                'surgery_procedure_description': 'Fiducial marker'
            },
            skip_duplicates=True)
        lab.WaterRestriction().insert1(
            {
                'subject_id': 400480,
                'water_restriction_number': 'dl15',
                'cage_number': 149598,
                'wr_start_date': '2017-11-27',
                'wr_start_weight': 27.6
            },
            skip_duplicates=True)
        # Subject 406680 / dl20
        lab.Subject().insert1(
            {
                'subject_id': 406680,
                'username': '******',
                'cage_number': 148859,
                'date_of_birth': '2017-10-06',
                'sex': 'F',
                'animal_source': 'Jackson labs'
            },
            skip_duplicates=True)
        lab.Subject.GeneModification().insert1(
            {
                'subject_id': 406680,
                'gene_modification': 'VGAT-Chr2-EYFP Jax'
            },
            skip_duplicates=True)
        lab.Surgery().insert1(
            {
                'subject_id': 406680,
                'surgery_id': 1,
                'username': '******',
                'start_time': '2018-01-04',
                'end_time': '2018-01-04',
                'surgery_description': 'Headbar posterior'
            },
            skip_duplicates=True)
        lab.Surgery.Procedure().insert1(
            {
                'subject_id': 406680,
                'surgery_id': 1,
                'procedure_id': 1,
                'skull_reference': 'Bregma',
                'ml_location': 0,
                'ap_location': -1.75,
                'surgery_procedure_description': 'Fiducial marker'
            },
            skip_duplicates=True)
        lab.WaterRestriction().insert1(
            {
                'subject_id': 406680,
                'water_restriction_number': 'dl20',
                'cage_number': 151282,
                'wr_start_date': '2018-01-10',
                'wr_start_weight': 22.7
            },
            skip_duplicates=True)
        # Subject 408022 / dl21
        lab.Subject().insert1(
            {
                'subject_id': 408022,
                'username': '******',
                'cage_number': 148859,
                'date_of_birth': '2017-10-19',
                'sex': 'F',
                'animal_source': 'Jackson labs'
            },
            skip_duplicates=True)
        lab.Subject.GeneModification().insert1(
            {
                'subject_id': 408022,
                'gene_modification': 'VGAT-Chr2-EYFP Jax'
            },
            skip_duplicates=True)
        lab.Surgery().insert1(
            {
                'subject_id': 408022,
                'surgery_id': 1,
                'username': '******',
                'start_time': '2018-01-05',
                'end_time': '2018-01-05',
                'surgery_description': 'Headbar posterior'
            },
            skip_duplicates=True)
        lab.Surgery.Procedure().insert1(
            {
                'subject_id': 408022,
                'surgery_id': 1,
                'procedure_id': 1,
                'skull_reference': 'Bregma',
                'ml_location': 0,
                'ap_location': -1.75,
                'surgery_procedure_description': 'Fiducial marker'
            },
            skip_duplicates=True)
        lab.WaterRestriction().insert1(
            {
                'subject_id': 408022,
                'water_restriction_number': 'dl21',
                'cage_number': 151283,
                'wr_start_date': '2018-01-10',
                'wr_start_weight': 21.1
            },
            skip_duplicates=True)
        # Subject 408021 / dl22
        lab.Subject().insert1(
            {
                'subject_id': 408021,
                'username': '******',
                'cage_number': 148859,
                'date_of_birth': '2017-10-19',
                'sex': 'F',
                'animal_source': 'Jackson labs'
            },
            skip_duplicates=True)
        lab.Subject.GeneModification().insert1(
            {
                'subject_id': 408021,
                'gene_modification': 'VGAT-Chr2-EYFP Jax'
            },
            skip_duplicates=True)
        lab.Surgery().insert1(
            {
                'subject_id': 408021,
                'surgery_id': 1,
                'username': '******',
                'start_time': '2018-01-15',
                'end_time': '2018-01-15',
                'surgery_description': 'Headbar posterior'
            },
            skip_duplicates=True)
        lab.Surgery.Procedure().insert1(
            {
                'subject_id': 408021,
                'surgery_id': 1,
                'procedure_id': 1,
                'skull_reference': 'Bregma',
                'ml_location': 0,
                'ap_location': -1.75,
                'surgery_procedure_description': 'Fiducial marker'
            },
            skip_duplicates=True)
        lab.WaterRestriction().insert1(
            {
                'subject_id': 408021,
                'water_restriction_number': 'dl22',
                'cage_number': 151704,
                'wr_start_date': '2018-01-19',
                'wr_start_weight': 21
            },
            skip_duplicates=True)
        # Subject 407512 / dl24
        lab.Subject().insert1(
            {
                'subject_id': 407512,
                'username': '******',
                'cage_number': 151629,
                'date_of_birth': '2017-10-13',
                'sex': 'M',
                'animal_source': 'Jackson labs'
            },
            skip_duplicates=True)
        lab.Subject.GeneModification().insert1(
            {
                'subject_id': 407512,
                'gene_modification': 'VGAT-Chr2-EYFP Jax'
            },
            skip_duplicates=True)
        lab.Surgery().insert1(
            {
                'subject_id': 407512,
                'surgery_id': 1,
                'username': '******',
                'start_time': '2018-01-16',
                'end_time': '2018-01-16',
                'surgery_description': 'Headbar posterior'
            },
            skip_duplicates=True)
        lab.Surgery.Procedure().insert1(
            {
                'subject_id': 407512,
                'surgery_id': 1,
                'procedure_id': 1,
                'skull_reference': 'Bregma',
                'ml_location': 0,
                'ap_location': -1.75,
                'surgery_procedure_description': 'Fiducial marker'
            },
            skip_duplicates=True)
        lab.WaterRestriction().insert1(
            {
                'subject_id': 407512,
                'water_restriction_number': 'dl24',
                'cage_number': 151793,
                'wr_start_date': '2018-01-22',
                'wr_start_weight': 26
            },
            skip_duplicates=True)
        # 407513 / dl25
        lab.Subject().insert1(
            {
                'subject_id': 407513,
                'username': '******',
                'cage_number': 148636,
                'date_of_birth': '2017-10-13',
                'sex': 'M',
                'animal_source': 'Jackson labs'
            },
            skip_duplicates=True)
        lab.Subject.GeneModification().insert1(
            {
                'subject_id': 407513,
                'gene_modification': 'VGAT-Chr2-EYFP Jax'
            },
            skip_duplicates=True)
        lab.Surgery().insert1(
            {
                'subject_id': 407513,
                'surgery_id': 1,
                'username': '******',
                'start_time': '2018-01-17',
                'end_time': '2018-01-17',
                'surgery_description': 'Headbar posterior'
            },
            skip_duplicates=True)
        lab.Surgery.Procedure().insert1(
            {
                'subject_id': 407513,
                'surgery_id': 1,
                'procedure_id': 1,
                'skull_reference': 'Bregma',
                'ml_location': 0,
                'ap_location': -1.75,
                'surgery_procedure_description': 'Fiducial marker'
            },
            skip_duplicates=True)
        lab.WaterRestriction().insert1(
            {
                'subject_id': 407513,
                'water_restriction_number': 'dl25',
                'cage_number': 151794,
                'wr_start_date': '2018-01-22',
                'wr_start_weight': 25.5
            },
            skip_duplicates=True)
        # Subject 407986 / dl28
        lab.Subject().insert1(
            {
                'subject_id': 407986,
                'username': '******',
                'cage_number': 152268,
                'date_of_birth': '2017-10-18',
                'sex': 'F',
                'animal_source': 'Jackson labs'
            },
            skip_duplicates=True)
        lab.Subject.GeneModification().insert1(
            {
                'subject_id': 407986,
                'gene_modification': 'VGAT-Chr2-EYFP Jax'
            },
            skip_duplicates=True)
        lab.Surgery().insert1(
            {
                'subject_id': 407986,
                'surgery_id': 1,
                'username': '******',
                'start_time': '2018-02-01',
                'end_time': '2018-02-01',
                'surgery_description': 'Headbar anterior'
            },
            skip_duplicates=True)
        lab.Surgery.Procedure().insert1(
            {
                'subject_id': 407986,
                'surgery_id': 1,
                'procedure_id': 1,
                'skull_reference': 'Bregma',
                'ml_location': 0,
                'ap_location': -4,
                'surgery_procedure_description': 'Fiducial marker'
            },
            skip_duplicates=True)
        lab.WaterRestriction().insert1(
            {
                'subject_id': 407986,
                'water_restriction_number': 'dl28',
                'cage_number': 152312,
                'wr_start_date': '2018-02-05',
                'wr_start_weight': 19.8
            },
            skip_duplicates=True)
        # Subject 123457 / tw5
        lab.Subject().insert1(
            {
                'subject_id': 123457,
                'username': '******',
                'cage_number': 145375,
                'date_of_birth': '2017-08-03',
                'sex': 'M',
                'animal_source': 'Jackson labs'
            },
            skip_duplicates=True)
        lab.WaterRestriction().insert1(
            {
                'subject_id': 123457,
                'water_restriction_number': 'tw5',
                'cage_number': 148861,
                'wr_start_date': '2017-11-07',
                'wr_start_weight': 20.5
            },
            skip_duplicates=True)
        # Subject 412330 / tw34
        lab.Subject().insert1(
            {
                'subject_id': 412330,
                'username': '******',
                'cage_number': 154522,
                'date_of_birth': '2017-12-05',
                'sex': 'M',
                'animal_source': 'Jackson labs'
            },
            skip_duplicates=True)
        lab.WaterRestriction().insert1(
            {
                'subject_id': 412330,
                'water_restriction_number': 'tw34',
                'cage_number': 154522,
                'wr_start_date': '2018-03-18',
                'wr_start_weight': 21.0
            },
            skip_duplicates=True)
        # subject 432998 / dl55
        lab.Subject().insert1(
            {
                'subject_id': 432998,
                'username': '******',
                'cage_number': 160920,
                'date_of_birth': '2018-07-02',
                'sex': 'M',
                'animal_source': 'Jackson labs'
            },
            skip_duplicates=True)
        lab.WaterRestriction().insert1(
            {
                'subject_id': 432998,
                'water_restriction_number': 'dl55',
                'cage_number': 160920,
                'wr_start_date': '2018-09-05',
                'wr_start_weight': 21.0
            },
            skip_duplicates=True)
        # Subject 435884 / dl59
        lab.Subject().insert1(
            {
                'subject_id': 435884,
                'username': '******',
                'cage_number': 161908,
                'date_of_birth': '2018-08-06',
                'sex': 'M',
                'animal_source': 'Jackson labs'
            },
            skip_duplicates=True)
        lab.WaterRestriction().insert1(
            {
                'subject_id': 435884,
                'water_restriction_number': 'dl59',
                'cage_number': 154522,
                'wr_start_date': '2018-09-30',
                'wr_start_weight': 21.0
            },
            skip_duplicates=True)

