def quiver(self,**kwargs): """ graphics.quiver() as a property """ graphics.quiver(self._obj,**kwargs)
def streamplot(self, **kwargs): """ graphics.quiver(streamlines=True) """ graphics.quiver(self._obj, streamlines=True,**kwargs)
def main(): data_selectbox = st.sidebar.selectbox('Which dataset?', ('Demo', 'Jet', 'Canopy')) streamlines = st.sidebar.checkbox('Streamlines?', value=False) colorbar = st.sidebar.checkbox('Color bar?', value=False) average = st.sidebar.checkbox('Average?', value=False) st.subheader('Create data set') """ `data = io.create_sample_dataset()` """ st.subheader('Present data as Pandas DataFrame') """ `data.to_dataframe()` """ data = load_data(data_selectbox) st.write(data.to_dataframe()) st.subheader('Plot some vector fields using matpotlib quiver') """ ` graphics.quiver(data.isel(t=0)` """ # progress_bar = st.progress(0) # status_text = st.empty() # chart = st.line_chart(np.random.randn(10, 2)) # for i in range(len(data)): # # Update progress bar. # progress_bar.progress(i) # new_rows = np.random.randn(10, 2) # # Update status text. # status_text.text( # 'The latest random number is: %s' % new_rows[-1, 1]) # # Append data to the chart. # # chart.add_rows(new_rows) # graphics.quiver(data.isel(t=i)) # st.pyplot() # # Pretend we're doing some computation that takes time. # time.sleep(1) # status_text.text('Done!') # st.balloons() # fig, ax = plt.subplots() if average: fig, ax = graphics.quiver(data.piv.average, streamlines=streamlines, colbar=colorbar, colbar_orient='vertical') else: t = st.selectbox('Frame number', range(len(data.t))) fig, ax = graphics.quiver(data.isel(t=t), streamlines=streamlines, colbar=colorbar, colbar_orient='vertical') the_plot = st.pyplot(plt)
def quiver(self, **kwargs): """ graphics.quiver() as a property """ fig, ax = graphics.quiver(self._obj, **kwargs) return fig, ax
def test_quiver(): graphics.quiver(_d)
tmp=r.values #plt.quiver(x,y,u,v) #print(tmp) x,y,u,v = tmp[:,0],tmp[:,1],tmp[:,2],tmp[:,3] #(each col as a list) #print(x) rows = np.unique(y).shape[0] cols = np.unique(x).shape[0] x1 = x.reshape(rows,cols) y1 = y.reshape(rows,cols) u1 = u.reshape(rows,cols) v1 = v.reshape(rows,cols) d = io.from_arrays(x1,y1,u1,v1,np.ones_like(u1)) fig,axes=plt.subplots(figsize=(28,20)) graphics.quiver(d.isel(t=0),nthArr=3, arrScale=10) #arrScale scales arrows d.piv.vec2scal(property='curl') fig, ax = plt.subplots(figsize=(56,40)) graphics.contour_plot(d) from scipy.ndimage.filters import gaussian_filter d.piv.vorticity() tmp2 = gaussian_filter(d.isel(t=0)['w'],0.7) fig, ax = plt.subplots(figsize=(8,6)) levels = np.linspace(np.min(tmp),np.max(tmp), 10) #c = ax.contourf(r.x,r.y,tmp, levels=levels, #cmap = plt.get_cmap('RdYlBu'))
def test_quiver(): graphics.quiver(_d) _d.piv.quiver()