Exemplo n.º 1
0
def one_planner(config, size):
    print("size=" + str(size))
    agent_pos, grid, idle_goals, jobs = config['params']
    agent_pos = agent_pos[0:size]
    jobs = jobs[0:size]
    if 'milp' in config:
        print("milp")
        from planner.milp.milp import plan_milp
        res_agent_job, res_paths = plan_milp(agent_pos, jobs, grid, config)
    elif 'cobra' in config:
        print("cobra")
        from planner.cobra.funwithsnakes import plan_cobra
        res_agent_job, res_paths = plan_cobra(agent_pos, jobs, grid, config)
    elif 'greedy' in config:
        print("greedy")
        from planner.greedy.greedy import plan_greedy
        res_agent_job, res_paths = plan_greedy(agent_pos, jobs, grid, config)
    else:
        res_agent_job, res_agent_idle, res_paths = plan(
            agent_pos, jobs, [], idle_goals, grid, config
        )
    print(res_agent_job)

    if is_cch():
        fig = plt.figure()
        ax1 = fig.add_subplot(121)
        plot_inputs(ax1, agent_pos, [], jobs, grid)
        ax2 = fig.add_subplot(122, projection='3d')
        plot_results(ax2, [], res_paths, res_agent_job, agent_pos, grid, [], jobs)
        plt.show()

    return get_costs(res_paths, jobs, res_agent_job, True)
Exemplo n.º 2
0
def one_planner(config, size):
    print("size=" + str(size))
    print("Testing with number_nearest=" + str(config['number_nearest']))
    print("Testing with all_collisions=" + str(config['all_collisions']))
    agent_pos, grid, idle_goals, jobs = config['params']
    agent_pos = agent_pos[0:size]
    jobs = jobs[0:size]
    if 'milp' in config:
        print("milp")
        from planner.milp.milp import plan_milp
        res_agent_job, res_paths = plan_milp(agent_pos, jobs, grid, config)
    elif 'cobra' in config:
        print("cobra")
        from planner.cobra.funwithsnakes import plan_cobra
        res_agent_job, res_paths = plan_cobra(agent_pos, jobs, grid, config)
    elif 'greedy' in config:
        print("greedy")
        from planner.greedy.greedy import plan_greedy
        res_agent_job, res_paths = plan_greedy(agent_pos, jobs, grid, config)
    else:
        res_agent_job, res_agent_idle, res_paths = plan(
            agent_pos, jobs, [], idle_goals, grid, config, plot=False
        )
    print(res_agent_job)
    return get_costs(res_paths, jobs, res_agent_job, True)
Exemplo n.º 3
0
def plan_process(pipe, agent_pos, jobs, alloc_jobs, idle_goals, grid, fname):
    try:
        (agent_job,
         agent_idle,
         paths) = plan(agent_pos,
                       jobs,
                       alloc_jobs,
                       idle_goals,
                       grid,
                       False,
                       fname)
    except Exception as e:
        # Could not find a solution, returning just anything .. TODO: something better?
        logging.warning("Could not find a solution, returning just anything \n", str(e))
        agent_job = []
        for a in agent_pos:
            agent_job.append(tuple(a))
        agent_job[0] = (0,)
        agent_idle = ()
        paths = get_paths(comp2condition(agent_pos, jobs, alloc_jobs, idle_goals, grid),
                          comp2state(tuple(agent_job), agent_idle, ()))

    pipe.send((agent_job,
               agent_idle,
               paths))
Exemplo n.º 4
0
def eval(_map, agent_pos, jobs, fname, display=False, finished_blocking=True):
    from planner.milp.milp import plan_milp
    grid = np.repeat(_map[:, ::2, np.newaxis], 100, axis=2)

    config = generate_config()
    config['filename_pathsave'] = fname
    config['finished_agents_block'] = finished_blocking

    print("Problem:")
    print(str(jobs))
    print(str(agent_pos))
    mapstr = get_map_str(grid)
    print(mapstr)

    print("TCBS")
    res_agent_job, res_agent_idle, res_paths = plan(agent_pos,
                                                    jobs, [], [],
                                                    grid,
                                                    config,
                                                    plot=False)
    print("agent_job: " + str(res_agent_job))
    print("paths: " + str(res_paths))
    costs_opt = get_costs(res_paths, jobs, res_agent_job, display)

    print("MINLP")
    minlp_res_agent_job, minlp_res_paths = plan_milp(agent_pos,
                                                     jobs,
                                                     grid,
                                                     config,
                                                     plot=False)
    print("agent_job: " + str(minlp_res_agent_job))
    print("paths: " + str(minlp_res_paths))
    costs_minlp = get_costs(minlp_res_paths, jobs, minlp_res_agent_job,
                            display)

