Exemplo n.º 1
0
def test_plantcv_flip():
    img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR))
    device, flipped_img = pcv.flip(img=img,
                                   direction="horizontal",
                                   device=0,
                                   debug=None)
    assert all([i == j] for i, j in zip(np.shape(flipped_img), TEST_COLOR_DIM))
def main():
  # Get options
  args = options()
  
  # Read image
  img, path, filename = pcv.readimage(args.image)
    
  # Pipeline step
  device = 0

  # Convert RGB to HSV and extract the Saturation channel
  device, s = pcv.rgb2gray_hsv(img, 's', device, args.debug)
  
  # Threshold the Saturation image
  device, s_thresh = pcv.binary_threshold(s, 36, 255, 'light', device, args.debug)
  
  # Median Filter
  device, s_mblur = pcv.median_blur(s_thresh, 0, device, args.debug)
  device, s_cnt = pcv.median_blur(s_thresh, 0, device, args.debug)
  
  # Fill small objects
  #device, s_fill = pcv.fill(s_mblur, s_cnt, 0, device, args.debug)
  
  # Convert RGB to LAB and extract the Blue channel
  device, b = pcv.rgb2gray_lab(img, 'b', device, args.debug)
  
  # Threshold the blue image
  device, b_thresh = pcv.binary_threshold(b, 137, 255, 'light', device, args.debug)
  device, b_cnt = pcv.binary_threshold(b, 137, 255, 'light', device, args.debug)
  
  # Fill small objects
  #device, b_fill = pcv.fill(b_thresh, b_cnt, 10, device, args.debug)
  
  # Join the thresholded saturation and blue-yellow images
  device, bs = pcv.logical_and(s_mblur, b_cnt, device, args.debug)
  
  # Apply Mask (for vis images, mask_color=white)
  device, masked = pcv.apply_mask(img, bs, 'white', device, args.debug)
  
  # Convert RGB to LAB and extract the Green-Magenta and Blue-Yellow channels
  device, masked_a = pcv.rgb2gray_lab(masked, 'a', device, args.debug)
  device, masked_b = pcv.rgb2gray_lab(masked, 'b', device, args.debug)
  
  # Threshold the green-magenta and blue images
  device, maskeda_thresh = pcv.binary_threshold(masked_a, 127, 255, 'dark', device, args.debug)
  device, maskedb_thresh = pcv.binary_threshold(masked_b, 128, 255, 'light', device, args.debug)
  
  # Join the thresholded saturation and blue-yellow images (OR)
  device, ab = pcv.logical_or(maskeda_thresh, maskedb_thresh, device, args.debug)
  device, ab_cnt = pcv.logical_or(maskeda_thresh, maskedb_thresh, device, args.debug)
  
  # Fill small noise
  device, ab_fill1 = pcv.fill(ab, ab_cnt, 2, device, args.debug)
  
  # Dilate to join small objects with larger ones
  device, ab_cnt1=pcv.dilate(ab_fill1, 3, 2, device, args.debug)
  device, ab_cnt2=pcv.dilate(ab_fill1, 3, 2, device, args.debug)
  
  # Fill dilated image mask
  device, ab_cnt3=pcv.fill(ab_cnt2,ab_cnt1,150,device,args.debug)
  device, masked2 = pcv.apply_mask(masked, ab_cnt3, 'white', device, args.debug)
  
  # Convert RGB to LAB and extract the Green-Magenta and Blue-Yellow channels
  device, masked2_a = pcv.rgb2gray_lab(masked2, 'a', device, args.debug)
  device, masked2_b = pcv.rgb2gray_lab(masked2, 'b', device, args.debug)
  
  # Threshold the green-magenta and blue images
  device, masked2a_thresh = pcv.binary_threshold(masked2_a, 127, 255, 'dark', device, args.debug)
  device, masked2b_thresh = pcv.binary_threshold(masked2_b, 128, 255, 'light', device, args.debug)
  device, ab_fill = pcv.logical_or(masked2a_thresh, masked2b_thresh, device, args.debug)
  
