Exemplo n.º 1
0
def get_batch(BS, img1_list, img2_list, flow_list, HEIGHT, WIDTH, FLO_MAX):
    N = len(img2_list)
    I1 = np.zeros((BS, HEIGHT, WIDTH, 3), dtype=np.float32)
    I2 = np.zeros((BS, HEIGHT, WIDTH, 3), dtype=np.float32)
    F = np.zeros((BS, HEIGHT, WIDTH, 2), dtype=np.float32)
    E = np.zeros((BS, HEIGHT, WIDTH, 1), dtype=np.float32)
    good_ids = []
    for i in range(BS):
        try:
            idx = randint(0, N - 1)
            img1 = io.imread(img1_list[idx]).astype(np.float32) / 255
            img2 = io.imread(img2_list[idx]).astype(np.float32) / 255
            edge = io.imread(img2_list[idx]).astype(np.float32) / 255
            flow = (readFlow(flow_list[idx]).astype(np.float32))
            I1[i][:][:][:] = img1
            I2[i][:][:][:] = img2
            F[i][:][:][:] = flow
            E[i][:][:][0] = edge
            good_ids.append(True)
        except:
            print('Some images were not read')
            good_ids.append(False)
    I1 = I1[good_ids, :, :, :]
    I2 = I2[good_ids, :, :, :]
    F = F[good_ids, :, :, :]
    E = E[good_ids, :, :, :]
    return I1, I2, F, E
Exemplo n.º 2
0
def get_batch_jitter(batch_size, img1_list, img2_list, edge_list, flow_list,
                     height, width):
    n_files = len(img1_list)
    imgs1 = np.zeros((batch_size, height, width, 3), dtype=np.float32)
    imgs2 = np.zeros((batch_size, height, width, 3), dtype=np.float32)
    flows = np.zeros((batch_size, height, width, 2), dtype=np.float32)
    edges = np.zeros((batch_size, height, width, 1), dtype=np.float32)

    good_ids = []

    for i in range(batch_size):
        try:
            idx = randint(0, n_files - 1)
            img1 = io.imread(img1_list[idx]).astype(np.float32) / 255
            img2 = io.imread(img2_list[idx]).astype(np.float32) / 255
            flow = (readFlow(flow_list[idx]).astype(np.float32))
            edge = np.expand_dims(
                io.imread(edge_list[idx])[:, :, 1].astype(np.float32) / 255,
                axis=2)
            imgs1[i][:][:][:] = img1
            imgs2[i][:][:][:] = img2
            flows[i][:][:][:] = flow
            edges[i][:][:][:] = edge
            good_ids.append(True)
        except:
            good_ids.append(False)
    imgs1 = imgs1[good_ids][:][:][:]
    imgs2 = imgs2[good_ids][:][:][:]
    flows = flows[good_ids][:][:][:]
    edges = edges[good_ids][:][:][:]
    # print(good_ids)
    # apply horizontal flipping
    if toss():
        imgs1 = np.flip(imgs1, axis=2)
        imgs2 = np.flip(imgs2, axis=2)
        edges = np.flip(edges, axis=2)
        flows = np.flip(flows, axis=2)
        flows[:, :, :, 0] = -flows[:, :, :, 0]

    # apply vertical flipping
    if toss():
        imgs1 = np.flip(imgs1, axis=1)
        imgs2 = np.flip(imgs2, axis=1)
        edges = np.flip(edges, axis=1)
        flows = np.flip(flows, axis=1)
        flows[:, :, :, 1] = -flows[:, :, :, 1]

    return imgs1, imgs2, edges, flows
Exemplo n.º 3
0
def get_batch(batch_size, img1_list, img2_list, edge_list, miss_list,
              flow_list, height, width):
    n_files = len(img2_list)
    imgs1 = np.zeros((batch_size, height, width, 3), dtype=np.float32)
    imgs2 = np.zeros((batch_size, height, width, 3), dtype=np.float32)
    flows = np.zeros((batch_size, height, width, 2), dtype=np.float32)
    edges = np.zeros((batch_size, height, width, 1), dtype=np.float32)
    misses = np.zeros((batch_size, height, width, 1), dtype=np.float32)

    good_ids = []

