Exemplo n.º 1
0
def main(config="../../config.yaml", namespace=""):
    # obtain config
    if isinstance(config, str):
        config = load_job_config(config)
    parties = config.parties
    guest = parties.guest[0]
    host = parties.host[0]
    arbiter = parties.arbiter[0]

    guest_train_data = {"name": "vehicle_scale_hetero_guest", "namespace": f"experiment{namespace}"}
    host_train_data = {"name": "vehicle_scale_hetero_host", "namespace": f"experiment{namespace}"}

    pipeline = PipeLine().set_initiator(role='guest', party_id=guest).set_roles(guest=guest, host=host, arbiter=arbiter)

    reader_0 = Reader(name="reader_0")
    reader_0.get_party_instance(role='guest', party_id=guest).component_param(table=guest_train_data)
    reader_0.get_party_instance(role='host', party_id=host).component_param(table=host_train_data)

    data_transform_0 = DataTransform(name="data_transform_0")

    data_transform_0.get_party_instance(role='guest', party_id=guest).component_param(with_label=True, output_format="dense",
                                                                              label_type="int", label_name="y")
    data_transform_0.get_party_instance(role='host', party_id=host).component_param(with_label=False)

    intersection_0 = Intersection(name="intersection_0", intersect_method="rsa", sync_intersect_ids=True,
                                  only_output_key=False)
    hetero_lr_0 = HeteroLR(name="hetero_lr_0", penalty="L2", optimizer="nesterov_momentum_sgd",
                           tol=0.0001, alpha=0.0001, max_iter=30, batch_size=-1,
                           early_stop="diff", learning_rate=0.15, init_param={"init_method": "zeros"})

    local_baseline_0 = LocalBaseline(name="local_baseline_0", model_name="LogisticRegression",
                                     model_opts={"penalty": "l2", "tol": 0.0001, "C": 1.0, "fit_intercept": True,
                                                 "solver": "lbfgs", "max_iter": 5, "multi_class": "ovr"})
    local_baseline_0.get_party_instance(role='guest', party_id=guest).component_param(need_run=True)
    local_baseline_0.get_party_instance(role='host', party_id=host).component_param(need_run=False)

    evaluation_0 = Evaluation(name="evaluation_0", eval_type="multi", pos_label=1)
    evaluation_0.get_party_instance(role='guest', party_id=guest).component_param(need_run=True)
    evaluation_0.get_party_instance(role='host', party_id=host).component_param(need_run=False)

    pipeline.add_component(reader_0)
    pipeline.add_component(data_transform_0, data=Data(data=reader_0.output.data))
    pipeline.add_component(intersection_0, data=Data(data=data_transform_0.output.data))
    pipeline.add_component(hetero_lr_0, data=Data(train_data=intersection_0.output.data))
    pipeline.add_component(local_baseline_0, data=Data(train_data=intersection_0.output.data))
    pipeline.add_component(evaluation_0, data=Data(data=[hetero_lr_0.output.data, local_baseline_0.output.data]))

    pipeline.compile()

    pipeline.fit()

    # predict
    pipeline.deploy_component([data_transform_0, intersection_0, hetero_lr_0, local_baseline_0])

    predict_pipeline = PipeLine()
    predict_pipeline.add_component(reader_0)
    predict_pipeline.add_component(pipeline,
                                   data=Data(predict_input={pipeline.data_transform_0.input.data: reader_0.output.data}))
    predict_pipeline.add_component(evaluation_0, data=Data(data=[hetero_lr_0.output.data, local_baseline_0.output.data]))
    predict_pipeline.predict()
Exemplo n.º 2
0
def main(config="../../config.yaml", namespace=""):
    # obtain config
    if isinstance(config, str):
        config = load_job_config(config)
    parties = config.parties
    guest = parties.guest[0]
    backend = config.backend
    work_mode = config.work_mode
    data_base = config.data_base

    # partition for data storage
    partition = 4

    dense_data = {"name": "breast_hetero_guest", "namespace": f"experiment{namespace}"}

    tag_data = {"name": "tag_value_1", "namespace": f"experiment{namespace}"}

    pipeline_upload = PipeLine().set_initiator(role="guest", party_id=guest).set_roles(guest=guest)
    # add upload data info
    # csv file name from python path & file name
    pipeline_upload.add_upload_data(file=os.path.join(data_base, "examples/data/breast_hetero_guest.csv"),
                                    table_name=dense_data["name"],             # table name
                                    namespace=dense_data["namespace"],         # namespace
                                    head=1, partition=partition,               # data info
                                    id_delimiter=",")                          # needed for spark backend

    pipeline_upload.add_upload_data(file=os.path.join(data_base, "examples/data/tag_value_1000_140.csv"),
                                    table_name=tag_data["name"],
                                    namespace=tag_data["namespace"],
                                    head=0, partition=partition,
                                    id_delimiter=",")
    # upload all data
    pipeline_upload.upload(work_mode=work_mode, backend=backend, drop=1)
def main(config="../../config.yaml", namespace=""):
    # obtain config
    if isinstance(config, str):
        config = load_job_config(config)
    parties = config.parties
    guest = parties.guest[0]
    host = parties.host[0]

    guest_train_data = {"name": "breast_hetero_guest", "namespace": f"experiment{namespace}"}
    host_train_data = {"name": "breast_hetero_host", "namespace": f"experiment{namespace}"}

    pipeline = PipeLine().set_initiator(role='guest', party_id=guest).set_roles(guest=guest, host=host)

    reader_0 = Reader(name="reader_0")
    reader_0.get_party_instance(role='guest', party_id=guest).component_param(table=guest_train_data)
    reader_0.get_party_instance(role='host', party_id=host).component_param(table=host_train_data)

    data_transform_0 = DataTransform(name="data_transform_0")
    data_transform_0.get_party_instance(role='guest', party_id=guest).component_param(with_label=True)
    data_transform_0.get_party_instance(role='host', party_id=host).component_param(with_label=False)

    intersection_0 = Intersection(name="intersection_0")

    hetero_nn_0 = HeteroNN(name="hetero_nn_0", epochs=100,
                           interactive_layer_lr=0.15, batch_size=-1, early_stop="diff",
                           selector_param={"method": "relative"})
    guest_nn_0 = hetero_nn_0.get_party_instance(role='guest', party_id=guest)
    guest_nn_0.add_bottom_model(Dense(units=3, input_shape=(10,), activation="relu",
                                      kernel_initializer=initializers.Constant(value=1)))
    guest_nn_0.set_interactve_layer(Dense(units=2, input_shape=(2,),
                                          kernel_initializer=initializers.Constant(value=1)))
    guest_nn_0.add_top_model(Dense(units=1, input_shape=(2,), activation="sigmoid",
                                   kernel_initializer=initializers.Constant(value=1)))
    host_nn_0 = hetero_nn_0.get_party_instance(role='host', party_id=host)
    host_nn_0.add_bottom_model(Dense(units=3, input_shape=(20,), activation="relu",
                                     kernel_initializer=initializers.Constant(value=1)))
    host_nn_0.set_interactve_layer(Dense(units=2, input_shape=(2,),
                                         kernel_initializer=initializers.Constant(value=1)))
    hetero_nn_0.compile(optimizer=optimizers.SGD(lr=0.15), loss="binary_crossentropy")

    hetero_nn_1 = HeteroNN(name="hetero_nn_1")

    evaluation_0 = Evaluation(name="evaluation_0")

    pipeline.add_component(reader_0)
    pipeline.add_component(data_transform_0, data=Data(data=reader_0.output.data))
    pipeline.add_component(intersection_0, data=Data(data=data_transform_0.output.data))
    pipeline.add_component(hetero_nn_0, data=Data(train_data=intersection_0.output.data))
    pipeline.add_component(hetero_nn_1, data=Data(test_data=intersection_0.output.data),
                           model=Model(model=hetero_nn_0.output.model))
    pipeline.add_component(evaluation_0, data=Data(data=hetero_nn_0.output.data))

    pipeline.compile()

    pipeline.fit()