  # Identify objects
  device, id_objects,obj_hierarchy = pcv.find_objects(masked2, ab_fill, device, args.debug)
  
  # Define ROI
  device, roi1, roi_hierarchy= pcv.define_roi(masked2,'rectangle', device, None, 'default', args.debug,True, 550, 0,-600,-907)
  
  # Decide which objects to keep
  device,roi_objects, hierarchy3, kept_mask, obj_area = pcv.roi_objects(img,'partial',roi1,roi_hierarchy,id_objects,obj_hierarchy,device, args.debug)
  
  # Object combine kept objects
  device, obj, mask = pcv.object_composition(img, roi_objects, hierarchy3, device, args.debug)
  
  ############## VIS Analysis ################
  
  outfile=False
  if args.writeimg==True:
    outfile=args.outdir+"/"+filename
  
  # Find shape properties, output shape image (optional)
  device, shape_header,shape_data,shape_img = pcv.analyze_object(img, args.image, obj, mask, device,args.debug,outfile)
  
  # Shape properties relative to user boundary line (optional)
  device, boundary_header,boundary_data, boundary_img1= pcv.analyze_bound(img, args.image,obj, mask, 935, device,args.debug,outfile)
  
  # Determine color properties: Histograms, Color Slices and Pseudocolored Images, output color analyzed images (optional)
  device, color_header,color_data,color_img= pcv.analyze_color(img, args.image, mask, 256, device, args.debug,None,'v','img',300,outfile)
  
  # Output shape and color data
  result=open(args.result,"a")
  result.write('\t'.join(map(str,shape_header)))
  result.write("\n")
  result.write('\t'.join(map(str,shape_data)))
  result.write("\n")
  for row in shape_img:
      result.write('\t'.join(map(str,row)))
      result.write("\n")
  result.write('\t'.join(map(str,color_header)))
  result.write("\n")
  result.write('\t'.join(map(str,color_data)))
  result.write("\n")
  result.write('\t'.join(map(str,boundary_header)))
  result.write("\n")
  result.write('\t'.join(map(str,boundary_data)))
  result.write("\n")
  result.write('\t'.join(map(str,boundary_img1)))
  result.write("\n")
  for row in color_img:
    result.write('\t'.join(map(str,row)))
    result.write("\n")
  result.close()
    
############################# Use VIS image mask for NIR image#########################
  # Find matching NIR image
  device, nirpath=pcv.get_nir(path,filename,device,args.debug)
  nir, path1, filename1=pcv.readimage(nirpath)
  nir2=cv2.imread(nirpath,-1)
  
  # Flip mask
  device, f_mask= pcv.flip(mask,"vertical",device,args.debug)
  
  # Reize mask
  device, nmask = pcv.resize(f_mask, 0.118069,0.118069, device, args.debug)
  
  # position, and crop mask
  device,newmask=pcv.crop_position_mask(nir,nmask,device,40,3,"top","right",args.debug)
  
  # Identify objects
  device, nir_objects,nir_hierarchy = pcv.find_objects(nir, newmask, device, args.debug)
  
  # Object combine kept objects
  device, nir_combined, nir_combinedmask = pcv.object_composition(nir, nir_objects, nir_hierarchy, device, args.debug)

####################################### Analysis #############################################
  outfile1=False
  if args.writeimg==True:
    outfile1=args.outdir+"/"+filename1

  device,nhist_header, nhist_data,nir_imgs= pcv.analyze_NIR_intensity(nir2, filename1, nir_combinedmask, 256, device,False, args.debug, outfile1)
  device, nshape_header, nshape_data, nir_shape = pcv.analyze_object(nir2, filename1, nir_combined, nir_combinedmask, device, args.debug, outfile1)
  
  coresult=open(args.coresult,"a")
  coresult.write('\t'.join(map(str,nhist_header)))
  coresult.write("\n")
  coresult.write('\t'.join(map(str,nhist_data)))
  coresult.write("\n")
  for row in nir_imgs:
    coresult.write('\t'.join(map(str,row)))
    coresult.write("\n")
    
  coresult.write('\t'.join(map(str,nshape_header)))
  coresult.write("\n")
  coresult.write('\t'.join(map(str,nshape_data)))
  coresult.write("\n")
  coresult.write('\t'.join(map(str,nir_shape)))
  coresult.write("\n")
  coresult.close()
def main():
    # Get options
    args = options()

