Exemplo n.º 1
0
        def call_validate():
            experiment = api_pb2.Experiment(name="test", spec=experiment_spec[0])
            request = api_pb2.ValidateAlgorithmSettingsRequest(experiment=experiment)

            validate_algorithm_settings = self.test_server.invoke_unary_unary(
                method_descriptor=(api_pb2.DESCRIPTOR
                    .services_by_name['Suggestion']
                    .methods_by_name['ValidateAlgorithmSettings']),
                invocation_metadata={},
                request=request, timeout=1)

            return validate_algorithm_settings.termination()
Exemplo n.º 2
0
    def test_get_suggestion(self):
        trials = [
            api_pb2.Trial(
                name="test-asfjh",
                spec=api_pb2.TrialSpec(objective=api_pb2.ObjectiveSpec(
                    type=api_pb2.MAXIMIZE,
                    objective_metric_name="metric-2",
                    goal=0.9),
                                       parameter_assignments=api_pb2.TrialSpec.
                                       ParameterAssignments(assignments=[
                                           api_pb2.ParameterAssignment(
                                               name="param-1",
                                               value="2",
                                           ),
                                           api_pb2.ParameterAssignment(
                                               name="param-2",
                                               value="cat1",
                                           ),
                                           api_pb2.ParameterAssignment(
                                               name="param-3",
                                               value="2",
                                           ),
                                           api_pb2.ParameterAssignment(
                                               name="param-4",
                                               value="3.44",
                                           )
                                       ])),
                status=api_pb2.TrialStatus(observation=api_pb2.Observation(
                    metrics=[
                        api_pb2.Metric(name="metric=1", value="435"),
                        api_pb2.Metric(name="metric=2", value="5643"),
                    ]))),
            api_pb2.Trial(
                name="test-234hs",
                spec=api_pb2.TrialSpec(objective=api_pb2.ObjectiveSpec(
                    type=api_pb2.MAXIMIZE,
                    objective_metric_name="metric-2",
                    goal=0.9),
                                       parameter_assignments=api_pb2.TrialSpec.
                                       ParameterAssignments(assignments=[
                                           api_pb2.ParameterAssignment(
                                               name="param-1",
                                               value="3",
                                           ),
                                           api_pb2.ParameterAssignment(
                                               name="param-2",
                                               value="cat2",
                                           ),
                                           api_pb2.ParameterAssignment(
                                               name="param-3",
                                               value="6",
                                           ),
                                           api_pb2.ParameterAssignment(
                                               name="param-4",
                                               value="4.44",
                                           )
                                       ])),
                status=api_pb2.TrialStatus(observation=api_pb2.Observation(
                    metrics=[
                        api_pb2.Metric(name="metric=1", value="123"),
                        api_pb2.Metric(name="metric=2", value="3028"),
                    ])))
        ]
        experiment = api_pb2.Experiment(
            name="test",
            spec=api_pb2.ExperimentSpec(
                algorithm=api_pb2.AlgorithmSpec(
                    algorithm_name="bayesianoptimization",
                    algorithm_setting=[
                        api_pb2.AlgorithmSetting(name="random_state",
                                                 value="10")
                    ],
                ),
                objective=api_pb2.ObjectiveSpec(type=api_pb2.MAXIMIZE,
                                                goal=0.9),
                parameter_specs=api_pb2.ExperimentSpec.
                ParameterSpecs(parameters=[
                    api_pb2.ParameterSpec(
                        name="param-1",
                        parameter_type=api_pb2.INT,
                        feasible_space=api_pb2.FeasibleSpace(
                            max="5", min="1", list=[]),
                    ),
                    api_pb2.ParameterSpec(name="param-2",
                                          parameter_type=api_pb2.CATEGORICAL,
                                          feasible_space=api_pb2.FeasibleSpace(
                                              max=None,
                                              min=None,
                                              list=["cat1", "cat2", "cat3"])),
                    api_pb2.ParameterSpec(
                        name="param-3",
                        parameter_type=api_pb2.DISCRETE,
                        feasible_space=api_pb2.FeasibleSpace(
                            max=None, min=None, list=["3", "2", "6"])),
                    api_pb2.ParameterSpec(name="param-4",
                                          parameter_type=api_pb2.DOUBLE,
                                          feasible_space=api_pb2.FeasibleSpace(
                                              max="5", min="1", list=[]))
                ])))