    print(hetero_nn_0.get_config(roles={"guest": [guest],
                                        "host": [host]}))
    print(pipeline.get_component("hetero_nn_0").get_summary())
Exemplo n.º 4
0
def main(config="../../config.yaml", namespace=""):
    # obtain config
    if isinstance(config, str):
        config = load_job_config(config)
    parties = config.parties
    guest = parties.guest[0]
    host = parties.host[0]

    guest_train_data = {"name": "breast_hetero_guest", "namespace": f"experiment{namespace}"}
    host_train_data = {"name": "breast_hetero_host", "namespace": f"experiment{namespace}"}

    pipeline = PipeLine().set_initiator(role='guest', party_id=guest).set_roles(guest=guest, host=host)

    reader_0 = Reader(name="reader_0")
    reader_0.get_party_instance(role='guest', party_id=guest).component_param(table=guest_train_data)
    reader_0.get_party_instance(role='host', party_id=host).component_param(table=host_train_data)

    data_transform_0 = DataTransform(name="data_transform_0")

    data_transform_0.get_party_instance(
        role='guest', party_id=guest).component_param(
        with_label=False, output_format="dense")
    data_transform_0.get_party_instance(
        role='host', party_id=host).component_param(
        with_label=False, output_format="dense")

    param_0 = {
        "intersect_method": "rsa",
        "rsa_params": {
            "hash_method": "sha256",
            "final_hash_method": "sha256",
            "key_length": 2048
        },
        "run_cache": True
    }
    param_1 = {
        "intersect_method": "rsa",
        "sync_intersect_ids": False,
        "only_output_key": True,
        "rsa_params": {
            "hash_method": "sha256",
            "final_hash_method": "sha256",
            "key_length": 2048
        }
    }
    intersect_0 = Intersection(name="intersect_0", **param_0)
    intersect_1 = Intersection(name="intersect_1", **param_1)

    pipeline.add_component(reader_0)
    pipeline.add_component(data_transform_0, data=Data(data=reader_0.output.data))
    pipeline.add_component(intersect_0, data=Data(data=data_transform_0.output.data))
    pipeline.add_component(
        intersect_1, data=Data(
            data=data_transform_0.output.data), cache=Cache(
            intersect_0.output.cache))

    pipeline.compile()

    pipeline.fit()
Exemplo n.º 5
0
def main(config="../../config.yaml", namespace=""):
    # obtain config
    if isinstance(config, str):
        config = load_job_config(config)
    backend = config.backend
    work_mode = config.work_mode

    binning_param = {
        "name": 'hetero_feature_binning_0',
        "method": "quantile",
        "compress_thres": 10000,
        "head_size": 10000,
        "error": 0.001,
        "bin_num": 10,
        "bin_indexes": -1,
        "bin_names": None,
        "category_indexes": None,
        "category_names": None,
        "adjustment_factor": 0.5,
        "local_only": False,
        "transform_param": {
            "transform_cols": -1,
            "transform_names": None,
            "transform_type": "bin_num"
        }
    }

    selection_param = {
        "name": "hetero_feature_selection_0",
        "select_col_indexes": -1,
        "select_names": [],
        "filter_methods": ["manually", "iv_value_thres", "iv_percentile"],
        "manually_param": {
            "filter_out_indexes": [],
            "filter_out_names": []
        },
        "unique_param": {
            "eps": 1e-06
        },
        "iv_value_param": {
            "value_threshold": 0.1
        },
        "iv_percentile_param": {
            "percentile_threshold": 0.9
        },
        "variance_coe_param": {
            "value_threshold": 0.3
        },
        "outlier_param": {
            "percentile": 0.95,
            "upper_threshold": 2.0
        }
    }
    pipeline = common_tools.make_single_predict_pipeline(
        config, namespace, selection_param, binning_param=binning_param)
    job_parameters = JobParameters(backend=backend, work_mode=work_mode)
    pipeline.fit(job_parameters)
    common_tools.prettify(
        pipeline.get_component("hetero_feature_selection_0").get_summary())
Exemplo n.º 6
0
def main(config="../../config.yaml", namespace=""):
    # obtain config
    if isinstance(config, str):
        config = load_job_config(config)
    parties = config.parties
    guest = parties.guest[0]
    host = parties.host[0]
    arbiter = parties.arbiter[0]

    guest_train_data = {"name": "breast_hetero_guest", "namespace": f"experiment{namespace}"}
    host_train_data = {"name": "breast_hetero_host", "namespace": f"experiment{namespace}"}


    # initialize pipeline
    pipeline = PipeLine()
    # set job initiator
    pipeline.set_initiator(role="guest", party_id=guest).set_roles(guest=guest, host=host, arbiter=arbiter)

    # define Reader components to read in data
    reader_0 = Reader(name="reader_0")
    # configure Reader for guest
    reader_0.get_party_instance(role="guest", party_id=guest).component_param(table=guest_train_data)
    reader_0.get_party_instance(role="host", party_id=host).component_param(table=host_train_data)

    data_transform_0 = DataTransform(name="data_transform_0")  # start component numbering at 0
    data_transform_0_guest_party_instance = data_transform_0.get_party_instance(role="guest", party_id=guest)
    data_transform_0_guest_party_instance.component_param(with_label=True, output_format="dense")
    data_transform_0.get_party_instance(role="host", party_id=host).component_param(with_label=False,
                                                                            output_format="dense")
    intersection_0 = Intersection(name="intersection_0")

    label_transform_0 = LabelTransform(name="label_transform_0")
    label_transform_0.get_party_instance(role="host", party_id=host).component_param(need_run=False)

    hetero_lr_0 = HeteroLR(name="hetero_lr_0", penalty="L2", optimizer="sgd", tol=0.001,
                               alpha=0.01, max_iter=20, early_stop="weight_diff", batch_size=-1,
                               learning_rate=0.15, decay=0.0, decay_sqrt=False,
                               init_param={"init_method": "zeros"},
                               encrypted_mode_calculator_param={"mode": "fast"},
                               floating_point_precision=23)

    label_transform_1 = LabelTransform(name="label_transform_1")
    evaluation_0 = Evaluation(name="evaluation_0", eval_type="binary", pos_label=1)


    # add components to pipeline, in order of task execution
    pipeline.add_component(reader_0)
    pipeline.add_component(data_transform_0, data=Data(data=reader_0.output.data))
    pipeline.add_component(intersection_0, data=Data(data=data_transform_0.output.data))
    pipeline.add_component(label_transform_0, data=Data(data=intersection_0.output.data))
    pipeline.add_component(hetero_lr_0, data=Data(train_data=label_transform_0.output.data))
    pipeline.add_component(label_transform_1, data=Data(data=hetero_lr_0.output.data), model=Model(label_transform_0.output.model))
    pipeline.add_component(evaluation_0, data=Data(data=label_transform_1.output.data))

    # compile pipeline once finished adding modules, this step will form conf and dsl files for running job
    pipeline.compile()

    # fit model
    pipeline.fit()
def main(config="../../config.yaml", namespace=""):
    if isinstance(config, str):
        config = load_job_config(config)
    parties = config.parties
    guest = parties.guest[0]
    hosts = parties.host[0]

    guest_train_data = {"name": "ionosphere_scale_hetero_guest", "namespace": f"experiment{namespace}"}
    host_train_data = {"name": "ionosphere_scale_hetero_host", "namespace": f"experiment{namespace}"}
    # guest_train_data = {"name": "default_credit_hetero_guest", "namespace": f"experiment{namespace}"}
    # host_train_data = {"name": "default_credit_hetero_host", "namespace": f"experiment{namespace}"}

    # initialize pipeline
    pipeline = PipeLine()
    # set job initiator
    pipeline.set_initiator(role='guest', party_id=guest)
    # set participants information
    pipeline.set_roles(guest=guest, host=hosts)

    # define Reader components to read in data
    reader_0 = Reader(name="reader_0")
    # configure Reader for guest
    reader_0.get_party_instance(role='guest', party_id=guest).component_param(table=guest_train_data)
    # configure Reader for host
    reader_0.get_party_instance(role='host', party_id=hosts).component_param(table=host_train_data)

    data_transform_0 = DataTransform(name="data_transform_0", output_format='dense', missing_fill=False)