        lab.Rig().insert1(
            {
                'rig': 'TRig1',
                'room': '2w.334',
                'rig_description': 'Training rig 1'
            },
            skip_duplicates=True)
        lab.Rig().insert1(
            {
                'rig': 'TRig2',
                'room': '2w.334',
                'rig_description': 'Training rig 2'
            },
            skip_duplicates=True)
        lab.Rig().insert1(
            {
                'rig': 'TRig3',
                'room': '2w.334',
                'rig_description': 'Training rig 3'
            },
            skip_duplicates=True)
        lab.Rig().insert1(
            {
                'rig': 'RRig',
                'room': '2w.334',
                'rig_description': 'Recording rig'
            },
            skip_duplicates=True)
        lab.Rig().insert1(
            {
                'rig': 'Ephys1',
                'room': '2w.334',
                'rig_description': 'Recording computer'
            },
            skip_duplicates=True)

        # ---- Brain Location ----
        experiment.BrainLocation.insert1(
            {
                'brain_location_name': 'left_alm',
                'brain_area': 'ALM',
                'hemisphere': 'left',
                'skull_reference': 'Bregma'
            },
            skip_duplicates=True)

        experiment.BrainLocation.insert1(
            {
                'brain_location_name': 'right_alm',
                'brain_area': 'ALM',
                'hemisphere': 'right',
                'skull_reference': 'Bregma'
            },
            skip_duplicates=True)

        experiment.BrainLocation.insert1(
            {
                'brain_location_name': 'both_alm',
                'brain_area': 'ALM',
                'hemisphere': 'both',
                'skull_reference': 'Bregma'
            },
            skip_duplicates=True)

        experiment.BrainLocation.insert1(
            {
                'brain_location_name': 'left_medulla',
                'brain_area': 'Medulla',
                'hemisphere': 'left',
                'skull_reference': 'Bregma'
            },
            skip_duplicates=True)

        experiment.BrainLocation.insert1(
            {
                'brain_location_name': 'right_medulla',
                'brain_area': 'Medulla',
                'hemisphere': 'right',
                'skull_reference': 'Bregma'
            },
            skip_duplicates=True)

        experiment.BrainLocation.insert1(
            {
                'brain_location_name': 'both_medulla',
                'brain_area': 'Medulla',
                'hemisphere': 'both',
                'skull_reference': 'Bregma'
            },
            skip_duplicates=True)

        # Probe (Neuropixel)
        npx_probe_model = '15131808323'  # using Model No. - SN TBD?
        lab.Probe.insert1(
            {
                'probe': npx_probe_model,
                'probe_type': 'neuropixel'
            },
            skip_duplicates=True,
        )
        lab.Probe.Electrode.insert(
            ({
                'probe': npx_probe_model,
                'electrode': x
            } for x in range(1, 961)),
            skip_duplicates=True,
        )