    # Read image
    img, path, filename = pcv.readimage(args.image)
    brass_mask = cv2.imread(args.roi)

    # Pipeline step
    device = 0

    # Convert RGB to HSV and extract the Saturation channel
    device, s = pcv.rgb2gray_hsv(img, "s", device, args.debug)

    # Threshold the Saturation image
    device, s_thresh = pcv.binary_threshold(s, 49, 255, "light", device, args.debug)

    # Median Filter
    device, s_mblur = pcv.median_blur(s_thresh, 5, device, args.debug)
    device, s_cnt = pcv.median_blur(s_thresh, 5, device, args.debug)

    # Fill small objects
    device, s_fill = pcv.fill(s_mblur, s_cnt, 150, device, args.debug)

    # Convert RGB to LAB and extract the Blue channel
    device, b = pcv.rgb2gray_lab(img, "b", device, args.debug)

    # Threshold the blue image
    device, b_thresh = pcv.binary_threshold(b, 138, 255, "light", device, args.debug)
    device, b_cnt = pcv.binary_threshold(b, 138, 255, "light", device, args.debug)

    # Fill small objects
    device, b_fill = pcv.fill(b_thresh, b_cnt, 150, device, args.debug)

    # Join the thresholded saturation and blue-yellow images
    device, bs = pcv.logical_and(s_fill, b_fill, device, args.debug)

    # Apply Mask (for vis images, mask_color=white)
    device, masked = pcv.apply_mask(img, bs, "white", device, args.debug)

    # Mask pesky brass piece
    device, brass_mask1 = pcv.rgb2gray_hsv(brass_mask, "v", device, args.debug)
    device, brass_thresh = pcv.binary_threshold(brass_mask1, 0, 255, "light", device, args.debug)
    device, brass_inv = pcv.invert(brass_thresh, device, args.debug)
    device, brass_masked = pcv.apply_mask(masked, brass_inv, "white", device, args.debug)

    # Further mask soil and car
    device, masked_a = pcv.rgb2gray_lab(brass_masked, "a", device, args.debug)
    device, soil_car = pcv.binary_threshold(masked_a, 128, 255, "dark", device, args.debug)
    device, soil_masked = pcv.apply_mask(brass_masked, soil_car, "white", device, args.debug)

    # Convert RGB to LAB and extract the Green-Magenta and Blue-Yellow channels
    device, soil_a = pcv.rgb2gray_lab(soil_masked, "a", device, args.debug)
    device, soil_b = pcv.rgb2gray_lab(soil_masked, "b", device, args.debug)

    # Threshold the green-magenta and blue images
    device, soila_thresh = pcv.binary_threshold(soil_a, 118, 255, "dark", device, args.debug)
    device, soilb_thresh = pcv.binary_threshold(soil_b, 150, 255, "light", device, args.debug)

    # Join the thresholded saturation and blue-yellow images (OR)
    device, soil_ab = pcv.logical_or(soila_thresh, soilb_thresh, device, args.debug)
    device, soil_ab_cnt = pcv.logical_or(soila_thresh, soilb_thresh, device, args.debug)

    # Fill small objects
    device, soil_cnt = pcv.fill(soil_ab, soil_ab_cnt, 75, device, args.debug)

    # Median Filter
    # device, soil_mblur = pcv.median_blur(soil_fill, 5, device, args.debug)
    # device, soil_cnt = pcv.median_blur(soil_fill, 5, device, args.debug)

    # Apply mask (for vis images, mask_color=white)
    device, masked2 = pcv.apply_mask(soil_masked, soil_cnt, "white", device, args.debug)

    # Identify objects
    device, id_objects, obj_hierarchy = pcv.find_objects(masked2, soil_cnt, device, args.debug)

    # Define ROI
    device, roi1, roi_hierarchy = pcv.define_roi(
        img, "circle", device, None, "default", args.debug, True, 0, 0, -200, -200
    )

