Exemplo n.º 1
0
def make_submission_2012(fn, predictions):
    # get 2012 ids
    ids = get_pkl("saved_objs/test_2012.pkl")[1:, 0:1]

    # If passed 1d array, change to column
    if (predictions.ndim == 1):
        predictions = predictions.reshape((-1, 1))

    np.savetxt(fn,
               np.concatenate((ids, predictions), axis=1),
               delimiter=',',
               header="id,PES1",
               comments='',
               fmt="%d,%d")
Exemplo n.º 2
0
import os.path
import sys
import getopt
import numpy as np
from pkl_help import get_pkl
from pkl_help import read_make_pkl
import preprocess_help as ph
from sklearn.ensemble import AdaBoostClassifier
from submission import make_submission_2008
from submission import make_submission_2012
from sklearn.tree import DecisionTreeClassifier
from sklearn.neighbors import KNeighborsClassifier

# Get training data
X_train_2008 = get_pkl("saved_objs/X_train_2008.pkl")
Y_train_2008 = get_pkl("saved_objs/Y_train_2008.pkl")
X_test_2008 = get_pkl("saved_objs/X_test_2008.pkl")
X_test_2012 = get_pkl("saved_objs/X_test_2012.pkl")
X_ver = get_pkl("saved_objs/X_ver_2008.pkl")
Y_ver = get_pkl("saved_objs/Y_ver_2008.pkl")


def knearest_modified_predict(model, Y):
    preds = model.predict(Y).reshape(-1, 1)
    # Debug
    print("preds.shape: " + str(preds.shape))
    return preds


def optimize_parameters():
    score = 0.0
Exemplo n.º 3
0
import os.path
import sys
import getopt
import numpy as np
from pkl_help import get_pkl
from pkl_help import read_make_pkl
import preprocess_help as ph
from sklearn.ensemble import VotingClassifier
from submission import make_submission_2008
from submission import make_submission_2012
from round_predictions import round_predictions

X_train_2008 = get_pkl("saved_objs/X_train_2008.pkl")
Y_train_2008 = get_pkl("saved_objs/Y_train_2008.pkl")
X_test_2008 = get_pkl("saved_objs/X_test_2008.pkl")
X_test_2012 = get_pkl("saved_objs/X_test_2012.pkl")
X_ver = get_pkl("saved_objs/X_ver_2008.pkl")
Y_ver = get_pkl("saved_objs/Y_ver_2008.pkl")


def modified_predict(model, Y):
    preds = model.predict(Y).reshape(-1, 1)
    # Debug
    print("preds.shape: " + str(preds.shape))
    return preds


xgb_score = 0.77900
adaboost_ran_forest_score = 0.77838
adaboost_score = 0.77525
lasso_score = 0.77225
Exemplo n.º 4
0
import os.path
import sys
import getopt
import numpy as np
from pkl_help import get_pkl
from pkl_help import read_make_pkl
import preprocess_help as ph
from sklearn.ensemble import VotingClassifier
from submission import make_submission_2008
from submission import make_submission_2012
from sklearn.linear_model import RidgeClassifierCV

# Get training data
X_train_2008 = get_pkl("saved_objs/X_train_2008.pkl")
Y_train_2008 = get_pkl("saved_objs/Y_train_2008.pkl")
X_test_2008 = get_pkl("saved_objs/X_test_2008.pkl")
X_test_2012 = get_pkl("saved_objs/X_test_2012.pkl")
X_ver = get_pkl("saved_objs/X_ver_2008.pkl")
Y_ver = get_pkl("saved_objs/Y_ver_2008.pkl")

# Grab all models we have.
ridge = RidgeClassifierCV().fit(X_train_2008, Y_train_2008)
# lasso = get_pkl("saved_objs/lasso.pkl")
mlp = get_pkl("saved_objs/mlp.pkl")
rand_forest = get_pkl("saved_objs/rand_forest.pkl")
adaboost = get_pkl("saved_objs/adaboost.pkl")
# knn = get_pkl("saved_objs/knearest.pkl")


def voting_modified_predict(model, Y):
    preds = model.predict(Y).reshape(-1, 1)