        request = api_pb2.GetSuggestionsRequest(
            experiment=experiment,
            trials=trials,
            request_number=2,
        )

        get_suggestion = self.test_server.invoke_unary_unary(
            method_descriptor=(
                api_pb2.DESCRIPTOR.services_by_name['Suggestion'].
                methods_by_name['GetSuggestions']),
            invocation_metadata={},
            request=request,
            timeout=1)

        response, metadata, code, details = get_suggestion.termination()
        print(response.parameter_assignments)
        self.assertEqual(code, grpc.StatusCode.OK)
        self.assertEqual(2, len(response.parameter_assignments))
Exemplo n.º 3
0
    def test_get_suggestion(self):
        trials = [
            api_pb2.Trial(
                name="first-trial",
                spec=api_pb2.TrialSpec(
                    objective=api_pb2.ObjectiveSpec(
                        type=api_pb2.MAXIMIZE,
                        objective_metric_name="Validation-Accuracy",
                        goal=0.99),
                    parameter_assignments=api_pb2.TrialSpec.
                    ParameterAssignments(assignments=[
                        api_pb2.ParameterAssignment(
                            name="architecture",
                            value="[[3], [0, 1], [0, 0, 1], [2, 1, 0, 0]]",
                        ),
                        api_pb2.ParameterAssignment(
                            name="nn_config",
                            value="{'num_layers': 4}",
                        ),
                    ])),
                status=api_pb2.TrialStatus(
                    observation=api_pb2.Observation(metrics=[
                        api_pb2.Metric(name="Validation-Accuracy",
                                       value="0.88"),
                    ]),
                    condition=api_pb2.TrialStatus.TrialConditionType.SUCCEEDED,
                )),
            api_pb2.Trial(
                name="second-trial",
                spec=api_pb2.TrialSpec(
                    objective=api_pb2.ObjectiveSpec(
                        type=api_pb2.MAXIMIZE,
                        objective_metric_name="Validation-Accuracy",
                        goal=0.99),
                    parameter_assignments=api_pb2.TrialSpec.
                    ParameterAssignments(assignments=[
                        api_pb2.ParameterAssignment(
                            name="architecture",
                            value="[[1], [0, 1], [2, 1, 1], [2, 1, 1, 0]]",
                        ),
                        api_pb2.ParameterAssignment(
                            name="nn_config",
                            value="{'num_layers': 4}",
                        ),
                    ], )),
                status=api_pb2.TrialStatus(
                    observation=api_pb2.Observation(metrics=[
                        api_pb2.Metric(name="Validation-Accuracy",
                                       value="0.84"),
                    ]),
                    condition=api_pb2.TrialStatus.TrialConditionType.SUCCEEDED,
                ))
        ]
        experiment = api_pb2.Experiment(
            name="enas-experiment",
            spec=api_pb2.ExperimentSpec(
                algorithm=api_pb2.AlgorithmSpec(algorithm_name="enas", ),
                objective=api_pb2.ObjectiveSpec(
                    type=api_pb2.MAXIMIZE,
                    goal=0.9,
                    objective_metric_name="Validation-Accuracy"),
                parallel_trial_count=2,
                max_trial_count=10,
                nas_config=api_pb2.NasConfig(
                    graph_config=api_pb2.GraphConfig(num_layers=4,
                                                     input_sizes=[32, 32, 8],
                                                     output_sizes=[10]),
                    operations=api_pb2.NasConfig.Operations(operation=[
                        api_pb2.Operation(
                            operation_type="convolution",
                            parameter_specs=api_pb2.Operation.
                            ParameterSpecs(parameters=[
                                api_pb2.ParameterSpec(
                                    name="filter_size",
                                    parameter_type=api_pb2.CATEGORICAL,
                                    feasible_space=api_pb2.FeasibleSpace(
                                        max=None, min=None, list=["5"])),
                                api_pb2.ParameterSpec(
                                    name="num_filter",
                                    parameter_type=api_pb2.CATEGORICAL,
                                    feasible_space=api_pb2.FeasibleSpace(
                                        max=None, min=None, list=["128"])),
                                api_pb2.ParameterSpec(
                                    name="stride",
                                    parameter_type=api_pb2.CATEGORICAL,
                                    feasible_space=api_pb2.FeasibleSpace(
                                        max=None, min=None, list=["1", "2"])),
                            ])),
                        api_pb2.Operation(
                            operation_type="reduction",
                            parameter_specs=api_pb2.Operation.
                            ParameterSpecs(parameters=[
                                api_pb2.ParameterSpec(
                                    name="reduction_type",
                                    parameter_type=api_pb2.CATEGORICAL,
                                    feasible_space=api_pb2.FeasibleSpace(
                                        max=None,
                                        min=None,
                                        list=["max_pooling"])),
                                api_pb2.ParameterSpec(
                                    name="pool_size",
                                    parameter_type=api_pb2.INT,
                                    feasible_space=api_pb2.FeasibleSpace(
                                        min="2", max="3", step="1", list=[])),
                            ])),
                    ], ))))