    # Decide which objects to keep
    device, roi_objects, hierarchy3, kept_mask, obj_area = pcv.roi_objects(
        img, "partial", roi1, roi_hierarchy, id_objects, obj_hierarchy, device, args.debug
    )

    # Object combine kept objects
    device, obj, mask = pcv.object_composition(img, roi_objects, hierarchy3, device, args.debug)

    ############## VIS Analysis ################

    outfile = False
    if args.writeimg == True:
        outfile = args.outdir + "/" + filename

    # Find shape properties, output shape image (optional)
    device, shape_header, shape_data, shape_img = pcv.analyze_object(
        img, args.image, obj, mask, device, args.debug, outfile
    )

    # Determine color properties: Histograms, Color Slices and Pseudocolored Images, output color analyzed images (optional)
    device, color_header, color_data, color_img = pcv.analyze_color(
        img, args.image, mask, 256, device, args.debug, None, "v", "img", 300, outfile
    )

    # Output shape and color data

    result = open(args.result, "a")
    result.write("\t".join(map(str, shape_header)))
    result.write("\n")
    result.write("\t".join(map(str, shape_data)))
    result.write("\n")
    for row in shape_img:
        result.write("\t".join(map(str, row)))
        result.write("\n")
    result.write("\t".join(map(str, color_header)))
    result.write("\n")
    result.write("\t".join(map(str, color_data)))
    result.write("\n")
    for row in color_img:
        result.write("\t".join(map(str, row)))
        result.write("\n")
    result.close()

    ############################# Use VIS image mask for NIR image#########################
    # Find matching NIR image
    device, nirpath = pcv.get_nir(path, filename, device, args.debug)
    nir, path1, filename1 = pcv.readimage(nirpath)
    nir2 = cv2.imread(nirpath, -1)

    # Flip mask
    device, f_mask = pcv.flip(mask, "horizontal", device, args.debug)

    # Reize mask
    device, nmask = pcv.resize(f_mask, 0.1304, 0.1304, device, args.debug)

    # position, and crop mask
    device, newmask = pcv.crop_position_mask(nir, nmask, device, 9, 12, "top", "left", args.debug)

    # Identify objects
    device, nir_objects, nir_hierarchy = pcv.find_objects(nir, newmask, device, args.debug)

    # Object combine kept objects
    device, nir_combined, nir_combinedmask = pcv.object_composition(nir, nir_objects, nir_hierarchy, device, args.debug)

    ####################################### Analysis #############################################
    outfile1 = False
    if args.writeimg == True:
        outfile1 = args.outdir + "/" + filename1

    device, nhist_header, nhist_data, nir_imgs = pcv.analyze_NIR_intensity(
        nir2, filename1, nir_combinedmask, 256, device, False, args.debug, outfile1
    )
    device, nshape_header, nshape_data, nir_shape = pcv.analyze_object(
        nir2, filename1, nir_combined, nir_combinedmask, device, args.debug, outfile1
    )

    coresult = open(args.coresult, "a")
    coresult.write("\t".join(map(str, nhist_header)))
    coresult.write("\n")
    coresult.write("\t".join(map(str, nhist_data)))
    coresult.write("\n")
    for row in nir_imgs:
        coresult.write("\t".join(map(str, row)))
        coresult.write("\n")

    coresult.write("\t".join(map(str, nshape_header)))
    coresult.write("\n")
    coresult.write("\t".join(map(str, nshape_data)))
    coresult.write("\n")
    coresult.write("\t".join(map(str, nir_shape)))
    coresult.write("\n")
    coresult.close()
Exemplo n.º 4
0
def main():
    # Get options
    args = options()

    # Read image
    img, path, filename = pcv.readimage(args.image)
    brass_mask = cv2.imread(args.roi)

    # Pipeline step
    device = 0

    # Convert RGB to HSV and extract the Saturation channel
    device, s = pcv.rgb2gray_hsv(img, 's', device, args.debug)

    # Threshold the Saturation image
    device, s_thresh = pcv.binary_threshold(s, 49, 255, 'light', device,
                                            args.debug)

    # Median Filter
    device, s_mblur = pcv.median_blur(s_thresh, 5, device, args.debug)
    device, s_cnt = pcv.median_blur(s_thresh, 5, device, args.debug)