    except Exception as e:
        print("error creating mock data: {e}".format(e=e), file=sys.stderr)
        raise
Exemplo n.º 3
0
def mockdata():
    print('populating with mock data')
    reload(ccf)
    reload(lab)
    reload(experiment)
    reload(ephys)
    reload(publication)
    try:
        # TODO: these should be loaded in a more 'official' way
        lab.Person().insert1({
            'username': '******',
            'fullname': 'Dave Liu'
        },
                             skip_duplicates=True)
        lab.ModifiedGene().insert1(
            {
                'gene_modification': 'VGAT-Chr2-EYFP Jax',
                'gene_modification_description': 'VGAT'
            },
            skip_duplicates=True)
        lab.ModifiedGene().insert1(
            {
                'gene_modification': 'PV-ires-Cre X Ai32',
                'gene_modification_description': 'PV'
            },
            skip_duplicates=True)
        lab.ModifiedGene().insert1(
            {
                'gene_modification':
                'Rosa26 Cag lsl reachR-citrine 1A4 X PV-ires-Cre',
                'gene_modification_description': 'reachR PV'
            },
            skip_duplicates=True)
        lab.Subject().insert1(
            {
                'subject_id': 399752,
                'username': '******',
                'cage_number': 145375,
                'date_of_birth': '2017-08-03',
                'sex': 'M',
                'animal_source': 'Jackson labs'
            },
            skip_duplicates=True)
        lab.Subject.GeneModification().insert1(
            {
                'subject_id': 399752,
                'gene_modification': 'VGAT-Chr2-EYFP Jax'
            },
            skip_duplicates=True)
        lab.Surgery().insert1(
            {
                'subject_id': 399752,
                'surgery_id': 1,
                'username': '******',
                'start_time': '2017-11-03',
                'end_time': '2017-11-03',
                'surgery_description': 'Headbar anterior'
            },
            skip_duplicates=True)
        lab.Surgery.Procedure().insert1(
            {
                'subject_id': 399752,
                'surgery_id': 1,
                'procedure_id': 1,
                'skull_reference': 'Bregma',
                'ml_location': 0,
                'ap_location': -4,
                'surgery_procedure_description': 'Fiducial marker'
            },
            skip_duplicates=True)
        lab.WaterRestriction().insert1(
            {
                'subject_id': 399752,
                'water_restriction_number': 'dl7',
                'cage_number': 148861,
                'wr_start_date': '2017-11-07',
                'wr_start_weight': 25
            },
            skip_duplicates=True)
        lab.Subject().insert1(
            {
                'subject_id': 397853,
                'username': '******',
                'cage_number': 144545,
                'date_of_birth': '2017-07-15',
                'sex': 'M',
                'animal_source': 'Allen Institute'
            },
            skip_duplicates=True)
        lab.Subject.GeneModification().insert1(
            {
                'subject_id': 397853,
                'gene_modification': 'PV-ires-Cre X Ai32'
            },
            skip_duplicates=True)
        lab.Surgery().insert1(
            {
                'subject_id': 397853,
                'surgery_id': 1,
                'username': '******',
                'start_time': '2017-11-20',
                'end_time': '2017-11-20',
                'surgery_description': 'Headbar posterior'
            },
            skip_duplicates=True)
        lab.Surgery.Procedure().insert1(
            {
                'subject_id': 397853,
                'surgery_id': 1,
                'procedure_id': 1,
                'skull_reference': 'Bregma',
                'ml_location': 0,
                'ap_location': -1.75,
                'surgery_procedure_description': 'Fiducial marker'
            },
            skip_duplicates=True)
        lab.WaterRestriction().insert1(
            {
                'subject_id': 397853,
                'water_restriction_number': 'dl14',
                'cage_number': 149595,
                'wr_start_date': '2017-11-27',
                'wr_start_weight': 24.1
            },
            skip_duplicates=True)
        lab.Subject().insert1(
            {
                'subject_id': 400480,
                'username': '******',
                'cage_number': 145700,
                'date_of_birth': '2017-08-09',
                'sex': 'M',
                'animal_source': 'Allen Institute'
            },
            skip_duplicates=True)
        lab.Subject.GeneModification().insert1(
            {
                'subject_id': 400480,
                'gene_modification': 'PV-ires-Cre X Ai32'
            },
            skip_duplicates=True)
        lab.Surgery().insert1(
            {
                'subject_id': 400480,
                'surgery_id': 1,
                'username': '******',
                'start_time': '2017-11-21',
                'end_time': '2017-11-21',
                'surgery_description': 'Headbar posterior'
            },
            skip_duplicates=True)
        lab.Surgery.Procedure().insert1(
            {
                'subject_id': 400480,
                'surgery_id': 1,
                'procedure_id': 1,
                'skull_reference': 'Bregma',
                'ml_location': 0,
                'ap_location': -1.75,
                'surgery_procedure_description': 'Fiducial marker'
            },
            skip_duplicates=True)
        lab.WaterRestriction().insert1(
            {
                'subject_id': 400480,
                'water_restriction_number': 'dl15',
                'cage_number': 149598,
                'wr_start_date': '2017-11-27',
                'wr_start_weight': 27.6
            },
            skip_duplicates=True)
        lab.Subject().insert1(
            {
                'subject_id': 406680,
                'username': '******',
                'cage_number': 148859,
                'date_of_birth': '2017-10-06',
                'sex': 'F',
                'animal_source': 'Jackson labs'
            },
            skip_duplicates=True)
        lab.Subject.GeneModification().insert1(
            {
                'subject_id': 406680,
                'gene_modification': 'VGAT-Chr2-EYFP Jax'
            },
            skip_duplicates=True)
        lab.Surgery().insert1(
            {
                'subject_id': 406680,
                'surgery_id': 1,
                'username': '******',
                'start_time': '2018-01-04',
                'end_time': '2018-01-04',
                'surgery_description': 'Headbar posterior'
            },
            skip_duplicates=True)
        lab.Surgery.Procedure().insert1(
            {
                'subject_id': 406680,
                'surgery_id': 1,
                'procedure_id': 1,
                'skull_reference': 'Bregma',
                'ml_location': 0,
                'ap_location': -1.75,
                'surgery_procedure_description': 'Fiducial marker'
            },
            skip_duplicates=True)
        lab.WaterRestriction().insert1(
            {
                'subject_id': 406680,
                'water_restriction_number': 'dl20',
                'cage_number': 151282,
                'wr_start_date': '2018-01-10',
                'wr_start_weight': 22.7
            },
            skip_duplicates=True)
        lab.Subject().insert1(
            {
                'subject_id': 408022,
                'username': '******',
                'cage_number': 148859,
                'date_of_birth': '2017-10-19',
                'sex': 'F',
                'animal_source': 'Jackson labs'
            },
            skip_duplicates=True)
        lab.Subject.GeneModification().insert1(
            {
                'subject_id': 408022,
                'gene_modification': 'VGAT-Chr2-EYFP Jax'
            },
            skip_duplicates=True)
        lab.Surgery().insert1(
            {
                'subject_id': 408022,
                'surgery_id': 1,
                'username': '******',
                'start_time': '2018-01-05',
                'end_time': '2018-01-05',
                'surgery_description': 'Headbar posterior'
            },
            skip_duplicates=True)
        lab.Surgery.Procedure().insert1(
            {
                'subject_id': 408022,
                'surgery_id': 1,
                'procedure_id': 1,
                'skull_reference': 'Bregma',
                'ml_location': 0,
                'ap_location': -1.75,
                'surgery_procedure_description': 'Fiducial marker'
            },
            skip_duplicates=True)
        lab.WaterRestriction().insert1(
            {
                'subject_id': 408022,
                'water_restriction_number': 'dl21',
                'cage_number': 151283,
                'wr_start_date': '2018-01-10',
                'wr_start_weight': 21.1
            },
            skip_duplicates=True)
        lab.Subject().insert1(
            {
                'subject_id': 408021,
                'username': '******',
                'cage_number': 148859,
                'date_of_birth': '2017-10-19',
                'sex': 'F',
                'animal_source': 'Jackson labs'
            },
            skip_duplicates=True)
        lab.Subject.GeneModification().insert1(
            {
                'subject_id': 408021,
                'gene_modification': 'VGAT-Chr2-EYFP Jax'
            },
            skip_duplicates=True)
        lab.Surgery().insert1(
            {
                'subject_id': 408021,
                'surgery_id': 1,
                'username': '******',
                'start_time': '2018-01-15',
                'end_time': '2018-01-15',
                'surgery_description': 'Headbar posterior'
            },
            skip_duplicates=True)
        lab.Surgery.Procedure().insert1(
            {
                'subject_id': 408021,
                'surgery_id': 1,
                'procedure_id': 1,
                'skull_reference': 'Bregma',
                'ml_location': 0,
                'ap_location': -1.75,
                'surgery_procedure_description': 'Fiducial marker'
            },
            skip_duplicates=True)
        lab.WaterRestriction().insert1(
            {
                'subject_id': 408021,
                'water_restriction_number': 'dl22',
                'cage_number': 151704,
                'wr_start_date': '2018-01-19',
                'wr_start_weight': 21
            },
            skip_duplicates=True)
        lab.Subject().insert1(
            {
                'subject_id': 407512,
                'username': '******',
                'cage_number': 151629,
                'date_of_birth': '2017-10-13',
                'sex': 'M',
                'animal_source': 'Jackson labs'
            },
            skip_duplicates=True)
        lab.Subject.GeneModification().insert1(
            {
                'subject_id': 407512,
                'gene_modification': 'VGAT-Chr2-EYFP Jax'
            },
            skip_duplicates=True)
        lab.Surgery().insert1(
            {
                'subject_id': 407512,
                'surgery_id': 1,
                'username': '******',
                'start_time': '2018-01-16',
                'end_time': '2018-01-16',
                'surgery_description': 'Headbar posterior'
            },
            skip_duplicates=True)
        lab.Surgery.Procedure().insert1(
            {
                'subject_id': 407512,
                'surgery_id': 1,
                'procedure_id': 1,
                'skull_reference': 'Bregma',
                'ml_location': 0,
                'ap_location': -1.75,
                'surgery_procedure_description': 'Fiducial marker'
            },
            skip_duplicates=True)
        lab.WaterRestriction().insert1(
            {
                'subject_id': 407512,
                'water_restriction_number': 'dl24',
                'cage_number': 151793,
                'wr_start_date': '2018-01-22',
                'wr_start_weight': 26
            },
            skip_duplicates=True)
        lab.Subject().insert1(
            {
                'subject_id': 407513,
                'username': '******',
                'cage_number': 148636,
                'date_of_birth': '2017-10-13',
                'sex': 'M',
                'animal_source': 'Jackson labs'
            },
            skip_duplicates=True)
        lab.Subject.GeneModification().insert1(
            {
                'subject_id': 407513,
                'gene_modification': 'VGAT-Chr2-EYFP Jax'
            },
            skip_duplicates=True)
        lab.Surgery().insert1(
            {
                'subject_id': 407513,
                'surgery_id': 1,
                'username': '******',
                'start_time': '2018-01-17',
                'end_time': '2018-01-17',
                'surgery_description': 'Headbar posterior'
            },
            skip_duplicates=True)
        lab.Surgery.Procedure().insert1(
            {
                'subject_id': 407513,
                'surgery_id': 1,
                'procedure_id': 1,
                'skull_reference': 'Bregma',
                'ml_location': 0,
                'ap_location': -1.75,
                'surgery_procedure_description': 'Fiducial marker'
            },
            skip_duplicates=True)
        lab.WaterRestriction().insert1(
            {
                'subject_id': 407513,
                'water_restriction_number': 'dl25',
                'cage_number': 151794,
                'wr_start_date': '2018-01-22',
                'wr_start_weight': 25.5
            },
            skip_duplicates=True)
        lab.Subject().insert1(
            {
                'subject_id': 407986,
                'username': '******',
                'cage_number': 152268,
                'date_of_birth': '2017-10-18',
                'sex': 'F',
                'animal_source': 'Jackson labs'
            },
            skip_duplicates=True)
        lab.Subject.GeneModification().insert1(
            {
                'subject_id': 407986,
                'gene_modification': 'VGAT-Chr2-EYFP Jax'
            },
            skip_duplicates=True)
        lab.Surgery().insert1(
            {
                'subject_id': 407986,
                'surgery_id': 1,
                'username': '******',
                'start_time': '2018-02-01',
                'end_time': '2018-02-01',
                'surgery_description': 'Headbar anterior'
            },
            skip_duplicates=True)
        lab.Surgery.Procedure().insert1(
            {
                'subject_id': 407986,
                'surgery_id': 1,
                'procedure_id': 1,
                'skull_reference': 'Bregma',
                'ml_location': 0,
                'ap_location': -4,
                'surgery_procedure_description': 'Fiducial marker'
            },
            skip_duplicates=True)
        lab.WaterRestriction().insert1(
            {
                'subject_id': 407986,
                'water_restriction_number': 'dl28',
                'cage_number': 152312,
                'wr_start_date': '2018-02-05',
                'wr_start_weight': 19.8
            },
            skip_duplicates=True)
        lab.Subject().insert1(
            {
                'subject_id': 123457,
                'username': '******',
                'cage_number': 145375,
                'date_of_birth': '2017-08-03',
                'sex': 'M',
                'animal_source': 'Jackson labs'
            },
            skip_duplicates=True)
        lab.WaterRestriction().insert1(
            {
                'subject_id': 123457,
                'water_restriction_number': 'tw5',
                'cage_number': 148861,
                'wr_start_date': '2017-11-07',
                'wr_start_weight': 20.5
            },
            skip_duplicates=True)
        lab.Rig().insert1(
            {
                'rig': 'TRig1',
                'room': '2w.334',
                'rig_description': 'Training rig 1'
            },
            skip_duplicates=True)
        lab.Rig().insert1(
            {
                'rig': 'TRig2',
                'room': '2w.334',
                'rig_description': 'Training rig 2'
            },
            skip_duplicates=True)
        lab.Rig().insert1(
            {
                'rig': 'TRig3',
                'room': '2w.334',
                'rig_description': 'Training rig 3'
            },
            skip_duplicates=True)
        lab.Rig().insert1(
            {
                'rig': 'RRig',
                'room': '2w.334',
                'rig_description': 'Recording rig'
            },
            skip_duplicates=True)
        lab.Rig().insert1(
            {
                'rig': 'Ephys1',
                'room': '2w.334',
                'rig_description': 'Recording computer'
            },
            skip_duplicates=True)
    except Exception as e:
        print("error creating mock data: {e}".format(e=e), file=sys.stderr)
        raise
Exemplo n.º 4
0
def mockdata():
    print('populating with mock data')
    reload(lab)
    reload(ccf)
    reload(experiment)
    reload(ephys)
    reload(histology)
    reload(tracking)
    try:
        lab.Person().insert1({
            'username': '******',
            'fullname': 'Unknown'
        },
                             skip_duplicates=True)
        lab.Person().insert1({
            'username': '******',
            'fullname': 'Dave Liu'
        },
                             skip_duplicates=True)
        lab.Person().insert1({
            'username': '******',
            'fullname': 'Susu Chen'
        },
                             skip_duplicates=True)
        lab.Person().insert1({
            'username': '******',
            'fullname': 'Thinh Nguyen'
        },
                             skip_duplicates=True)