    # get DataTransform party instance of guest
    data_transform_0_guest_party_instance = data_transform_0.get_party_instance(role='guest', party_id=guest)
    # configure DataTransform for guest
    data_transform_0_guest_party_instance.component_param(with_label=True, label_name="label")
    # get and configure DataTransform party instance of host
    data_transform_0.get_party_instance(role='host', party_id=hosts).component_param(with_label=False)

    # define Intersection components
    intersection_0 = Intersection(name="intersection_0")

    pipeline.add_component(reader_0)

    pipeline.add_component(data_transform_0, data=Data(data=reader_0.output.data))

    pipeline.add_component(intersection_0, data=Data(data=data_transform_0.output.data))

    statistic_param = {
        "name": "statistic_0",
        "statistics": ["95%", "coefficient_of_variance", "stddev"],
        "column_indexes": [1, 2],
        "column_names": ["x3"]
    }
    statistic_0 = DataStatistics(**statistic_param)
    pipeline.add_component(statistic_0, data=Data(data=intersection_0.output.data))

    pipeline.compile()

    # fit model
    pipeline.fit()
    # query component summary
    prettify(pipeline.get_component("statistic_0").get_summary())
Exemplo n.º 8
0
def main(config="../../config.yaml", namespace=""):
    # obtain config
    if isinstance(config, str):
        config = load_job_config(config)
    parties = config.parties
    guest = parties.guest[0]
    host = parties.host[0]
    arbiter = parties.arbiter[0]
    backend = config.backend
    work_mode = config.work_mode

    guest_train_data = {"name": "dvisits_hetero_guest", "namespace": f"experiment{namespace}"}
    host_train_data = {"name": "dvisits_hetero_host", "namespace": f"experiment{namespace}"}


    pipeline = PipeLine().set_initiator(role='guest', party_id=guest).set_roles(guest=guest, host=host, arbiter=arbiter)

    reader_0 = Reader(name="reader_0")
    reader_0.get_party_instance(role='guest', party_id=guest).algorithm_param(table=guest_train_data)
    reader_0.get_party_instance(role='host', party_id=host).algorithm_param(table=host_train_data)

    dataio_0 = DataIO(name="dataio_0")
    dataio_0.get_party_instance(role='guest', party_id=guest).algorithm_param(with_label=True, label_name="doctorco",
                                                                             label_type="float", output_format="dense")
    dataio_0.get_party_instance(role='host', party_id=host).algorithm_param(with_label=False)

    intersection_0 = Intersection(name="intersection_0")
    hetero_poisson_0 = HeteroPoisson(name="hetero_poisson_0", early_stop="weight_diff", max_iter=10,
                                     alpha=100.0, batch_size=-1, learning_rate=0.01, optimizer="rmsprop",
                                     exposure_colname="exposure", decay_sqrt=False, tol=0.001,
                                     init_param={"init_method": "zeros"}, penalty="L2",
                                     encrypted_mode_calculator_param={"mode": "fast"})

    evaluation_0 = Evaluation(name="evaluation_0", eval_type="regression", pos_label=1)
    evaluation_0.get_party_instance(role='host', party_id=host).algorithm_param(need_run=False)

    pipeline.add_component(reader_0)
    pipeline.add_component(dataio_0, data=Data(data=reader_0.output.data))
    pipeline.add_component(intersection_0, data=Data(data=dataio_0.output.data))
    pipeline.add_component(hetero_poisson_0, data=Data(train_data=intersection_0.output.data))
    pipeline.add_component(evaluation_0, data=Data(data=hetero_poisson_0.output.data))

    pipeline.compile()

    pipeline.fit(backend=backend, work_mode=work_mode)

    # predict
    # deploy required components
    pipeline.deploy_component([dataio_0, intersection_0, hetero_poisson_0])

    predict_pipeline = PipeLine()
    # add data reader onto predict pipeline
    predict_pipeline.add_component(reader_0)
    # add selected components from train pipeline onto predict pipeline
    # specify data source
    predict_pipeline.add_component(pipeline,
                                   data=Data(predict_input={pipeline.dataio_0.input.data: reader_0.output.data}))
    # run predict model
    predict_pipeline.predict(backend=backend, work_mode=work_mode)
Exemplo n.º 9
0
def main(config="../../config.yaml", namespace=""):

    # obtain config
    if isinstance(config, str):
        config = load_job_config(config)

    parties = config.parties
    guest = parties.guest[0]
    host = parties.host[0]
    arbiter = parties.arbiter[0]

    guest_train_data = {
        "name": "breast_homo_guest",
        "namespace": f"experiment{namespace}"
    }
    host_train_data = {
        "name": "breast_homo_host",
        "namespace": f"experiment{namespace}"
    }

    pipeline = PipeLine().set_initiator(
        role='guest', party_id=guest).set_roles(guest=guest,
                                                host=host,
                                                arbiter=arbiter)

    data_transform_0 = DataTransform(name="data_transform_0")
    reader_0 = Reader(name="reader_0")

    reader_0.get_party_instance(
        role='guest', party_id=guest).component_param(table=guest_train_data)
    reader_0.get_party_instance(
        role='host', party_id=host).component_param(table=host_train_data)
    data_transform_0.get_party_instance(
        role='guest', party_id=guest).component_param(with_label=True,
                                                      output_format="dense")
    data_transform_0.get_party_instance(
        role='host', party_id=host).component_param(with_label=True,
                                                    output_format="dense")

    homo_secureboost_0 = HomoSecureBoost(
        name="homo_secureboost_0",
        num_trees=3,
        task_type='classification',
        objective_param={"objective": "cross_entropy"},
        tree_param={"max_depth": 3},
        cv_param={
            "need_cv": True,
            "shuffle": False,
            "n_splits": 5
        })

    pipeline.add_component(reader_0)
    pipeline.add_component(data_transform_0,
                           data=Data(data=reader_0.output.data))
    pipeline.add_component(homo_secureboost_0,
                           data=Data(train_data=data_transform_0.output.data))

    pipeline.compile()
    pipeline.fit()
def main(config="../../config.yaml", namespace=""):
    # obtain config
    if isinstance(config, str):
        config = load_job_config(config)
    parties = config.parties
    guest = parties.guest[0]
    host = parties.host[0]
    arbiter = parties.arbiter[0]

    guest_train_data = {
        "name": "breast_homo_guest",
        "namespace": f"experiment{namespace}"
    }
    host_train_data = {
        "name": "breast_homo_host",
        "namespace": f"experiment{namespace}"
    }

    # initialize pipeline
    pipeline = PipeLine()
    # set job initiator
    pipeline.set_initiator(role='guest', party_id=guest)
    # set participants information
    pipeline.set_roles(guest=guest, host=host, arbiter=arbiter)

    # define Reader components to read in data
    reader_0 = Reader(name="reader_0")
    # configure Reader for guest
    reader_0.get_party_instance(
        role='guest', party_id=guest).component_param(table=guest_train_data)
    # configure Reader for host
    reader_0.get_party_instance(
        role='host', party_id=host).component_param(table=host_train_data)

    # define DataTransform components
    data_transform_0 = DataTransform(
        name="data_transform_0", with_label=True,
        output_format="dense")  # start component numbering at 0

    homo_binning_0 = HomoFeatureBinning(name='homo_binning_0',
                                        sample_bins=1000)
    homo_binning_1 = HomoFeatureBinning(name='homo_binning_1',
                                        sample_bins=1000)
    # add components to pipeline, in order of task execution
    pipeline.add_component(reader_0)
    pipeline.add_component(data_transform_0,
                           data=Data(data=reader_0.output.data))
    # set data input sources of intersection components
    pipeline.add_component(homo_binning_0,
                           data=Data(data=data_transform_0.output.data))
    pipeline.add_component(homo_binning_1,
                           data=Data(data=data_transform_0.output.data),
                           model=Model(model=homo_binning_0.output.model))

    # compile pipeline once finished adding modules, this step will form conf and dsl files for running job
    pipeline.compile()

