Exemplo n.º 1
0
def discriminator(image_batch, unused_conditioning=None):
    """A thin wrapper around the Pix2Pix discriminator to conform to TFGAN API."""
    with tf.contrib.framework.arg_scope(pix2pix.pix2pix_arg_scope()):
        logits_4d, _ = pix2pix.pix2pix_discriminator(
            image_batch, num_filters=[64, 128, 256, 512])
        logits_4d.shape.assert_has_rank(4)
    # Output of logits is 4D. Reshape to 2D, for TFGAN.
    logits_2d = tf.contrib.layers.flatten(logits_4d)

    return logits_2d
Exemplo n.º 2
0
    def test_four_layers_negative_padding(self):
        batch_size = 2
        input_size = 256

        images = tf.ones((batch_size, input_size, input_size, 3))
        with tf.contrib.framework.arg_scope(pix2pix.pix2pix_arg_scope()):
            with self.assertRaises(ValueError):
                pix2pix.pix2pix_discriminator(images,
                                              num_filters=[64, 128, 256, 512],
                                              padding=-1)
Exemplo n.º 3
0
    def test_nonsquare_inputs_raise_exception(self):
        batch_size = 2
        height, width = 240, 320
        num_outputs = 4

        images = tf.ones((batch_size, height, width, 3))

        with self.assertRaises(ValueError):
            with tf.contrib.framework.arg_scope(pix2pix.pix2pix_arg_scope()):
                pix2pix.pix2pix_generator(images,
                                          num_outputs,
                                          upsample_method='nn_upsample_conv')
Exemplo n.º 4
0
    def test_output_size_conv2d_transpose(self):
        batch_size = 2
        height, width = 256, 256
        num_outputs = 4

        images = tf.ones((batch_size, height, width, 3))
        with tf.contrib.framework.arg_scope(pix2pix.pix2pix_arg_scope()):
            logits, _ = pix2pix.pix2pix_generator(
                images,
                num_outputs,
                blocks=self._reduced_default_blocks(),
                upsample_method='conv2d_transpose')

        with self.test_session() as session:
            session.run(tf.global_variables_initializer())
            np_outputs = session.run(logits)
            self.assertListEqual([batch_size, height, width, num_outputs],
                                 list(np_outputs.shape))
Exemplo n.º 5
0
    def test_four_layers_no_padding(self):
        batch_size = 2
        input_size = 256

        output_size = self._layer_output_size(input_size, pad=0)
        output_size = self._layer_output_size(output_size, pad=0)
        output_size = self._layer_output_size(output_size, pad=0)
        output_size = self._layer_output_size(output_size, stride=1, pad=0)
        output_size = self._layer_output_size(output_size, stride=1, pad=0)

        images = tf.ones((batch_size, input_size, input_size, 3))
        with tf.contrib.framework.arg_scope(pix2pix.pix2pix_arg_scope()):
            logits, end_points = pix2pix.pix2pix_discriminator(
                images, num_filters=[64, 128, 256, 512], padding=0)
        self.assertListEqual([batch_size, output_size, output_size, 1],
                             logits.shape.as_list())
        self.assertListEqual([batch_size, output_size, output_size, 1],
                             end_points['predictions'].shape.as_list())
Exemplo n.º 6
0
    def test_block_number_dictates_number_of_layers(self):
        batch_size = 2
        height, width = 256, 256
        num_outputs = 4

        images = tf.ones((batch_size, height, width, 3))
        blocks = [
            pix2pix.Block(64, 0.5),
            pix2pix.Block(128, 0),
        ]
        with tf.contrib.framework.arg_scope(pix2pix.pix2pix_arg_scope()):
            _, end_points = pix2pix.pix2pix_generator(images, num_outputs,
                                                      blocks)

        num_encoder_layers = 0
        num_decoder_layers = 0
        for end_point in end_points:
            if end_point.startswith('encoder'):
                num_encoder_layers += 1
            elif end_point.startswith('decoder'):
                num_decoder_layers += 1

        self.assertEqual(num_encoder_layers, len(blocks))
        self.assertEqual(num_decoder_layers, len(blocks))