        lab.ModifiedGene().insert1(
            {
                'gene_modification': 'VGAT-Chr2-EYFP Jax',
                'gene_modification_description': 'VGAT'
            },
            skip_duplicates=True)
        lab.ModifiedGene().insert1(
            {
                'gene_modification': 'PV-ires-Cre X Ai32',
                'gene_modification_description': 'PV'
            },
            skip_duplicates=True)
        lab.ModifiedGene().insert1(
            {
                'gene_modification':
                'Rosa26 Cag lsl reachR-citrine 1A4 X PV-ires-Cre',
                'gene_modification_description': 'reachR PV'
            },
            skip_duplicates=True)
        # Subject 399752 / dl7
        lab.Subject().insert1(
            {
                'subject_id': 399752,
                'username': '******',
                'cage_number': 145375,
                'date_of_birth': '2017-08-03',
                'sex': 'M',
                'animal_source': 'Jackson labs'
            },
            skip_duplicates=True)
        lab.Subject.GeneModification().insert1(
            {
                'subject_id': 399752,
                'gene_modification': 'VGAT-Chr2-EYFP Jax'
            },
            skip_duplicates=True)
        lab.Surgery().insert1(
            {
                'subject_id': 399752,
                'surgery_id': 1,
                'username': '******',
                'start_time': '2017-11-03',
                'end_time': '2017-11-03',
                'surgery_description': 'Headbar anterior'
            },
            skip_duplicates=True)
        lab.Surgery.Procedure().insert1(
            {
                'subject_id': 399752,
                'surgery_id': 1,
                'procedure_id': 1,
                'skull_reference': 'Bregma',
                'ml_location': 0,
                'ap_location': -4,
                'surgery_procedure_description': 'Fiducial marker'
            },
            skip_duplicates=True)
        lab.WaterRestriction().insert1(
            {
                'subject_id': 399752,
                'water_restriction_number': 'dl7',
                'cage_number': 148861,
                'wr_start_date': '2017-11-07',
                'wr_start_weight': 25
            },
            skip_duplicates=True)
        # Subject 397853 / dl14
        lab.Subject().insert1(
            {
                'subject_id': 397853,
                'username': '******',
                'cage_number': 144545,
                'date_of_birth': '2017-07-15',
                'sex': 'M',
                'animal_source': 'Allen Institute'
            },
            skip_duplicates=True)
        lab.Subject.GeneModification().insert1(
            {
                'subject_id': 397853,
                'gene_modification': 'PV-ires-Cre X Ai32'
            },
            skip_duplicates=True)
        lab.Surgery().insert1(
            {
                'subject_id': 397853,
                'surgery_id': 1,
                'username': '******',
                'start_time': '2017-11-20',
                'end_time': '2017-11-20',
                'surgery_description': 'Headbar posterior'
            },
            skip_duplicates=True)
        lab.Surgery.Procedure().insert1(
            {
                'subject_id': 397853,
                'surgery_id': 1,
                'procedure_id': 1,
                'skull_reference': 'Bregma',
                'ml_location': 0,
                'ap_location': -1.75,
                'surgery_procedure_description': 'Fiducial marker'
            },
            skip_duplicates=True)
        lab.WaterRestriction().insert1(
            {
                'subject_id': 397853,
                'water_restriction_number': 'dl14',
                'cage_number': 149595,
                'wr_start_date': '2017-11-27',
                'wr_start_weight': 24.1
            },
            skip_duplicates=True)
        # Subject 400480 / dl15
        lab.Subject().insert1(
            {
                'subject_id': 400480,
                'username': '******',
                'cage_number': 145700,
                'date_of_birth': '2017-08-09',
                'sex': 'M',
                'animal_source': 'Allen Institute'
            },
            skip_duplicates=True)
        lab.Subject.GeneModification().insert1(
            {
                'subject_id': 400480,
                'gene_modification': 'PV-ires-Cre X Ai32'
            },
            skip_duplicates=True)
        lab.Surgery().insert1(
            {
                'subject_id': 400480,
                'surgery_id': 1,
                'username': '******',
                'start_time': '2017-11-21',
                'end_time': '2017-11-21',
                'surgery_description': 'Headbar posterior'
            },
            skip_duplicates=True)
        lab.Surgery.Procedure().insert1(
            {
                'subject_id': 400480,
                'surgery_id': 1,
                'procedure_id': 1,
                'skull_reference': 'Bregma',
                'ml_location': 0,
                'ap_location': -1.75,
                'surgery_procedure_description': 'Fiducial marker'
            },
            skip_duplicates=True)
        lab.WaterRestriction().insert1(
            {
                'subject_id': 400480,
                'water_restriction_number': 'dl15',
                'cage_number': 149598,
                'wr_start_date': '2017-11-27',
                'wr_start_weight': 27.6
            },
            skip_duplicates=True)
        # Subject 406680 / dl20
        lab.Subject().insert1(
            {
                'subject_id': 406680,
                'username': '******',
                'cage_number': 148859,
                'date_of_birth': '2017-10-06',
                'sex': 'F',
                'animal_source': 'Jackson labs'
            },
            skip_duplicates=True)
        lab.Subject.GeneModification().insert1(
            {
                'subject_id': 406680,
                'gene_modification': 'VGAT-Chr2-EYFP Jax'
            },
            skip_duplicates=True)
        lab.Surgery().insert1(
            {
                'subject_id': 406680,
                'surgery_id': 1,
                'username': '******',
                'start_time': '2018-01-04',
                'end_time': '2018-01-04',
                'surgery_description': 'Headbar posterior'
            },
            skip_duplicates=True)
        lab.Surgery.Procedure().insert1(
            {
                'subject_id': 406680,
                'surgery_id': 1,
                'procedure_id': 1,
                'skull_reference': 'Bregma',
                'ml_location': 0,
                'ap_location': -1.75,
                'surgery_procedure_description': 'Fiducial marker'
            },
            skip_duplicates=True)
        lab.WaterRestriction().insert1(
            {
                'subject_id': 406680,
                'water_restriction_number': 'dl20',
                'cage_number': 151282,
                'wr_start_date': '2018-01-10',
                'wr_start_weight': 22.7
            },
            skip_duplicates=True)
        # Subject 408022 / dl21
        lab.Subject().insert1(
            {
                'subject_id': 408022,
                'username': '******',
                'cage_number': 148859,
                'date_of_birth': '2017-10-19',
                'sex': 'F',
                'animal_source': 'Jackson labs'
            },
            skip_duplicates=True)
        lab.Subject.GeneModification().insert1(
            {
                'subject_id': 408022,
                'gene_modification': 'VGAT-Chr2-EYFP Jax'
            },
            skip_duplicates=True)
        lab.Surgery().insert1(
            {
                'subject_id': 408022,
                'surgery_id': 1,
                'username': '******',
                'start_time': '2018-01-05',
                'end_time': '2018-01-05',
                'surgery_description': 'Headbar posterior'
            },
            skip_duplicates=True)
        lab.Surgery.Procedure().insert1(
            {
                'subject_id': 408022,
                'surgery_id': 1,
                'procedure_id': 1,
                'skull_reference': 'Bregma',
                'ml_location': 0,
                'ap_location': -1.75,
                'surgery_procedure_description': 'Fiducial marker'
            },
            skip_duplicates=True)
        lab.WaterRestriction().insert1(
            {
                'subject_id': 408022,
                'water_restriction_number': 'dl21',
                'cage_number': 151283,
                'wr_start_date': '2018-01-10',
                'wr_start_weight': 21.1
            },
            skip_duplicates=True)
        # Subject 408021 / dl22
        lab.Subject().insert1(
            {
                'subject_id': 408021,
                'username': '******',
                'cage_number': 148859,
                'date_of_birth': '2017-10-19',
                'sex': 'F',
                'animal_source': 'Jackson labs'
            },
            skip_duplicates=True)
        lab.Subject.GeneModification().insert1(
            {
                'subject_id': 408021,
                'gene_modification': 'VGAT-Chr2-EYFP Jax'
            },
            skip_duplicates=True)
        lab.Surgery().insert1(
            {
                'subject_id': 408021,
                'surgery_id': 1,
                'username': '******',
                'start_time': '2018-01-15',
                'end_time': '2018-01-15',
                'surgery_description': 'Headbar posterior'
            },
            skip_duplicates=True)
        lab.Surgery.Procedure().insert1(
            {
                'subject_id': 408021,
                'surgery_id': 1,
                'procedure_id': 1,
                'skull_reference': 'Bregma',
                'ml_location': 0,
                'ap_location': -1.75,
                'surgery_procedure_description': 'Fiducial marker'
            },
            skip_duplicates=True)
        lab.WaterRestriction().insert1(
            {
                'subject_id': 408021,
                'water_restriction_number': 'dl22',
                'cage_number': 151704,
                'wr_start_date': '2018-01-19',
                'wr_start_weight': 21
            },
            skip_duplicates=True)
        # Subject 407512 / dl24
        lab.Subject().insert1(
            {
                'subject_id': 407512,
                'username': '******',
                'cage_number': 151629,
                'date_of_birth': '2017-10-13',
                'sex': 'M',
                'animal_source': 'Jackson labs'
            },
            skip_duplicates=True)
        lab.Subject.GeneModification().insert1(
            {
                'subject_id': 407512,
                'gene_modification': 'VGAT-Chr2-EYFP Jax'
            },
            skip_duplicates=True)
        lab.Surgery().insert1(
            {
                'subject_id': 407512,
                'surgery_id': 1,
                'username': '******',
                'start_time': '2018-01-16',
                'end_time': '2018-01-16',
                'surgery_description': 'Headbar posterior'
            },
            skip_duplicates=True)
        lab.Surgery.Procedure().insert1(
            {
                'subject_id': 407512,
                'surgery_id': 1,
                'procedure_id': 1,
                'skull_reference': 'Bregma',
                'ml_location': 0,
                'ap_location': -1.75,
                'surgery_procedure_description': 'Fiducial marker'
            },
            skip_duplicates=True)
        lab.WaterRestriction().insert1(
            {
                'subject_id': 407512,
                'water_restriction_number': 'dl24',
                'cage_number': 151793,
                'wr_start_date': '2018-01-22',
                'wr_start_weight': 26
            },
            skip_duplicates=True)
        # 407513 / dl25
        lab.Subject().insert1(
            {
                'subject_id': 407513,
                'username': '******',
                'cage_number': 148636,
                'date_of_birth': '2017-10-13',
                'sex': 'M',
                'animal_source': 'Jackson labs'
            },
            skip_duplicates=True)
        lab.Subject.GeneModification().insert1(
            {
                'subject_id': 407513,
                'gene_modification': 'VGAT-Chr2-EYFP Jax'
            },
            skip_duplicates=True)
        lab.Surgery().insert1(
            {
                'subject_id': 407513,
                'surgery_id': 1,
                'username': '******',
                'start_time': '2018-01-17',
                'end_time': '2018-01-17',
                'surgery_description': 'Headbar posterior'
            },
            skip_duplicates=True)
        lab.Surgery.Procedure().insert1(
            {
                'subject_id': 407513,
                'surgery_id': 1,
                'procedure_id': 1,
                'skull_reference': 'Bregma',
                'ml_location': 0,
                'ap_location': -1.75,
                'surgery_procedure_description': 'Fiducial marker'
            },
            skip_duplicates=True)
        lab.WaterRestriction().insert1(
            {
                'subject_id': 407513,
                'water_restriction_number': 'dl25',
                'cage_number': 151794,
                'wr_start_date': '2018-01-22',
                'wr_start_weight': 25.5
            },
            skip_duplicates=True)
        # Subject 407986 / dl28
        lab.Subject().insert1(
            {
                'subject_id': 407986,
                'username': '******',
                'cage_number': 152268,
                'date_of_birth': '2017-10-18',
                'sex': 'F',
                'animal_source': 'Jackson labs'
            },
            skip_duplicates=True)
        lab.Subject.GeneModification().insert1(
            {
                'subject_id': 407986,
                'gene_modification': 'VGAT-Chr2-EYFP Jax'
            },
            skip_duplicates=True)
        lab.Surgery().insert1(
            {
                'subject_id': 407986,
                'surgery_id': 1,
                'username': '******',
                'start_time': '2018-02-01',
                'end_time': '2018-02-01',
                'surgery_description': 'Headbar anterior'
            },
            skip_duplicates=True)
        lab.Surgery.Procedure().insert1(
            {
                'subject_id': 407986,
                'surgery_id': 1,
                'procedure_id': 1,
                'skull_reference': 'Bregma',
                'ml_location': 0,
                'ap_location': -4,
                'surgery_procedure_description': 'Fiducial marker'
            },
            skip_duplicates=True)
        lab.WaterRestriction().insert1(
            {
                'subject_id': 407986,
                'water_restriction_number': 'dl28',
                'cage_number': 152312,
                'wr_start_date': '2018-02-05',
                'wr_start_weight': 19.8
            },
            skip_duplicates=True)
        # Subject 123457 / tw5
        lab.Subject().insert1(
            {
                'subject_id': 123457,
                'username': '******',
                'cage_number': 145375,
                'date_of_birth': '2017-08-03',
                'sex': 'M',
                'animal_source': 'Jackson labs'
            },
            skip_duplicates=True)
        lab.WaterRestriction().insert1(
            {
                'subject_id': 123457,
                'water_restriction_number': 'tw5',
                'cage_number': 148861,
                'wr_start_date': '2017-11-07',
                'wr_start_weight': 20.5
            },
            skip_duplicates=True)
        # Subject 412330 / tw34
        lab.Subject().insert1(
            {
                'subject_id': 412330,
                'username': '******',
                'cage_number': 154522,
                'date_of_birth': '2017-12-05',
                'sex': 'M',
                'animal_source': 'Jackson labs'
            },
            skip_duplicates=True)
        lab.WaterRestriction().insert1(
            {
                'subject_id': 412330,
                'water_restriction_number': 'tw34',
                'cage_number': 154522,
                'wr_start_date': '2018-03-18',
                'wr_start_weight': 21.0
            },
            skip_duplicates=True)
        # subject 432998 / dl55
        lab.Subject().insert1(
            {
                'subject_id': 432998,
                'username': '******',
                'cage_number': 160920,
                'date_of_birth': '2018-07-02',
                'sex': 'M',
                'animal_source': 'Jackson labs'
            },
            skip_duplicates=True)
        lab.WaterRestriction().insert1(
            {
                'subject_id': 432998,
                'water_restriction_number': 'dl55',
                'cage_number': 160920,
                'wr_start_date': '2018-09-05',
                'wr_start_weight': 21.0
            },
            skip_duplicates=True)
        # Subject 435884 / dl59
        lab.Subject().insert1(
            {
                'subject_id': 435884,
                'username': '******',
                'cage_number': 161908,
                'date_of_birth': '2018-08-06',
                'sex': 'M',
                'animal_source': 'Jackson labs'
            },
            skip_duplicates=True)
        lab.WaterRestriction().insert1(
            {
                'subject_id': 435884,
                'water_restriction_number': 'dl59',
                'cage_number': 154522,
                'wr_start_date': '2018-09-30',
                'wr_start_weight': 21.0
            },
            skip_duplicates=True)
        # Subject 432572 / dl56
        lab.Subject().insert1(
            {
                'subject_id': 432572,
                'username': '******',
                'cage_number': 161125,
                'date_of_birth': '2018-06-28',
                'sex': 'M',
                'animal_source': 'Jackson labs'
            },
            skip_duplicates=True)
        lab.WaterRestriction().insert1(
            {
                'subject_id': 432572,
                'water_restriction_number': 'dl56',
                'cage_number': 161125,
                'wr_start_date': '2018-09-10',
                'wr_start_weight': 21.0
            },
            skip_duplicates=True)