    # fit model
    pipeline.fit()
Exemplo n.º 11
0
def main(config="../../config.yaml", namespace=""):
    # obtain config
    if isinstance(config, str):
        config = load_job_config(config)
    parties = config.parties
    guest = parties.guest[0]
    host = parties.host[0]

    guest_train_data = {
        "name": "nus_wide_guest",
        "namespace": f"experiment{namespace}"
    }
    host_train_data = {
        "name": "nus_wide_host",
        "namespace": f"experiment{namespace}"
    }
    pipeline = PipeLine().set_initiator(role='guest',
                                        party_id=guest).set_roles(guest=guest,
                                                                  host=host)

    reader_0 = Reader(name="reader_0")
    reader_0.get_party_instance(
        role='guest', party_id=guest).component_param(table=guest_train_data)
    reader_0.get_party_instance(
        role='host', party_id=host).component_param(table=host_train_data)

    data_transform_0 = DataTransform(name="data_transform_0")
    data_transform_0.get_party_instance(
        role='guest', party_id=guest).component_param(with_label=True,
                                                      output_format="dense")
    data_transform_0.get_party_instance(
        role='host', party_id=host).component_param(with_label=False)

    hetero_ftl_0 = HeteroFTL(name='hetero_ftl_0',
                             epochs=10,
                             alpha=1,
                             batch_size=-1,
                             mode='encrypted')

    hetero_ftl_0.add_nn_layer(
        Dense(units=32,
              activation='sigmoid',
              kernel_initializer=initializers.RandomNormal(stddev=1.0),
              bias_initializer=initializers.Zeros()))

    hetero_ftl_0.compile(optimizer=optimizers.Adam(lr=0.01))
    evaluation_0 = Evaluation(name='evaluation_0', eval_type="binary")

    pipeline.add_component(reader_0)
    pipeline.add_component(data_transform_0,
                           data=Data(data=reader_0.output.data))
    pipeline.add_component(hetero_ftl_0,
                           data=Data(train_data=data_transform_0.output.data))
    pipeline.add_component(evaluation_0,
                           data=Data(data=hetero_ftl_0.output.data))

    pipeline.compile()

    pipeline.fit()
Exemplo n.º 12
0
def main(config="../../config.yaml", namespace=""):
    # obtain config
    if isinstance(config, str):
        config = load_job_config(config)
    parties = config.parties
    guest = parties.guest[0]
    host = parties.host[0]

    guest_train_data = {
        "name": "breast_hetero_guest",
        "namespace": f"experiment{namespace}"
    }
    host_train_data = {
        "name": "breast_hetero_host",
        "namespace": f"experiment{namespace}"
    }

    pipeline = PipeLine().set_initiator(role='guest',
                                        party_id=guest).set_roles(guest=guest,
                                                                  host=host)

    reader_0 = Reader(name="reader_0")
    reader_0.get_party_instance(
        role='guest', party_id=guest).component_param(table=guest_train_data)
    reader_0.get_party_instance(
        role='host', party_id=host).component_param(table=host_train_data)

    data_transform_0 = DataTransform(name="data_transform_0")

    data_transform_0.get_party_instance(
        role='guest', party_id=guest).component_param(with_label=False,
                                                      output_format="dense")
    data_transform_0.get_party_instance(
        role='host', party_id=host).component_param(with_label=False,
                                                    output_format="dense")

    param = {
        "intersect_method": "raw",
        "sync_intersect_ids": True,
        "only_output_key": True,
        "raw_params": {
            "use_hash": True,
            "hash_method": "sm3",
            "salt": "12345",
            "base64": False,
            "join_role": "host"
        }
    }
    intersect_0 = Intersection(name="intersect_0", **param)

    pipeline.add_component(reader_0)
    pipeline.add_component(data_transform_0,
                           data=Data(data=reader_0.output.data))
    pipeline.add_component(intersect_0,
                           data=Data(data=data_transform_0.output.data))

    pipeline.compile()

    pipeline.fit()
Exemplo n.º 13
0
def main(config="../../config.yaml", namespace=""):
    # obtain config
    if isinstance(config, str):
        config = load_job_config(config)
    parties = config.parties
    guest = parties.guest[0]
    host = parties.host[0]
    backend = config.backend
    work_mode = config.work_mode

    guest_train_data = {
        "name": "breast_hetero_guest",
        "namespace": f"experiment{namespace}"
    }
    host_train_data = {
        "name": "breast_hetero_host",
        "namespace": f"experiment{namespace}"
    }

    pipeline = PipeLine().set_initiator(role='guest',
                                        party_id=guest).set_roles(guest=guest,
                                                                  host=host)

    reader_0 = Reader(name="reader_0")
    reader_0.get_party_instance(
        role='guest', party_id=guest).component_param(table=guest_train_data)
    reader_0.get_party_instance(
        role='host', party_id=host).component_param(table=host_train_data)

    dataio_0 = DataIO(name="dataio_0")

    dataio_0.get_party_instance(role='guest', party_id=guest).component_param(
        with_label=False, output_format="dense")
    dataio_0.get_party_instance(role='host', party_id=host).component_param(
        with_label=False, output_format="dense")

    param = {
        "intersect_method": "raw",
        "sync_intersect_ids": True,
        "join_role": "host",
        "with_encode": True,
        "only_output_key": True,
        "encode_params": {
            "encode_method": "sha256",
            "salt": "12345",
            "base64": True
        }
    }
    intersect_0 = Intersection(name="intersect_0", **param)

    pipeline.add_component(reader_0)
    pipeline.add_component(dataio_0, data=Data(data=reader_0.output.data))
    pipeline.add_component(intersect_0, data=Data(data=dataio_0.output.data))

    pipeline.compile()

    job_parameters = JobParameters(backend=backend, work_mode=work_mode)
    pipeline.fit(job_parameters)
Exemplo n.º 14
0
def main(config="../../config.yaml", namespace=""):

    # obtain config
    if isinstance(config, str):
        config = load_job_config(config)

    parties = config.parties
    guest = parties.guest[0]
    host = parties.host[0]
    arbiter = parties.arbiter[0]

    backend = config.backend
    work_mode = config.work_mode

    guest_train_data = {"name": "vehicle_scale_homo_guest", "namespace": f"experiment{namespace}"}
    guest_validate_data = {"name": "vehicle_scale_homo_test", "namespace": f"experiment{namespace}"}

    host_train_data = {"name": "vehicle_scale_homo_host", "namespace": f"experiment{namespace}"}
    host_validate_data = {"name": "vehicle_scale_homo_test", "namespace": f"experiment{namespace}"}

    pipeline = PipeLine().set_initiator(role='guest', party_id=guest).set_roles(guest=guest, host=host, arbiter=arbiter)

    dataio_0, dataio_1 = DataIO(name="dataio_0"), DataIO(name='dataio_1')
    reader_0, reader_1 = Reader(name="reader_0"), Reader(name='reader_1')

    reader_0.get_party_instance(role='guest', party_id=guest).algorithm_param(table=guest_train_data)
    reader_0.get_party_instance(role='host', party_id=host).algorithm_param(table=host_train_data)
    dataio_0.get_party_instance(role='guest', party_id=guest).algorithm_param(with_label=True, output_format="dense")
    dataio_0.get_party_instance(role='host', party_id=host).algorithm_param(with_label=True, output_format="dense")

    reader_1.get_party_instance(role='guest', party_id=guest).algorithm_param(table=guest_validate_data)
    reader_1.get_party_instance(role='host', party_id=host).algorithm_param(table=host_validate_data)
    dataio_1.get_party_instance(role='guest', party_id=guest).algorithm_param(with_label=True, output_format="dense")
    dataio_1.get_party_instance(role='host', party_id=host).algorithm_param(with_label=True, output_format="dense")

    homo_secureboost_0 = HomoSecureBoost(name="homo_secureboost_0",
                                         num_trees=3,
                                         task_type='classification',
                                         objective_param={"objective": "cross_entropy"},
                                         tree_param={
                                             "max_depth": 3
                                         },
                                         validation_freqs=1
                                         )

    evaluation_0 = Evaluation(name='evaluation_0', eval_type='multi')

    pipeline.add_component(reader_0)
    pipeline.add_component(dataio_0, data=Data(data=reader_0.output.data))
    pipeline.add_component(reader_1)
    pipeline.add_component(dataio_1, data=Data(data=reader_1.output.data), model=Model(dataio_0.output.model))
    pipeline.add_component(homo_secureboost_0, data=Data(train_data=dataio_0.output.data,
                                                         validate_data=dataio_1.output.data
                                                         ))
    pipeline.add_component(evaluation_0, data=Data(homo_secureboost_0.output.data))

    pipeline.compile()
    pipeline.fit(backend=backend, work_mode=work_mode)
Exemplo n.º 15
0
def main(config="../../config.yaml", namespace=""):
    # obtain config
    if isinstance(config, str):
        config = load_job_config(config)
    parties = config.parties
    guest = parties.guest[0]
    host = parties.host[0]