    # MINLP VS PLAN
    if display:
        fig = plt.figure()
        ax1 = fig.add_subplot(121, projection='3d')
        ax1.set_title("Solution Optimal")
        ax2 = fig.add_subplot(122, projection='3d')
        plot_results(ax1, [], res_paths, res_agent_job, agent_pos, grid, [],
                     jobs, "Optimal")
        plot_results(ax2, [], minlp_res_paths, minlp_res_agent_job, agent_pos,
                     grid, [], jobs, "Separate")
        plt.show()

    print("TCBS (results again for comparison)")
    print("agent_job: " + str(res_agent_job))
    print("paths: " + str(res_paths))
    costs_tcbs = get_costs(res_paths, jobs, res_agent_job, display)

    return costs_tcbs, costs_minlp
Exemplo n.º 5
0
config['filename_pathsave'] = 'ff.pkl'

grid = np.repeat(grid[:, ::2, np.newaxis], 100, axis=2)

params = {'legend.fontsize': 'small'}
plt.rcParams.update(params)

fc = plt.figure()
ax1 = fc.add_subplot(131)
fc.set_size_inches(9, 3.5)
plot_inputs(ax1, agent_pos, [], jobs, grid)
fc.savefig('scenario_ff_config.png')

tcbs_agent_job, tcbs_agent_idle, tcbs_paths = plan(agent_pos,
                                                   jobs, [], [],
                                                   grid,
                                                   config,
                                                   plot=False)

minlp_agent_job, minlp_paths = plan_milp(agent_pos, jobs, grid, config)

print((tcbs_paths, tcbs_agent_job, minlp_paths, minlp_agent_job, agent_pos,
       jobs))

f = plt.figure()
f.set_size_inches(8, 4.5)
ani = animate_results(f, [], tcbs_paths, tcbs_agent_job, agent_pos, grid, [],
                      jobs, 'TCBS')
ani.save("scenario_ff_tcbs.mp4", writer="ffmpeg", fps=10)

f = plt.figure()
Exemplo n.º 6
0
        print("test", i)
        agent_pos, grid, idle_goals, jobs = get_data_random(
            map_res=map_res,
            map_fill_perc=5,
            agent_n=agent_n,
            job_n=agent_n,
            idle_goals_n=agent_n)

        try:
            fname = ''
            fname = pre_calc_paths(jobs, idle_goals, grid)

            start_time = datetime.datetime.now()
            res_agent_job, res_agent_idle, res_paths = plan(agent_pos,
                                                            jobs, [],
                                                            idle_goals,
                                                            grid,
                                                            filename=fname)

            d = (datetime.datetime.now() - start_time).total_seconds()
            # print("computation time:", d, "s")
            duration.append(d)
            # print("RESULTS:\nres_agent_job", res_agent_job)
            # print("res_agent_idle", res_agent_idle)
            if res_paths is False:
                logging.warning("NO SOLUTION")
                # planner.plan.plot_inputs(agent_pos, idle_goals, jobs, grid, show=True)
            else:
                pass
                # print("res_paths", res_paths)
Exemplo n.º 7
0
        idle_goals = []
        for i_l in range(len(landmarks)):
            idle_goals.append((landmarks[i_l], (random.randint(0, 20),
                                                random.randint(1, 50) / 10)))
        agent_pos = []
        while len(agent_pos) < n_a:
            a = random.choice(agents)
            if a not in agent_pos:
                agent_pos.append(a)

        start_time = datetime.datetime.now()
        try:
            res_agent_job, res_agent_idle, res_paths = plan(
                agent_pos,
                jobs, [],
                idle_goals,
                grid,
                plot=True,
                filename='map_test.pkl')
        except RuntimeError:
            # logging.warning("NO SOLUTION (exception)")
            plot_inputs(agent_pos,
                        idle_goals,
                        jobs,
                        grid,
                        show=True,
                        subplot=111)

        duration.append((datetime.datetime.now() - start_time).total_seconds())

    results_mean[n_j_s.index(n_j), n_a_s.index(n_a)] = np.mean(duration)