        # Subject 412753 / dl36
        lab.Subject().insert1(
            {
                'subject_id': 412753,
                'username': '******',
                'cage_number': 154570,
                'date_of_birth': '2017-12-07',
                'sex': 'M',
                'animal_source': 'Jackson labs'
            },
            skip_duplicates=True)
        lab.WaterRestriction().insert1(
            {
                'subject_id': 412753,
                'water_restriction_number': 'dl36',
                'cage_number': 154570,
                'wr_start_date': '2017-03-30',
                'wr_start_weight': 21.0
            },
            skip_duplicates=True)
        # Subject 440010 / dl62
        lab.Subject().insert1(
            {
                'subject_id': 440010,
                'username': '******',
                'cage_number': 163782,
                'date_of_birth': '2018-09-24',
                'sex': 'M',
                'animal_source': 'Jackson labs'
            },
            skip_duplicates=True)
        lab.WaterRestriction().insert1(
            {
                'subject_id': 440010,
                'water_restriction_number': 'dl62',
                'cage_number': 163782,
                'wr_start_date': '2018-11-24',
                'wr_start_weight': 23.0
            },
            skip_duplicates=True)
        # Subject 55004 / DL004
        lab.Subject().insert1(
            {
                'subject_id': 550004,
                'username': '******',
                'cage_number': 163782,
                'date_of_birth': '2018-09-24',
                'sex': 'M',
                'animal_source': 'Jackson labs'
            },
            skip_duplicates=True)
        lab.WaterRestriction().insert1(
            {
                'subject_id': 550004,
                'water_restriction_number': 'DL004',
                'cage_number': 163782,
                'wr_start_date': '2018-11-24',
                'wr_start_weight': 23.0
            },
            skip_duplicates=True)
        # Subject 550009 / DL009
        lab.Subject().insert1(
            {
                'subject_id': 550009,
                'username': '******',
                'cage_number': 163782,
                'date_of_birth': '2018-09-24',
                'sex': 'M',
                'animal_source': 'Jackson labs'
            },
            skip_duplicates=True)
        lab.WaterRestriction().insert1(
            {
                'subject_id': 550009,
                'water_restriction_number': 'DL009',
                'cage_number': 163782,
                'wr_start_date': '2018-11-24',
                'wr_start_weight': 23.0
            },
            skip_duplicates=True)
        # Subject 550010 / DL010
        lab.Subject().insert1(
            {
                'subject_id': 550010,
                'username': '******',
                'cage_number': 163782,
                'date_of_birth': '2018-09-24',
                'sex': 'M',
                'animal_source': 'Jackson labs'
            },
            skip_duplicates=True)
        lab.WaterRestriction().insert1(
            {
                'subject_id': 550010,
                'water_restriction_number': 'DL010',
                'cage_number': 163782,
                'wr_start_date': '2018-11-24',
                'wr_start_weight': 23.0
            },
            skip_duplicates=True)
        # Subject 550022 / DL022
        lab.Subject().insert1(
            {
                'subject_id': 550022,
                'username': '******',
                'cage_number': 163782,
                'date_of_birth': '2018-09-24',
                'sex': 'M',
                'animal_source': 'Jackson labs'
            },
            skip_duplicates=True)
        lab.WaterRestriction().insert1(
            {
                'subject_id': 550022,
                'water_restriction_number': 'DL022',
                'cage_number': 163782,
                'wr_start_date': '2018-11-24',
                'wr_start_weight': 23.0
            },
            skip_duplicates=True)
        # Subject 440959 / SC011
        lab.Subject().insert1(
            {
                'subject_id': 440959,
                'username': '******',
                'cage_number': 440959,
                'date_of_birth': '2018-10-09',
                'sex': 'M',
                'animal_source': 'Jackson labs'
            },
            skip_duplicates=True)
        lab.WaterRestriction().insert1(
            {
                'subject_id': 440959,
                'water_restriction_number': 'SC011',
                'cage_number': 440959,
                'wr_start_date': '2018-12-21',
                'wr_start_weight': 22.8
            },
            skip_duplicates=True)
        # Subject 442571 / SC022
        lab.Subject().insert1(
            {
                'subject_id': 442571,
                'username': '******',
                'cage_number': 442571,
                'date_of_birth': '2018-10-29',
                'sex': 'M',
                'animal_source': 'Jackson labs'
            },
            skip_duplicates=True)
        lab.WaterRestriction().insert1(
            {
                'subject_id': 442571,
                'water_restriction_number': 'SC022',
                'cage_number': 442571,
                'wr_start_date': '2019-01-02',
                'wr_start_weight': 26.5
            },
            skip_duplicates=True)