        request = api_pb2.GetSuggestionsRequest(
            experiment=experiment,
            trials=trials,
            request_number=2,
        )

        get_suggestion = self.test_server.invoke_unary_unary(
            method_descriptor=(
                api_pb2.DESCRIPTOR.services_by_name['Suggestion'].
                methods_by_name['GetSuggestions']),
            invocation_metadata={},
            request=request,
            timeout=100)

        response, metadata, code, details = get_suggestion.termination()
        print(response.parameter_assignments)
        self.assertEqual(code, grpc.StatusCode.OK)
        self.assertEqual(2, len(response.parameter_assignments))
Exemplo n.º 4
0
    def test_get_suggestion(self):
        experiment = api_pb2.Experiment(
            name="darts-experiment",
            spec=api_pb2.ExperimentSpec(
                algorithm=api_pb2.AlgorithmSpec(
                    algorithm_name="darts",
                    algorithm_setting=[
                        api_pb2.AlgorithmSetting(
                            name="num_epoch",
                            value="10"
                        )
                    ],
                ),
                objective=api_pb2.ObjectiveSpec(
                    type=api_pb2.MAXIMIZE,
                    objective_metric_name="Best-Genotype"
                ),
                parallel_trial_count=1,
                max_trial_count=1,
                nas_config=api_pb2.NasConfig(
                    graph_config=api_pb2.GraphConfig(
                        num_layers=3,
                    ),
                    operations=api_pb2.NasConfig.Operations(
                        operation=[
                            api_pb2.Operation(
                                operation_type="separable_convolution",
                                parameter_specs=api_pb2.Operation.ParameterSpecs(
                                    parameters=[
                                        api_pb2.ParameterSpec(
                                            name="filter_size",
                                            parameter_type=api_pb2.CATEGORICAL,
                                            feasible_space=api_pb2.FeasibleSpace(
                                                max=None, min=None, list=["3", "5"])
                                        ),
                                    ]
                                )
                            ),
                        ],
                    )
                )
            )
        )

        request = api_pb2.GetSuggestionsRequest(
            experiment=experiment,
            request_number=1,
        )

        get_suggestion = self.test_server.invoke_unary_unary(
            method_descriptor=(api_pb2.DESCRIPTOR
                               .services_by_name['Suggestion']
                               .methods_by_name['GetSuggestions']),
            invocation_metadata={},
            request=request, timeout=100)

        response, metadata, code, details = get_suggestion.termination()
        print(response.parameter_assignments)

        self.assertEqual(code, grpc.StatusCode.OK)
        self.assertEqual(1, len(response.parameter_assignments))

        exp_algorithm_settings = {}
        for setting in experiment.spec.algorithm.algorithm_setting:
            exp_algorithm_settings[setting.name] = setting.value

        exp_num_layers = experiment.spec.nas_config.graph_config.num_layers

        exp_search_space = ["separable_convolution_3x3", "separable_convolution_5x5"]
        for pa in response.parameter_assignments[0].assignments:
            if (pa.name == "algorithm-settings"):
                algorithm_settings = pa.value.replace("\'", "\"")
                algorithm_settings = json.loads(algorithm_settings)
                self.assertDictContainsSubset(exp_algorithm_settings, algorithm_settings)
            elif (pa.name == "num-layers"):
                self.assertEqual(exp_num_layers, int(pa.value))
            elif (pa.name == "search-space"):
                search_space = pa.value.replace("\'", "\"")
                search_space = json.loads(search_space)
                self.assertEqual(exp_search_space, search_space)