    # data sets
    guest_train_data = {"name": "student_hetero_guest", "namespace": f"experiment{namespace}"}
    host_train_data = {"name": "student_hetero_host", "namespace": f"experiment{namespace}"}

    # init pipeline
    pipeline = PipeLine().set_initiator(role="guest", party_id=guest).set_roles(guest=guest, host=host,)

    # set data reader and data-io

    reader_0 = Reader(name="reader_0")
    reader_0.get_party_instance(role="guest", party_id=guest).component_param(table=guest_train_data)
    reader_0.get_party_instance(role="host", party_id=host).component_param(table=host_train_data)
    data_transform_0 = DataTransform(name="data_transform_0")
    data_transform_0.get_party_instance(
        role="guest",
        party_id=guest).component_param(
        with_label=True,
        output_format="dense",
        label_type="float")
    data_transform_0.get_party_instance(role="host", party_id=host).component_param(with_label=False)

    # data intersect component
    intersect_0 = Intersection(name="intersection_0")

    # secure boost component
    hetero_secure_boost_0 = HeteroSecureBoost(name="hetero_secure_boost_0",
                                              num_trees=3,
                                              task_type="regression",
                                              objective_param={"objective": "lse"},
                                              encrypt_param={"method": "Paillier"},
                                              tree_param={"max_depth": 3},
                                              validation_freqs=1,
                                              cv_param={
                                                  "need_cv": True,
                                                  "n_splits": 5,
                                                  "shuffle": False,
                                                  "random_seed": 103
                                              }
                                              )

    pipeline.add_component(reader_0)
    pipeline.add_component(data_transform_0, data=Data(data=reader_0.output.data))
    pipeline.add_component(intersect_0, data=Data(data=data_transform_0.output.data))
    pipeline.add_component(hetero_secure_boost_0, data=Data(train_data=intersect_0.output.data))

    pipeline.compile()
    pipeline.fit()

    print("fitting hetero secureboost done, result:")
    print(pipeline.get_component("hetero_secure_boost_0").get_summary())
Exemplo n.º 16
0
def main(config="../../config.yaml", namespace=""):
    # obtain config
    if isinstance(config, str):
        config = load_job_config(config)
    pipeline = make_normal_dsl(config, namespace)
    pipeline.fit()
    common_tools.prettify(
        pipeline.get_component("hetero_feature_selection_0").get_summary())
    common_tools.prettify(pipeline.get_component("evaluation_0").get_summary())
Exemplo n.º 17
0
def main(config="../../config.yaml", namespace=""):
    # obtain config
    if isinstance(config, str):
        config = load_job_config(config)
    parties = config.parties
    guest = parties.guest[0]
    host = parties.host[0]
    arbiter = parties.arbiter[0]

    guest_train_data = {"name": "motor_hetero_guest", "namespace": f"experiment{namespace}"}
    host_train_data = {"name": "motor_hetero_host", "namespace": f"experiment{namespace}"}

    pipeline = PipeLine().set_initiator(role='guest', party_id=guest).set_roles(guest=guest, host=host, arbiter=arbiter)

    reader_0 = Reader(name="reader_0")
    reader_0.get_party_instance(role='guest', party_id=guest).component_param(table=guest_train_data)
    reader_0.get_party_instance(role='host', party_id=host).component_param(table=host_train_data)

    data_transform_0 = DataTransform(name="data_transform_0")
    data_transform_0.get_party_instance(
        role='guest',
        party_id=guest).component_param(
        with_label=True,
        label_name="motor_speed",
        label_type="float",
        output_format="dense")
    data_transform_0.get_party_instance(role='host', party_id=host).component_param(with_label=False)

    intersection_0 = Intersection(name="intersection_0", only_output_key=False)
    hetero_linr_0 = HeteroLinR(name="hetero_linr_0", penalty="L2", optimizer="sgd", tol=0.001,
                               alpha=0.01, max_iter=5, early_stop="weight_diff", batch_size=-1,
                               learning_rate=0.15, decay=0.0, decay_sqrt=False,
                               callback_param={"callbacks": ["ModelCheckpoint"]},
                               init_param={"init_method": "zeros"},
                               floating_point_precision=23)

    evaluation_0 = Evaluation(name="evaluation_0", eval_type="regression", pos_label=1)

    hetero_linr_1 = HeteroLinR(name="hetero_linr_1", max_iter=15,
                               penalty="L2", optimizer="sgd", tol=0.001,
                               alpha=0.01, early_stop="weight_diff", batch_size=-1,
                               learning_rate=0.15, decay=0.0, decay_sqrt=False,
                               floating_point_precision=23
                               )

    pipeline.add_component(reader_0)
    pipeline.add_component(data_transform_0, data=Data(data=reader_0.output.data))
    pipeline.add_component(intersection_0, data=Data(data=data_transform_0.output.data))
    pipeline.add_component(hetero_linr_0, data=Data(train_data=intersection_0.output.data))
    pipeline.add_component(hetero_linr_1, data=Data(train_data=intersection_0.output.data),
                           model=Model(hetero_linr_0.output.model))
    pipeline.add_component(evaluation_0, data=Data(data=hetero_linr_1.output.data))

    pipeline.compile()

    pipeline.fit()
Exemplo n.º 18
0
def main(config="../../config.yaml", namespace=""):
    # obtain config
    if isinstance(config, str):
        config = load_job_config(config)
    parties = config.parties
    guest = parties.guest[0]
    host = parties.host[0]
    arbiter = parties.arbiter[0]
    backend = config.backend
    work_mode = config.work_mode

    guest_train_data = {"name": "breast_hetero_guest", "namespace": f"experiment{namespace}"}
    host_train_data = {"name": "breast_hetero_host", "namespace": f"experiment{namespace}"}

    pipeline = PipeLine().set_initiator(role='guest', party_id=guest).set_roles(guest=guest, host=host, arbiter=arbiter)

    reader_0 = Reader(name="reader_0")
    reader_0.get_party_instance(role='guest', party_id=guest).component_param(table=guest_train_data)
    reader_0.get_party_instance(role='host', party_id=host).component_param(table=host_train_data)

    dataio_0 = DataIO(name="dataio_0")
    dataio_0.get_party_instance(role='guest', party_id=guest).component_param(with_label=True, missing_fill=True,
                                                                              outlier_replace=True)
    dataio_0.get_party_instance(role='host', party_id=host).component_param(with_label=False, missing_fill=True,
                                                                            outlier_replace=True)

    intersection_0 = Intersection(name="intersection_0")
    federated_sample_0 = FederatedSample(name="federated_sample_0", mode="stratified", method="upsample",
                                         fractions=[[0, 1.5], [1, 2.0]])
    feature_scale_0 = FeatureScale(name="feature_scale_0", method="min_max_scale", mode="normal")
    feature_scale_0.get_party_instance(role='guest', party_id=guest).component_param(feat_upper=[1, 2, 1, 1, 0.5, 1, 2, 2, 1, 1])
    hetero_feature_binning_0 = HeteroFeatureBinning(name="hetero_feature_binning_0")
    hetero_feature_selection_0 = HeteroFeatureSelection(name="hetero_feature_selection_0")
    one_hot_0 = OneHotEncoder(name="one_hot_0")
    hetero_lr_0 = HeteroLR(name="hetero_lr_0", penalty="L2", optimizer="rmsprop", tol=1e-5,
                           init_param={"init_method": "random_uniform"},
                           alpha=0.01, max_iter=10, early_stop="diff", batch_size=320, learning_rate=0.15)
    evaluation_0 = Evaluation(name="evaluation_0")