        # Subject 460432 / SC030
        lab.Subject().insert1(
            {
                'subject_id': 456773,
                'username': '******',
                'cage_number': 171857,
                'date_of_birth': '2019-05-29',
                'sex': 'M',
                'animal_source': 'Jackson Labs'
            },
            skip_duplicates=True)
        lab.WaterRestriction().insert1(
            {
                'subject_id': 456773,
                'water_restriction_number': 'SC030',
                'cage_number': 171857,
                'wr_start_date': '2019-08-08',
                'wr_start_weight': 25.700
            },
            skip_duplicates=True)

        # Subject 460432 / SC032
        lab.Subject().insert1(
            {
                'subject_id': 460432,
                'username': '******',
                'cage_number': 173167,
                'date_of_birth': '2019-07-15',
                'sex': 'M',
                'animal_source': 'Jackson labs'
            },
            skip_duplicates=True)
        lab.WaterRestriction().insert1(
            {
                'subject_id': 460432,
                'water_restriction_number': 'SC032',
                'cage_number': 173167,
                'wr_start_date': '2019-09-20',
                'wr_start_weight': 22.8
            },
            skip_duplicates=True)

        for num in range(1, 20):
            lab.Subject().insert1(
                {
                    'subject_id': 777000 + num,
                    'username': '******',
                    'cage_number': 173167,
                    'date_of_birth': '2019-07-15',
                    'sex': 'M',
                    'animal_source': 'Jackson labs'
                },
                skip_duplicates=True)
            lab.WaterRestriction().insert1(
                {
                    'subject_id': 777000 + num,
                    'water_restriction_number': 'FOR' + f'{num:02}',
                    'cage_number': 173167,
                    'wr_start_date': '2019-09-20',
                    'wr_start_weight': 22.8
                },
                skip_duplicates=True)