    for i in range(batch_size):
        try:
            idx = randint(0, n_files - 1)
            img1 = io.imread(img1_list[idx]).astype(np.float32) / 255
            img2 = io.imread(img2_list[idx]).astype(np.float32) / 255
            flow = (readFlow(flow_list[idx]).astype(np.float32))
            edge = np.expand_dims(
                io.imread(edge_list[idx])[:, :, 1].astype(np.float32) / 255,
                axis=2)
            miss = np.expand_dims(
                io.imread(miss_list[idx])[:, :, 1].astype(np.float32) / 255,
                axis=2)
            imgs1[i][:][:][:] = img1
            imgs2[i][:][:][:] = img2
            flows[i][:][:][:] = flow
            misses[i][:][:][:] = miss
            edges[i][:][:][:] = edge
            good_ids.append(True)
        except:
            good_ids.append(False)
    imgs1 = imgs1[good_ids][:][:][:]
    imgs2 = imgs2[good_ids][:][:][:]
    flows = flows[good_ids][:][:][:]
    edges = edges[good_ids][:][:][:]
    misses = misses[good_ids][:][:][:]
    # print(good_ids)
    return imgs1, imgs2, edges, misses, flows
Exemplo n.º 4
0
def get_batch_jitter_scale(batch_size,
                           img1_list,
                           img2_list,
                           edge_list,
                           miss_list,
                           flow_list,
                           height,
                           width,
                           scale=1):
    start_time = time.time()
    n_files = len(img1_list)
    imgs1 = np.zeros((batch_size, height, width, 3), dtype=np.float32)
    imgs2 = np.zeros((batch_size, height, width, 3), dtype=np.float32)
    flows = np.zeros((batch_size, height, width, 2), dtype=np.float32)
    edges = np.zeros((batch_size, height, width, 1), dtype=np.float32)
    misses = np.zeros((batch_size, height, width, 1), dtype=np.float32)

    temp_f = np.zeros((height, width, 2), dtype=np.float32)

    good_ids = []

    for i in range(batch_size):

        try:
            idx = randint(0, n_files - 1)
            img1 = io.imread(img1_list[idx]).astype(np.float32) / 255
            img2 = io.imread(img2_list[idx]).astype(np.float32) / 255
            flow = readFlow(flow_list[idx]).astype(np.float32)
            edge = io.imread(edge_list[idx]).astype(np.float32) / 255
            miss = io.imread(miss_list[idx]).astype(np.float32) / 255
            jump = int(1 / scale)
            if scale < 1:
                img1 = img1[::jump, ::jump, :]
                img2 = img2[::jump, ::jump, :]
                edge = edge[::jump, ::jump]
                miss = miss[::jump, ::jump]
                temp_f = flow[::jump, ::jump, :] * scale
            else:
                temp_f = flow

            edge = np.expand_dims(edge, axis=2)
            miss = np.expand_dims(miss, axis=2)
            imgs1[i][:][:][:] = img1
            imgs2[i][:][:][:] = img2
            flows[i][:][:][:] = temp_f
            edges[i][:][:][:] = edge
            misses[i][:][:][:] = miss
            good_ids.append(True)
        except:
            good_ids.append(False)
    imgs1 = imgs1[good_ids][:][:][:]
    imgs2 = imgs2[good_ids][:][:][:]
    flows = flows[good_ids][:][:][:]
    edges = edges[good_ids][:][:][:]
    misses = misses[good_ids][:][:][:]

    # print(good_ids)
    # apply horizontal flipping
    if toss():
        imgs1 = np.flip(imgs1, axis=2)
        imgs2 = np.flip(imgs2, axis=2)
        edges = np.flip(edges, axis=2)
        misses = np.flip(misses, axis=2)
        flows = np.flip(flows, axis=2)
        flows[:, :, :, 0] = -flows[:, :, :, 0]

    # apply vertical flipping
    if toss():
        imgs1 = np.flip(imgs1, axis=1)
        imgs2 = np.flip(imgs2, axis=1)
        edges = np.flip(edges, axis=1)
        misses = np.flip(misses, axis=1)
        flows = np.flip(flows, axis=1)
        flows[:, :, :, 1] = -flows[:, :, :, 1]
    elapsed_time = time.time() - start_time
    # print('time elapse in reading batch is', elapsed_time)
    return imgs1, imgs2, edges, misses, flows
Exemplo n.º 5
0
learning_rate = tf.placeholder(dtype=tf.float32, shape=[])
model_path = './models/fn_sup'
net = FlowNetS(HEIGHT, WIDTH)
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(net.loss)
init = tf.global_variables_initializer()
sess = tf.InteractiveSession()
saver = tf.train.Saver()
# sess.run(init)

# saver = tf.train.import_meta_graph(model_path + '.meta')
saver.restore(sess, model_path)


test_dir = './middlebury_data/Grove3'
img1 = read_img(test_dir + '/' + 'frame10.png')[0:HEIGHT, 0:WIDTH, :]
img2 = read_img(test_dir + '/' + 'frame11.png')[0:HEIGHT, 0:WIDTH, :]
flow_gt = readFlow(test_dir + '/' + 'flow10.flo')[0:HEIGHT, 0:WIDTH, :]
print('gt flow shape', flow_gt.shape)

flow_eval = np.squeeze(net.flow2.eval(feed_dict={net.inp1: np.expand_dims(img1, 0),
                                                 net.inp2: np.expand_dims(img2, 0)}))
print('eval flow shape', flow_eval.shape)
img_vis = np.hstack((img1, img2))
flow_vis = np.hstack((imresize(flow2hsv(flow_gt), 1./4), flow2hsv(-flow_eval)))
plt.imshow(img_vis)
plt.pause(2)
plt.imshow(flow_vis)
plt.pause(2)