    pipeline.add_component(reader_0)
    pipeline.add_component(dataio_0, data=Data(data=reader_0.output.data))
    pipeline.add_component(intersection_0, data=Data(data=dataio_0.output.data))
    pipeline.add_component(federated_sample_0, data=Data(data=intersection_0.output.data))
    pipeline.add_component(feature_scale_0, data=Data(data=federated_sample_0.output.data))
    pipeline.add_component(hetero_feature_binning_0, data=Data(data=feature_scale_0.output.data))
    pipeline.add_component(hetero_feature_selection_0, data=Data(data=hetero_feature_binning_0.output.data))
    pipeline.add_component(one_hot_0, data=Data(data=hetero_feature_selection_0.output.data))
    pipeline.add_component(hetero_lr_0, data=Data(train_data=one_hot_0.output.data))
    pipeline.add_component(evaluation_0, data=Data(data=hetero_lr_0.output.data))
    pipeline.compile()

    job_parameters = JobParameters(backend=backend, work_mode=work_mode)
    pipeline.fit(job_parameters)

    print(pipeline.get_component("evaluation_0").get_summary())
Exemplo n.º 19
0
def run_homo_nn_pipeline(config, namespace, data: dict, nn_component,
                         num_host):
    if isinstance(config, str):
        config = load_job_config(config)

    guest_train_data = data["guest"]
    host_train_data = data["host"][:num_host]
    for d in [guest_train_data, *host_train_data]:
        d["namespace"] = f"{d['namespace']}{namespace}"

    hosts = config.parties.host[:num_host]
    pipeline = (PipeLine().set_initiator(
        role="guest", party_id=config.parties.guest[0]).set_roles(
            guest=config.parties.guest[0],
            host=hosts,
            arbiter=config.parties.arbiter))

    reader_0 = Reader(name="reader_0")
    reader_0.get_party_instance(
        role="guest", party_id=config.parties.guest[0]).component_param(
            table=guest_train_data)
    for i in range(num_host):
        reader_0.get_party_instance(
            role="host",
            party_id=hosts[i]).component_param(table=host_train_data[i])

    dataio_0 = DataIO(name="dataio_0", with_label=True)
    dataio_0.get_party_instance(
        role="guest", party_id=config.parties.guest[0]).component_param(
            with_label=True, output_format="dense")
    dataio_0.get_party_instance(
        role="host", party_id=hosts).component_param(with_label=True)

    pipeline.add_component(reader_0)
    pipeline.add_component(dataio_0, data=Data(data=reader_0.output.data))
    pipeline.add_component(nn_component,
                           data=Data(train_data=dataio_0.output.data))
    pipeline.compile()
    job_parameters = JobParameters(backend=config.backend,
                                   work_mode=config.work_mode)
    pipeline.fit(job_parameters)
    print(pipeline.get_component("homo_nn_0").get_summary())
    pipeline.deploy_component([dataio_0, nn_component])

    # predict
    predict_pipeline = PipeLine()
    predict_pipeline.add_component(reader_0)
    predict_pipeline.add_component(
        pipeline,
        data=Data(
            predict_input={pipeline.dataio_0.input.data: reader_0.output.data
                           }),
    )
    # run predict model
    predict_pipeline.predict(job_parameters)
Exemplo n.º 20
0
def main(config="../../config.yaml", namespace=""):
    # obtain config
    if isinstance(config, str):
        config = load_job_config(config)
    parties = config.parties
    guest = parties.guest[0]
    host = parties.host[0]
    backend = config.backend
    work_mode = config.work_mode

    guest_train_data = {"name": "nus_wide_guest", "namespace": f"experiment{namespace}"}
    host_train_data = {"name": "nus_wide_host", "namespace": f"experiment{namespace}"}
    pipeline = PipeLine().set_initiator(role='guest', party_id=guest).set_roles(guest=guest, host=host)

    reader_0 = Reader(name="reader_0")
    reader_0.get_party_instance(role='guest', party_id=guest).algorithm_param(table=guest_train_data)
    reader_0.get_party_instance(role='host', party_id=host).algorithm_param(table=host_train_data)

    dataio_0 = DataIO(name="dataio_0")
    dataio_0.get_party_instance(role='guest', party_id=guest).algorithm_param(with_label=True, output_format="dense")
    dataio_0.get_party_instance(role='host', party_id=host).algorithm_param(with_label=False)

    hetero_ftl_0 = HeteroFTL(name='hetero_ftl_0',
                             epochs=10, alpha=1, batch_size=-1, mode='plain')

    hetero_ftl_0.add_nn_layer(Dense(units=32, activation='sigmoid',
                                    kernel_initializer=initializers.RandomNormal(stddev=1.0,
                                                                                 dtype="float32"),
                                    bias_initializer=initializers.Zeros()))

    hetero_ftl_0.compile(optimizer=optimizers.Adam(lr=0.01))
    evaluation_0 = Evaluation(name='evaluation_0', eval_type="binary")

    pipeline.add_component(reader_0)
    pipeline.add_component(dataio_0, data=Data(data=reader_0.output.data))
    pipeline.add_component(hetero_ftl_0, data=Data(train_data=dataio_0.output.data))
    pipeline.add_component(evaluation_0, data=Data(data=hetero_ftl_0.output.data))

    pipeline.compile()

    pipeline.fit(backend=backend, work_mode=work_mode)

    # predict
    # deploy required components
    pipeline.deploy_component([dataio_0, hetero_ftl_0])

    predict_pipeline = PipeLine()
    # add data reader onto predict pipeline
    predict_pipeline.add_component(reader_0)
    # add selected components from train pipeline onto predict pipeline
    # specify data source
    predict_pipeline.add_component(pipeline,
                                   data=Data(predict_input={pipeline.dataio_0.input.data: reader_0.output.data}))
    # run predict model
    predict_pipeline.predict(backend=backend, work_mode=work_mode)
Exemplo n.º 21
0
def main(config="../../config.yaml", namespace=""):
    # obtain config
    if isinstance(config, str):
        config = load_job_config(config)
    parties = config.parties
    guest = parties.guest[0]
    host = parties.host[0]
    backend = config.backend
    work_mode = config.work_mode

    guest_train_data = {
        "name": "breast_homo_guest",
        "namespace": f"experiment{namespace}"
    }
    host_train_data = {
        "name": "breast_homo_host",
        "namespace": f"experiment{namespace}"
    }

    pipeline = PipeLine().set_initiator(role='guest',
                                        party_id=guest).set_roles(guest=guest,
                                                                  host=host)

    reader_0 = Reader(name="reader_0")
    reader_0.get_party_instance(
        role='guest', party_id=guest).component_param(table=guest_train_data)
    reader_0.get_party_instance(
        role='host', party_id=host).component_param(table=host_train_data)

    dataio_0 = DataIO(name="dataio_0")

    dataio_0.get_party_instance(role='guest', party_id=guest).component_param(
        with_label=True,
        output_format="dense",
        label_name="y",
        label_type="int")
    dataio_0.get_party_instance(role='host',
                                party_id=host).component_param(with_label=True)

    homo_data_split_0 = HomoDataSplit(name="homo_data_split_0",
                                      stratified=True,
                                      test_size=0.3,
                                      validate_size=0.2)

    pipeline.add_component(reader_0)
    pipeline.add_component(dataio_0, data=Data(data=reader_0.output.data))
    pipeline.add_component(homo_data_split_0,
                           data=Data(data=dataio_0.output.data))

    pipeline.compile()

    job_parameters = JobParameters(backend=backend, work_mode=work_mode)
    pipeline.fit(job_parameters)

    print(pipeline.get_component("homo_data_split_0").get_summary())
def main(config="../../config.yaml", namespace=""):
    # obtain config
    if isinstance(config, str):
        config = load_job_config(config)
    backend = config.backend
    work_mode = config.work_mode
    pipeline = make_normal_dsl(config, namespace)
    job_parameters = JobParameters(backend=backend, work_mode=work_mode)
    pipeline.fit(job_parameters)
    common_tools.prettify(pipeline.get_component("hetero_feature_selection_0").get_summary())
    common_tools.prettify(pipeline.get_component("evaluation_0").get_summary())
Exemplo n.º 23
0
def main(config="../../config.yaml", namespace=""):
    # obtain config
    if isinstance(config, str):
        config = load_job_config(config)
    parties = config.parties
    guest = parties.guest[0]
    backend = config.backend
    work_mode = config.work_mode

    guest_train_data = {
        "name": "breast_hetero_guest",
        "namespace": f"experiment{namespace}"
    }