    # Fill small objects
    device, s_fill = pcv.fill(s_mblur, s_cnt, 150, device, args.debug)

    # Convert RGB to LAB and extract the Blue channel
    device, b = pcv.rgb2gray_lab(img, 'b', device, args.debug)

    # Threshold the blue image
    device, b_thresh = pcv.binary_threshold(b, 138, 255, 'light', device,
                                            args.debug)
    device, b_cnt = pcv.binary_threshold(b, 138, 255, 'light', device,
                                         args.debug)

    # Fill small objects
    device, b_fill = pcv.fill(b_thresh, b_cnt, 100, device, args.debug)

    # Join the thresholded saturation and blue-yellow images
    device, bs = pcv.logical_and(s_fill, b_fill, device, args.debug)

    # Apply Mask (for vis images, mask_color=white)
    device, masked = pcv.apply_mask(img, bs, 'white', device, args.debug)

    # Mask pesky brass piece
    device, brass_mask1 = pcv.rgb2gray_hsv(brass_mask, 'v', device, args.debug)
    device, brass_thresh = pcv.binary_threshold(brass_mask1, 0, 255, 'light',
                                                device, args.debug)
    device, brass_inv = pcv.invert(brass_thresh, device, args.debug)
    device, brass_masked = pcv.apply_mask(masked, brass_inv, 'white', device,
                                          args.debug)

    # Further mask soil and car
    device, masked_a = pcv.rgb2gray_lab(brass_masked, 'a', device, args.debug)
    device, soil_car1 = pcv.binary_threshold(masked_a, 128, 255, 'dark',
                                             device, args.debug)
    device, soil_car2 = pcv.binary_threshold(masked_a, 128, 255, 'light',
                                             device, args.debug)
    device, soil_car = pcv.logical_or(soil_car1, soil_car2, device, args.debug)
    device, soil_masked = pcv.apply_mask(brass_masked, soil_car, 'white',
                                         device, args.debug)

    # Convert RGB to LAB and extract the Green-Magenta and Blue-Yellow channels
    device, soil_a = pcv.rgb2gray_lab(soil_masked, 'a', device, args.debug)
    device, soil_b = pcv.rgb2gray_lab(soil_masked, 'b', device, args.debug)

    # Threshold the green-magenta and blue images
    device, soila_thresh = pcv.binary_threshold(soil_a, 124, 255, 'dark',
                                                device, args.debug)
    device, soilb_thresh = pcv.binary_threshold(soil_b, 148, 255, 'light',
                                                device, args.debug)

    # Join the thresholded saturation and blue-yellow images (OR)
    device, soil_ab = pcv.logical_or(soila_thresh, soilb_thresh, device,
                                     args.debug)
    device, soil_ab_cnt = pcv.logical_or(soila_thresh, soilb_thresh, device,
                                         args.debug)

    # Fill small objects
    device, soil_cnt = pcv.fill(soil_ab, soil_ab_cnt, 150, device, args.debug)

    # Median Filter
    #device, soil_mblur = pcv.median_blur(soil_fill, 5, device, args.debug)
    #device, soil_cnt = pcv.median_blur(soil_fill, 5, device, args.debug)

    # Apply mask (for vis images, mask_color=white)
    device, masked2 = pcv.apply_mask(soil_masked, soil_cnt, 'white', device,
                                     args.debug)

    # Identify objects
    device, id_objects, obj_hierarchy = pcv.find_objects(
        masked2, soil_cnt, device, args.debug)

    # Define ROI
    device, roi1, roi_hierarchy = pcv.define_roi(img, 'rectangle', device,
                                                 None, 'default', args.debug,
                                                 True, 600, 450, -600, -350)

    # Decide which objects to keep
    device, roi_objects, hierarchy3, kept_mask, obj_area = pcv.roi_objects(
        img, 'partial', roi1, roi_hierarchy, id_objects, obj_hierarchy, device,
        args.debug)

    # Object combine kept objects
    device, obj, mask = pcv.object_composition(img, roi_objects, hierarchy3,
                                               device, args.debug)

    ############## VIS Analysis ################

    outfile = False
    if args.writeimg == True:
        outfile = args.outdir + "/" + filename