        # Rig
        lab.Rig().insert1(
            {
                'rig': 'TRig1',
                'room': '2w.334',
                'rig_description': 'Training rig 1'
            },
            skip_duplicates=True)
        lab.Rig().insert1(
            {
                'rig': 'TRig2',
                'room': '2w.334',
                'rig_description': 'Training rig 2'
            },
            skip_duplicates=True)
        lab.Rig().insert1(
            {
                'rig': 'TRig3',
                'room': '2w.334',
                'rig_description': 'Training rig 3'
            },
            skip_duplicates=True)
        lab.Rig().insert1(
            {
                'rig': 'RRig',
                'room': '2w.334',
                'rig_description': 'Recording rig'
            },
            skip_duplicates=True)
        lab.Rig().insert1(
            {
                'rig': 'RRig2',
                'room': '2w.334',
                'rig_description': 'Recording rig2'
            },
            skip_duplicates=True)
        lab.Rig().insert1(
            {
                'rig': 'RRig3',
                'room': '2w.334',
                'rig_description': 'Recording rig3 for multi-target-licking'
            },
            skip_duplicates=True)
        lab.Rig().insert1(
            {
                'rig': 'Ephys1',
                'room': '2w.334',
                'rig_description': 'Recording computer'
            },
            skip_duplicates=True)

        lab.ProbeType.create_neuropixels_probe()

    except Exception as e:
        print("error creating mock data: {e}".format(e=e), file=sys.stderr)
        raise
Exemplo n.º 5
0
              'Rin':list(),
              'AP_amplitude':list(),
              'AP_halfwidth':list(),
              'AP_threshold':list(),
              'resting':list()}
cells = ephys_patch.Cell()
APs_needed = 50
AP_max_RS = 40
AP_max_baseline = -40 #mV
max_baseline_current = 100*10**-12 #A
max_v0 = -.04 #V
min_current = -40*10**-12 #A
min_pulse_time = 0.3 #s
integration_window = .04 #sec
for cell in cells:
    if len((lab.Surgery()&'subject_id = {}'.format(cell['subject_id'])).fetch('start_time'))==1:
        continue # if there is only one surgery, we don't care
    expression_time = np.diff((lab.Surgery()&'subject_id = {}'.format(cell['subject_id'])).fetch('start_time'))[0].days
    virus_id = (lab.Surgery.VirusInjection()&'subject_id = {}'.format(cell['subject_id'])).fetch('virus_id')[0]
    if virus_id == 238:
        virus = 'Voltron 1'
    elif virus_id == 240:
        virus = 'Voltron 2'
    else:
        virus = '??'

    squarepulses = ephysanal.SquarePulse()&cell&'square_pulse_amplitude < {}'.format(min_current)&'square_pulse_length > {}'.format(min_pulse_time)
    Rins = list()
    RSs = list()
    v0s = list()
    for squarepulse in squarepulses:
Exemplo n.º 6
0
#%% metadata for methods
subject_ids = np.unique(imaging.Movie().fetch('subject_id'))
movie_num_list = list()
sex_list = list()
age_first_surgery_list = list()
expression_time_list = list()
ml_list = list()
ap_list=list()
depth_list = list()
for subject_id in subject_ids:
    virus_ids = (lab.Surgery.VirusInjection()&'subject_id = {}'.format(subject_id)).fetch('virus_id')
    virus_id = virus_ids[0]
    virus_name = (lab.Virus()&'virus_id = {}'.format(virus_id)).fetch1('virus_name')
    if virus_name != 'syn-FLEX-Voltron-ST':
        continue
    if len(lab.Surgery()&'subject_id = {}'.format(subject_id))!=2:
        print('only {} surgery for {}'.format(len(lab.Surgery()&'subject_id = {}'.format(subject_id)),subject_id))
        continue
    movie_num_list.append(len(imaging.Movie()&'subject_id = {}'.format(subject_id)))
    date_of_birth,sex = (lab.Subject()&'subject_id = {}'.format(subject_id)).fetch1('date_of_birth','sex')
    surgery_times = (lab.Surgery()&'subject_id = {}'.format(subject_id)).fetch('start_time')
    ml,ap = (lab.Surgery.Procedure()&'subject_id = {}'.format(subject_id)).fetch1('ml_location','ap_location')
    ml_list.append(int(ml))
    ap_list.append(int(ap))
    age_first_surgery_list.append((np.min(surgery_times).date()-date_of_birth).days)
    expression_time_list.append(np.diff(surgery_times)[0].days)
    sex_list.append(sex)
    depth_list.extend((ephys_patch.Cell()&'subject_id = {}'.format(subject_id)).fetch('depth'))
  
depth_list = np.asarray(depth_list)
ap_list = np.asarray(ap_list)
Exemplo n.º 7
0
def plot_cell_SN_ratio_APwise(roi_type='VolPy',
                              v0_max=-35,
                              holding_min=-600,
                              frame_rate_min=300,
                              frame_rate_max=1800,
                              F0_min=50,
                              bin_num=10):

    #%% Show S/N ratios for each AP

    bin_num = 10
    holding_min = -600  #pA
    v0_max = -35  #mV
    roi_type = 'VolPy_raw'  #'Spikepursuit'#'VolPy_denoised'#'SpikePursuit'#'VolPy_dexpF0'#'VolPy'#'SpikePursuit_dexpF0'#'VolPy_dexpF0'#''Spikepursuit'#'VolPy'#
    F0_min = 50
    frame_rate_min = 200
    frame_rate_max = 800

    cmap = cm.get_cmap('jet')

    key = {'roi_type': roi_type}
    gtdata = pd.DataFrame((imaging_gt.GroundTruthROI() & key))
    cells = gtdata.groupby([
        'session', 'subject_id', 'cell_number', 'motion_correction_method',
        'roi_type'
    ]).size().reset_index(name='Freq')
    snratio = list()
    v0s = list()
    holdings = list()
    rss = list()
    threshs = list()
    mintreshs = list()
    f0s_all = list()
    snratios_all = list()
    peakamplitudes_all = list()
    noise_all = list()
    for cell in cells.iterrows():
        cell = cell[1]
        key_cell = dict(cell)
        del key_cell['Freq']
        snratios, f0, peakamplitudes, noises = (
            imaging.Movie() * imaging_gt.GroundTruthROI() *
            imaging_gt.ROIAPWave() * ephysanal.ActionPotentialDetails()
            & key_cell & 'ap_real = 1'
            & 'movie_frame_rate > {}'.format(frame_rate_min)
            & 'movie_frame_rate < {}'.format(frame_rate_max)
            & 'apwave_f0 > {}'.format(F0_min)).fetch('apwave_snratio',
                                                     'apwave_f0',
                                                     'apwave_peak_amplitude',
                                                     'apwave_noise')
        #f0 =  (imaging_gt.GroundTruthROI()*imaging.ROI()&key_cell).fetch('roi_f0')

        sweep = (imaging_gt.GroundTruthROI() * imaging_gt.ROIAPWave()
                 & key_cell).fetch('sweep_number')[0]
        thresh = (imaging_gt.GroundTruthROI() * imaging_gt.ROIAPWave() *
                  ephysanal.ActionPotentialDetails() & key_cell
                  & 'ap_real = 1').fetch('ap_threshold')
        trace = (ephys_patch.SweepResponse() * imaging_gt.GroundTruthROI()
                 & key_cell
                 & 'sweep_number = {}'.format(sweep)).fetch('response_trace')
        trace = trace[0]
        stimulus = (ephys_patch.SweepStimulus() * imaging_gt.GroundTruthROI()
                    & key_cell &
                    'sweep_number = {}'.format(sweep)).fetch('stimulus_trace')
        stimulus = stimulus[0]

        RS = (ephysanal.SweepSeriesResistance() * imaging_gt.GroundTruthROI()
              & key_cell
              & 'sweep_number = {}'.format(sweep)).fetch('series_resistance')
        RS = RS[0]

        medianvoltage = np.median(trace) * 1000
        holding = np.median(stimulus) * 10**12
        #print(np.mean(snratios[:100]))
        snratio.append(np.mean(snratios[:50]))
        v0s.append(medianvoltage)
        holdings.append(holding)
        rss.append(RS)
        threshs.append(thresh)
        mintreshs.append(np.min(thresh))
        f0s_all.append(f0)
        snratios_all.append(snratios)
        peakamplitudes_all.append(peakamplitudes)
        noise_all.append(noises)
        #plot_AP_waveforms(key_cell,AP_tlimits)
        #%%
# =============================================================================
#     virus_list=list()
#     subject_ids = list()
#     for cell in cells.iterrows():
#         cell = cell[1]
#         key_cell = dict(cell)
#         del key_cell['Freq']
#         virus_id = (lab.Surgery.VirusInjection()&'subject_id = {}'.format(key_cell['subject_id'])).fetch('virus_id')[0]
#         if virus_id == 238:
#             virus = 'Voltron 1'
#         elif virus_id == 240:
#             virus = 'Voltron 2'
#         virus_list.append(virus)
#         subject_ids.append(key_cell['subject_id'])
#    # order = np.argsort(virus_list)
#     order = np.lexsort((virus_list, subject_ids))
#     snratio = np.asarray(snratio)[order]
#     v0s = np.asarray(v0s)[order]
#     holdings = np.asarray(holdings)[order]
#     rss = np.asarray(rss)[order]
#     threshs =np.asarray(threshs)[order]
#     mintreshs = np.asarray(mintreshs)[order]
#     f0s_all = np.asarray(f0s_all)[order]
#     snratios_all = np.asarray(snratios_all)[order]
#     peakamplitudes_all = np.asarray(peakamplitudes_all)[order]
#     noise_all = np.asarray(noise_all)[order]
#     virus_list = np.asarray(virus_list)[order]
#     cells = cells.set_index(order, append=True).sort_index(level=1).reset_index(1, drop=True)
# =============================================================================
#%%
    apnum = 50
    fig = plt.figure(figsize=[10, 10])
    ax_exptime_f0 = fig.add_subplot(221)
    ax_exptime_dff = fig.add_subplot(222)
    ax_exptime_noise = fig.add_subplot(223)
    ax_exptime_snration = fig.add_subplot(224)
    for loopidx, (f0, snratio_now, noise_now, peakampl_now,
                  cell_now) in enumerate(
                      zip(f0s_all, snratios_all, noise_all, peakamplitudes_all,
                          cells.iterrows())):
        if len(
                f0
        ) > 0:  # and cell_now[1]['subject_id']==466774:# and cell_now[1]['cell_number']==1:
            coloridx = loopidx / len(cells)
            cell_now = cell_now[1]
            virus_id = (lab.Surgery.VirusInjection()
                        & 'subject_id = {}'.format(
                            cell_now['subject_id'])).fetch('virus_id')[0]
            if virus_id == 238:
                virus = 'Voltron 1'
            elif virus_id == 240:
                virus = 'Voltron 2'
            else:
                virus = '??'
            label_now = 'Subject:{}'.format(
                cell_now['subject_id']) + ' Cell:{} - {}'.format(
                    cell_now['cell_number'], virus)