    # initialize pipeline
    pipeline = PipeLine()
    # set job initiator
    pipeline.set_initiator(role="guest", party_id=guest).set_roles(guest=guest)

    # define Reader components to read in data
    reader_0 = Reader(name="reader_0")
    # configure Reader for guest
    reader_0.get_party_instance(
        role="guest", party_id=guest).component_param(table=guest_train_data)

    # define ColumnExpand components
    column_expand_0 = ColumnExpand(name="column_expand_0")
    column_expand_0.get_party_instance(
        role="guest", party_id=guest).component_param(
            need_run=True,
            method="manual",
            append_header=["x_0", "x_1", "x_2", "x_3"],
            fill_value=[0, 0.2, 0.5, 1])
    # define DataIO components
    dataio_0 = DataIO(name="dataio_0")  # start component numbering at 0
    # get DataIO party instance of guest
    dataio_0_guest_party_instance = dataio_0.get_party_instance(role="guest",
                                                                party_id=guest)
    # configure DataIO for guest
    dataio_0_guest_party_instance.component_param(with_label=True,
                                                  output_format="dense")

    # add components to pipeline, in order of task execution
    pipeline.add_component(reader_0)
    pipeline.add_component(column_expand_0,
                           data=Data(data=reader_0.output.data))
    pipeline.add_component(dataio_0,
                           data=Data(data=column_expand_0.output.data))
    # compile pipeline once finished adding modules, this step will form conf and dsl files for running job
    pipeline.compile()

    # fit model
    job_parameters = JobParameters(backend=backend, work_mode=work_mode)
    pipeline.fit(job_parameters)
def main(config="../../config.yaml", namespace=""):
    # obtain config
    if isinstance(config, str):
        config = load_job_config(config)
    parties = config.parties
    guest = parties.guest[0]
    hosts = parties.host
    arbiter = parties.arbiter[0]

    guest_train_data = {"name": "motor_hetero_guest", "namespace": f"experiment{namespace}"}
    host_train_data = [{"name": "motor_hetero_host", "namespace": f"experiment{namespace}"},
                       {"name": "motor_hetero_host", "namespace": f"experiment{namespace}"}]

    pipeline = PipeLine().set_initiator(
        role='guest', party_id=guest).set_roles(
        guest=guest, host=hosts, arbiter=arbiter)

    reader_0 = Reader(name="reader_0")
    reader_0.get_party_instance(role='guest', party_id=guest).component_param(table=guest_train_data)
    reader_0.get_party_instance(role='host', party_id=hosts[0]).component_param(table=host_train_data[0])
    reader_0.get_party_instance(role='host', party_id=hosts[1]).component_param(table=host_train_data[1])

    data_transform_0 = DataTransform(name="data_transform_0")

    data_transform_0.get_party_instance(
        role='guest',
        party_id=guest).component_param(
        with_label=True,
        label_name="motor_speed",
        label_type="float",
        output_format="dense")
    data_transform_0.get_party_instance(role='host', party_id=hosts).component_param(with_label=False)

    intersection_0 = Intersection(name="intersection_0")
    hetero_linr_0 = HeteroLinR(name="hetero_linr_0", penalty="None", optimizer="sgd", tol=0.001,
                               alpha=0.01, max_iter=20, early_stop="weight_diff", batch_size=-1,
                               learning_rate=0.15, decay=0.0, decay_sqrt=False,
                               init_param={"init_method": "zeros"},
                               cv_param={"n_splits": 5,
                                         "shuffle": False,
                                         "random_seed": 42,
                                         "need_cv": True
                                         }
                               )

    pipeline.add_component(reader_0)
    pipeline.add_component(data_transform_0, data=Data(data=reader_0.output.data))
    pipeline.add_component(intersection_0, data=Data(data=data_transform_0.output.data))
    pipeline.add_component(hetero_linr_0, data=Data(train_data=intersection_0.output.data))

    pipeline.compile()

    pipeline.fit()
def main(config="../../config.yaml", namespace=""):
    # obtain config
    if isinstance(config, str):
        config = load_job_config(config)
    parties = config.parties
    guest = parties.guest[0]
    host = parties.host[0]
    backend = config.backend
    work_mode = config.work_mode

    guest_train_data = {
        "name": "ionosphere_scale_hetero_guest",
        "namespace": f"experiment{namespace}"
    }
    host_train_data = {
        "name": "ionosphere_scale_hetero_host",
        "namespace": f"experiment{namespace}"
    }

    pipeline = PipeLine().set_initiator(role='guest',
                                        party_id=guest).set_roles(guest=guest,
                                                                  host=host)

    reader_0 = Reader(name="reader_0")
    reader_0.get_party_instance(
        role='guest', party_id=guest).component_param(table=guest_train_data)
    reader_0.get_party_instance(
        role='host', party_id=host).component_param(table=host_train_data)

    data_transform_0 = DataTransform(name="data_transform_0")
    data_transform_0.get_party_instance(role='guest',
                                        party_id=guest).component_param(
                                            with_label=True,
                                            label_name="LABEL",
                                            missing_fill=True,
                                            missing_fill_method="mean",
                                            outlier_replace=True)
    data_transform_0.get_party_instance(role='host',
                                        party_id=host).component_param(
                                            with_label=False,
                                            missing_fill=True,
                                            missing_fill_method="designated",
                                            default_value=0,
                                            outlier_replace=False)

    pipeline.add_component(reader_0)
    pipeline.add_component(data_transform_0,
                           data=Data(data=reader_0.output.data))

    pipeline.compile()

    job_parameters = JobParameters(backend=backend, work_mode=work_mode)
    pipeline.fit(job_parameters)
Exemplo n.º 26
0
def main(config="../../config.yaml", namespace=""):
    # obtain config
    if isinstance(config, str):
        config = load_job_config(config)
    parties = config.parties
    guest = parties.guest[0]

    guest_train_data = {
        "name": "breast_hetero_guest",
        "namespace": f"experiment{namespace}"
    }

    pipeline = PipeLine().set_initiator(role='guest',
                                        party_id=guest).set_roles(guest=guest)

    reader_0 = Reader(name="reader_0")
    reader_0.get_party_instance(
        role='guest', party_id=guest).component_param(table=guest_train_data)

    reader_1 = Reader(name="reader_1")
    reader_1.get_party_instance(
        role='guest', party_id=guest).component_param(table=guest_train_data)

    data_transform_0 = DataTransform(name="data_transform_0",
                                     with_label=True,
                                     output_format="dense",
                                     label_name="y",
                                     missing_fill=False,
                                     outlier_replace=False)
    data_transform_1 = DataTransform(name="data_transform_1",
                                     with_label=True,
                                     output_format="dense",
                                     label_name="y",
                                     missing_fill=False,
                                     outlier_replace=False)

    union_0 = Union(name="union_0", allow_missing=False, need_run=True)

    pipeline.add_component(reader_0)
    pipeline.add_component(reader_1)
    pipeline.add_component(data_transform_0,
                           data=Data(data=reader_0.output.data))
    pipeline.add_component(data_transform_1,
                           data=Data(data=reader_1.output.data),
                           model=Model(data_transform_0.output.model))
    pipeline.add_component(
        union_0,
        data=Data(
            data=[data_transform_0.output.data, data_transform_1.output.data]))
    pipeline.compile()