    # Find shape properties, output shape image (optional)
    device, shape_header, shape_data, shape_img = pcv.analyze_object(
        img, args.image, obj, mask, device, args.debug, outfile)

    # Determine color properties: Histograms, Color Slices and Pseudocolored Images, output color analyzed images (optional)
    device, color_header, color_data, color_img = pcv.analyze_color(
        img, args.image, mask, 256, device, args.debug, None, 'v', 'img', 300,
        outfile)

    # Output shape and color data

    result = open(args.result, "a")
    result.write('\t'.join(map(str, shape_header)))
    result.write("\n")
    result.write('\t'.join(map(str, shape_data)))
    result.write("\n")
    for row in shape_img:
        result.write('\t'.join(map(str, row)))
        result.write("\n")
    result.write('\t'.join(map(str, color_header)))
    result.write("\n")
    result.write('\t'.join(map(str, color_data)))
    result.write("\n")
    for row in color_img:
        result.write('\t'.join(map(str, row)))
        result.write("\n")
    result.close()

    ############################# Use VIS image mask for NIR image#########################
    # Find matching NIR image
    device, nirpath = pcv.get_nir(path, filename, device, args.debug)
    nir, path1, filename1 = pcv.readimage(nirpath)
    nir2 = cv2.imread(nirpath, -1)

    # Flip mask
    device, f_mask = pcv.flip(mask, "horizontal", device, args.debug)

    # Reize mask
    device, nmask = pcv.resize(f_mask, 0.116148, 0.116148, device, args.debug)

    # position, and crop mask
    device, newmask = pcv.crop_position_mask(nir, nmask, device, 15, 5, "top",
                                             "right", args.debug)

    # Identify objects
    device, nir_objects, nir_hierarchy = pcv.find_objects(
        nir, newmask, device, args.debug)

    # Object combine kept objects
    device, nir_combined, nir_combinedmask = pcv.object_composition(
        nir, nir_objects, nir_hierarchy, device, args.debug)

    ####################################### Analysis #############################################
    outfile1 = False
    if args.writeimg == True:
        outfile1 = args.outdir + "/" + filename1

    device, nhist_header, nhist_data, nir_imgs = pcv.analyze_NIR_intensity(
        nir2, filename1, nir_combinedmask, 256, device, False, args.debug,
        outfile1)
    device, nshape_header, nshape_data, nir_shape = pcv.analyze_object(
        nir2, filename1, nir_combined, nir_combinedmask, device, args.debug,
        outfile1)

    coresult = open(args.coresult, "a")
    coresult.write('\t'.join(map(str, nhist_header)))
    coresult.write("\n")
    coresult.write('\t'.join(map(str, nhist_data)))
    coresult.write("\n")
    for row in nir_imgs:
        coresult.write('\t'.join(map(str, row)))
        coresult.write("\n")

    coresult.write('\t'.join(map(str, nshape_header)))
    coresult.write("\n")
    coresult.write('\t'.join(map(str, nshape_data)))
    coresult.write("\n")
    coresult.write('\t'.join(map(str, nir_shape)))
    coresult.write("\n")
    coresult.close()
def process_sv_images_core(vis_id, vis_img, nir_id, nir_rgb, nir_cv2, traits, debug=None):
    # Pipeline step
    device = 0

    # Convert RGB to HSV and extract the Saturation channel
    device, s = pcv.rgb2gray_hsv(vis_img, 's', device, debug)

    # Threshold the Saturation image
    device, s_thresh = pcv.binary_threshold(s, 36, 255, 'light', device, debug)

    # Median Filter
    device, s_mblur = pcv.median_blur(s_thresh, 5, device, debug)
    device, s_cnt = pcv.median_blur(s_thresh, 5, device, debug)

    # Fill small objects
    # device, s_fill = pcv.fill(s_mblur, s_cnt, 0, device, args.debug)

    # Convert RGB to LAB and extract the Blue channel
    device, b = pcv.rgb2gray_lab(vis_img, 'b', device, debug)

    # Threshold the blue image
    device, b_thresh = pcv.binary_threshold(b, 137, 255, 'light', device, debug)
    device, b_cnt = pcv.binary_threshold(b, 137, 255, 'light', device, debug)