            expression_time = np.diff(
                (lab.Surgery() & 'subject_id = {}'.format(
                    cell_now['subject_id'])).fetch('start_time'))[0].days
            ax_exptime_f0.plot(expression_time,
                               np.mean(f0[:apnum]),
                               'o',
                               ms=10,
                               color=cmap(coloridx),
                               label=label_now)
            ax_exptime_f0.errorbar(expression_time,
                                   np.mean(f0[:apnum]),
                                   np.std(f0[:apnum]),
                                   ecolor=cmap(coloridx))
            ax_exptime_f0.set_xlabel('expression time (days)')
            ax_exptime_f0.set_ylabel('F0 (pixel intensity)')

            ax_exptime_dff.plot(expression_time,
                                np.mean(peakampl_now[:apnum]),
                                'o',
                                ms=10,
                                color=cmap(coloridx),
                                label=label_now)
            ax_exptime_dff.errorbar(expression_time,
                                    np.mean(peakampl_now[:apnum]),
                                    np.std(peakampl_now[:apnum]),
                                    ecolor=cmap(coloridx))
            ax_exptime_dff.set_xlabel('expression time (days)')
            ax_exptime_dff.set_ylabel('AP peak amplitude (dF/F)')

            ax_exptime_noise.plot(expression_time,
                                  np.mean(noise_now[:apnum]),
                                  'o',
                                  ms=10,
                                  color=cmap(coloridx),
                                  label=label_now)
            ax_exptime_noise.errorbar(expression_time,
                                      np.mean(noise_now[:apnum]),
                                      np.std(noise_now[:apnum]),
                                      ecolor=cmap(coloridx))
            ax_exptime_noise.set_xlabel('expression time (days)')
            ax_exptime_noise.set_ylabel('noise (dF/F)')

            ax_exptime_snration.plot(expression_time,
                                     np.mean(snratio_now[:apnum]),
                                     'o',
                                     ms=10,
                                     color=cmap(coloridx),
                                     label=label_now)
            ax_exptime_snration.errorbar(expression_time,
                                         np.mean(snratio_now[:apnum]),
                                         np.std(snratio_now[:apnum]),
                                         ecolor=cmap(coloridx))
            ax_exptime_snration.set_xlabel('expression time (days)')
            ax_exptime_snration.set_ylabel('S/N ratio')
    #%%  for each AP

    fig = plt.figure()
    ax_sn_f0 = fig.add_axes([0, 0, 1, 1])
    ax_sn_f0_binned = fig.add_axes([0, -1.2, 1, 1])
    ax_noise_f0 = fig.add_axes([2.6, 0, 1, 1])
    ax_noise_f0_binned = fig.add_axes([2.6, -1.2, 1, 1])
    ax_peakampl_f0 = fig.add_axes([1.3, 0, 1, 1])
    ax_peakampl_f0_binned = fig.add_axes([1.3, -1.2, 1, 1])
    for loopidx, (f0, snratio_now, noise_now, peakampl_now,
                  cell_now) in enumerate(
                      zip(f0s_all, snratios_all, noise_all, peakamplitudes_all,
                          cells.iterrows())):
        if len(
                f0
        ) > 0:  # and cell_now[1]['subject_id']==466774:# and cell_now[1]['cell_number']==1:
            coloridx = loopidx / len(cells)
            cell_now = cell_now[1]
            virus_id = (lab.Surgery.VirusInjection()
                        & 'subject_id = {}'.format(
                            cell_now['subject_id'])).fetch('virus_id')[0]
            if virus_id == 238:
                virus = 'Voltron 1'
            elif virus_id == 240:
                virus = 'Voltron 2'
            else:
                virus = '??'
            label_now = 'Subject:{}'.format(
                cell_now['subject_id']) + ' Cell:{} - {}'.format(
                    cell_now['cell_number'], virus)
            ax_sn_f0.plot(f0,
                          snratio_now,
                          'o',
                          ms=1,
                          color=cmap(coloridx),
                          label=label_now)
            ax_noise_f0.plot(f0,
                             noise_now,
                             'o',
                             ms=1,
                             color=cmap(coloridx),
                             label=label_now)
            ax_peakampl_f0.plot(f0,
                                peakampl_now,
                                'o',
                                ms=1,
                                color=cmap(coloridx),
                                label=label_now)
            lows = np.arange(np.min(f0), np.max(f0),
                             (np.max(f0) - np.min(f0)) / (bin_num + 1))
            highs = lows + (np.max(f0) - np.min(f0)) / (bin_num + 1)
            mean_f0 = list()
            sd_f0 = list()
            mean_sn = list()
            sd_sn = list()
            mean_noise = list()
            sd_noise = list()
            mean_ampl = list()
            sd_ampl = list()
            for low, high in zip(lows, highs):
                idx = (f0 >= low) & (f0 < high)
                if len(idx) > 10:
                    mean_f0.append(np.mean(f0[idx]))
                    sd_f0.append(np.std(f0[idx]))
                    mean_sn.append(np.mean(snratio_now[idx]))
                    sd_sn.append(np.std(snratio_now[idx]))
                    mean_noise.append(np.mean(noise_now[idx]))
                    sd_noise.append(np.std(noise_now[idx]))
                    mean_ampl.append(np.mean(peakampl_now[idx]))
                    sd_ampl.append(np.std(peakampl_now[idx]))

            ax_sn_f0_binned.errorbar(mean_f0,
                                     mean_sn,
                                     sd_sn,
                                     sd_f0,
                                     'o-',
                                     color=cmap(coloridx),
                                     label=label_now)
            ax_noise_f0_binned.errorbar(mean_f0,
                                        mean_noise,
                                        sd_noise,
                                        sd_f0,
                                        'o-',
                                        color=cmap(coloridx),
                                        label=label_now)
            ax_peakampl_f0_binned.errorbar(mean_f0,
                                           mean_ampl,
                                           sd_ampl,
                                           sd_f0,
                                           'o-',
                                           color=cmap(coloridx),
                                           label=label_now)

    ax_sn_f0.set_xlabel('F0')
    ax_sn_f0.set_ylabel('S/N ratio')
    ax_sn_f0_binned.set_xlabel('F0')
    ax_sn_f0_binned.set_ylabel('S/N ratio')

    #ax_sn_f0_binned.legend()
    ax_sn_f0_binned.legend(loc='upper center',
                           bbox_to_anchor=(-.45, 1.5),
                           shadow=True,
                           ncol=1)

    ax_noise_f0.set_xlabel('F0')
    ax_noise_f0.set_ylabel('Noise (std(dF/F))')
    ax_noise_f0_binned.set_xlabel('F0')
    ax_noise_f0_binned.set_ylabel('Noise (std(dF/F))')

    ax_peakampl_f0.set_xlabel('F0')
    ax_peakampl_f0.set_ylabel('Peak amplitude (dF/F)')
    ax_peakampl_f0_binned.set_xlabel('F0')
    ax_peakampl_f0_binned.set_ylabel('Peak amplitude (dF/F)')

    #%%
    cells['SN'] = snratio
    cells['V0'] = v0s
    cells['holding'] = holdings
    cells['RS'] = np.asarray(rss, float)
    print(cells)
    cells = cells[cells['V0'] < v0_max]
    cells = cells[cells['holding'] > holding_min]
    print(cells)
    #% S/N ratio histogram
    fig = plt.figure()
    ax_hist = fig.add_axes([0, 0, 1, 1])
    ax_hist.hist(cells['SN'].values)
    ax_hist.set_xlabel('S/N ratio of first 50 spikes')
    ax_hist.set_ylabel('# of cells')
    ax_hist.set_title(roi_type.replace('_', ' '))
    ax_hist.set_xlim([0, 15])