    pipeline.fit()
Exemplo n.º 27
0
def main(config="../../config.yaml", namespace=""):
    # obtain config
    if isinstance(config, str):
        config = load_job_config(config)
    parties = config.parties
    guest = parties.guest[0]
    hosts = parties.host
    arbiter = parties.arbiter[0]
    backend = config.backend
    work_mode = config.work_mode

    guest_train_data = {"name": "breast_hetero_guest", "namespace": f"experiment{namespace}"}
    host_train_data = {"name": "breast_hetero_host", "namespace": f"experiment{namespace}"}

    pipeline = PipeLine().set_initiator(role='guest', party_id=guest).set_roles(guest=guest, host=hosts, arbiter=arbiter)

    reader_0 = Reader(name="reader_0")
    reader_0.get_party_instance(role='guest', party_id=guest).component_param(table=guest_train_data)
    reader_0.get_party_instance(role='host', party_id=hosts).component_param(table=host_train_data)

    dataio_0 = DataIO(name="dataio_0")
    dataio_0.get_party_instance(role='guest', party_id=guest).component_param(with_label=True, label_name="y",
                                                                             label_type="int", output_format="dense")
    dataio_0.get_party_instance(role='host', party_id=hosts).component_param(with_label=False)

    intersection_0 = Intersection(name="intersection_0")

    sample_weight_0 = SampleWeight(name="sample_weight_0")
    sample_weight_0.get_party_instance(role='guest', party_id=guest).component_param(need_run=True,
                                                                                     class_weight="balanced")
    sample_weight_0.get_party_instance(role='host', party_id=hosts).component_param(need_run=False)

    hetero_lr_0 = HeteroLR(name="hetero_lr_0", optimizer="nesterov_momentum_sgd", tol=0.001,
                               alpha=0.01, max_iter=20, early_stop="weight_diff", batch_size=-1,
                               learning_rate=0.15,
                               init_param={"init_method": "zeros"})

    evaluation_0 = Evaluation(name="evaluation_0", eval_type="binary", pos_label=1)
    # evaluation_0.get_party_instance(role='host', party_id=host).component_param(need_run=False)

    pipeline.add_component(reader_0)
    pipeline.add_component(dataio_0, data=Data(data=reader_0.output.data))
    pipeline.add_component(intersection_0, data=Data(data=dataio_0.output.data))
    pipeline.add_component(sample_weight_0, data=Data(data=intersection_0.output.data))
    pipeline.add_component(hetero_lr_0, data=Data(train_data=sample_weight_0.output.data))
    pipeline.add_component(evaluation_0, data=Data(data=hetero_lr_0.output.data))

    pipeline.compile()

    job_parameters = JobParameters(backend=backend, work_mode=work_mode)
    pipeline.fit(job_parameters)
Exemplo n.º 28
0
def main(config="../../config.yaml", namespace=""):
    # obtain config
    if isinstance(config, str):
        config = load_job_config(config)
    backend = config.backend
    work_mode = config.work_mode

    fast_sbt_param = {
        "name": "fast_secureboost_0",
        "task_type": "classification",
        "learning_rate": 0.1,
        "num_trees": 4,
        "subsample_feature_rate": 1,
        "n_iter_no_change": False,
        "work_mode": "layered",
        "guest_depth": 2,
        "host_depth": 3,
        "tol": 0.0001,
        "bin_num": 50,
        "metrics": ["Recall", "ks", "auc", "roc"],
        "objective_param": {
            "objective": "cross_entropy"
        },
        "encrypt_param": {
            "method": "iterativeAffine"
        },
        "predict_param": {
            "threshold": 0.5
        },
        "validation_freqs": 1
    }

    selection_param = {
        "name": "hetero_feature_selection_0",
        "select_col_indexes": -1,
        "select_names": [],
        "filter_methods": ["hetero_fast_sbt_filter"],
        "sbt_param": {
            "metrics": "feature_importance",
            "filter_type": "threshold",
            "take_high": True,
            "threshold": 0.03
        }
    }
    pipeline = common_tools.make_normal_dsl(config,
                                            namespace,
                                            selection_param,
                                            fast_sbt_param=fast_sbt_param)
    pipeline.fit(backend=backend, work_mode=work_mode)
    common_tools.prettify(
        pipeline.get_component("hetero_feature_selection_0").get_summary())
def main(config="../../config.yaml", namespace=""):
    # obtain config
    if isinstance(config, str):
        config = load_job_config(config)
    parties = config.parties
    guest = parties.guest[0]
    hosts = parties.host

    guest_train_data = {"name": "breast_homo_test", "namespace": f"experiment_sid{namespace}"}
    host_train_data = {"name": "breast_homo_test", "namespace": f"experiment_sid{namespace}"}

    # initialize pipeline
    pipeline = PipeLine()
    # set job initiator
    pipeline.set_initiator(role="guest", party_id=guest)
    # set participants information
    pipeline.set_roles(guest=guest, host=hosts)

    # define Reader components to read in data
    reader_0 = Reader(name="reader_0")
    # configure Reader for guest
    reader_0.get_party_instance(role="guest", party_id=guest).component_param(table=guest_train_data)
    # configure Reader for host
    reader_0.get_party_instance(role="host", party_id=hosts).component_param(table=host_train_data)

    data_transform_0 = DataTransform(name="data_transform_0", with_match_id=True)
    # get and configure DataTransform party instance of guest
    data_transform_0.get_party_instance(
        role="guest", party_id=guest).component_param(
        with_label=False, output_format="dense")
    # get and configure DataTransform party instance of host
    data_transform_0.get_party_instance(role="host", party_id=hosts).component_param(with_label=False)

    # define FeldmanVerifiableSum components
    feldmanverifiablesum_0 = FeldmanVerifiableSum(name="feldmanverifiablesum_0")

    feldmanverifiablesum_0.get_party_instance(role="guest", party_id=guest).component_param(sum_cols=[1, 2, 3], q_n=6)

    feldmanverifiablesum_0.get_party_instance(role="host", party_id=hosts).component_param(sum_cols=[1, 2, 3], q_n=6)

    # add components to pipeline, in order of task execution.
    pipeline.add_component(reader_0)
    pipeline.add_component(data_transform_0, data=Data(data=reader_0.output.data))
    pipeline.add_component(feldmanverifiablesum_0, data=Data(data=data_transform_0.output.data))

    # compile pipeline once finished adding modules, this step will form conf and dsl files for running job
    pipeline.compile()

    # fit model
    pipeline.fit()
def main(config="../../config.yaml", namespace=""):
    # obtain config
    if isinstance(config, str):
        config = load_job_config(config)

    lr_param = {
        "name": "hetero_lr_0",
        "penalty": "L2",
        "optimizer": "rmsprop",
        "tol": 0.0001,
        "alpha": 0.01,
        "max_iter": 30,
        "early_stop": "diff",
        "batch_size": 320,
        "batch_strategy": "random",
        "learning_rate": 0.15,
        "init_param": {
            "init_method": "zeros"
        },
        "sqn_param": {
            "update_interval_L": 3,
            "memory_M": 5,
            "sample_size": 5000,
            "random_seed": None
        },
        "cv_param": {
            "n_splits": 5,
            "shuffle": False,
            "random_seed": 103,
            "need_cv": False
        },
        "callback_param": {
            "callbacks": ["ModelCheckpoint"],
            "save_freq": "epoch"
        }
    }

    pipeline = common_tools.make_normal_dsl(config, namespace, lr_param)
    # dsl_json = predict_pipeline.get_predict_dsl()
    # conf_json = predict_pipeline.get_predict_conf()
    # import json
    # json.dump(dsl_json, open('./hetero-lr-normal-predict-dsl.json', 'w'), indent=4)
    # json.dump(conf_json, open('./hetero-lr-normal-predict-conf.json', 'w'), indent=4)

    # fit model
    pipeline.fit()
    # query component summary
    common_tools.prettify(pipeline.get_component("hetero_lr_0").get_summary())
    common_tools.prettify(pipeline.get_component("evaluation_0").get_summary())