    # Fill small objects
    # device, b_fill = pcv.fill(b_thresh, b_cnt, 10, device, args.debug)

    # Join the thresholded saturation and blue-yellow images
    device, bs = pcv.logical_and(s_mblur, b_cnt, device, debug)

    # Apply Mask (for vis images, mask_color=white)
    device, masked = pcv.apply_mask(vis_img, bs, 'white', device, debug)

    # Convert RGB to LAB and extract the Green-Magenta and Blue-Yellow channels
    device, masked_a = pcv.rgb2gray_lab(masked, 'a', device, debug)
    device, masked_b = pcv.rgb2gray_lab(masked, 'b', device, debug)

    # Threshold the green-magenta and blue images
    device, maskeda_thresh = pcv.binary_threshold(masked_a, 127, 255, 'dark', device, debug)
    device, maskedb_thresh = pcv.binary_threshold(masked_b, 128, 255, 'light', device, debug)

    # Join the thresholded saturation and blue-yellow images (OR)
    device, ab = pcv.logical_or(maskeda_thresh, maskedb_thresh, device, debug)
    device, ab_cnt = pcv.logical_or(maskeda_thresh, maskedb_thresh, device, debug)

    # Fill small noise
    device, ab_fill1 = pcv.fill(ab, ab_cnt, 200, device, debug)

    # Dilate to join small objects with larger ones
    device, ab_cnt1 = pcv.dilate(ab_fill1, 3, 2, device, debug)
    device, ab_cnt2 = pcv.dilate(ab_fill1, 3, 2, device, debug)

    # Fill dilated image mask
    device, ab_cnt3 = pcv.fill(ab_cnt2, ab_cnt1, 150, device, debug)
    device, masked2 = pcv.apply_mask(masked, ab_cnt3, 'white', device, debug)

    # Convert RGB to LAB and extract the Green-Magenta and Blue-Yellow channels
    device, masked2_a = pcv.rgb2gray_lab(masked2, 'a', device, debug)
    device, masked2_b = pcv.rgb2gray_lab(masked2, 'b', device, debug)

    # Threshold the green-magenta and blue images
    device, masked2a_thresh = pcv.binary_threshold(masked2_a, 127, 255, 'dark', device, debug)
    device, masked2b_thresh = pcv.binary_threshold(masked2_b, 128, 255, 'light', device, debug)

    device, masked2a_thresh_blur = pcv.median_blur(masked2a_thresh, 5, device, debug)
    device, masked2b_thresh_blur = pcv.median_blur(masked2b_thresh, 13, device, debug)

    device, ab_fill = pcv.logical_or(masked2a_thresh_blur, masked2b_thresh_blur, device, debug)

    # Identify objects
    device, id_objects, obj_hierarchy = pcv.find_objects(masked2, ab_fill, device, debug)

    # Define ROI
    device, roi1, roi_hierarchy = pcv.define_roi(masked2, 'rectangle', device, None, 'default', debug, True, 700,
                                                 0, -600, -300)

    # Decide which objects to keep
    device, roi_objects, hierarchy3, kept_mask, obj_area = pcv.roi_objects(vis_img, 'partial', roi1, roi_hierarchy,
                                                                           id_objects, obj_hierarchy, device,
                                                                           debug)

    # Object combine kept objects
    device, obj, mask = pcv.object_composition(vis_img, roi_objects, hierarchy3, device, debug)

    ############## VIS Analysis ################
    # Find shape properties, output shape image (optional)
    device, shape_header, shape_data, shape_img = pcv.analyze_object(vis_img, vis_id, obj, mask, device, debug)

    # Shape properties relative to user boundary line (optional)
    device, boundary_header, boundary_data, boundary_img1 = pcv.analyze_bound(vis_img, vis_id, obj, mask, 384, device,
                                                                              debug)

    # Determine color properties: Histograms, Color Slices and
    # Pseudocolored Images, output color analyzed images (optional)
    device, color_header, color_data, color_img = pcv.analyze_color(vis_img, vis_id, mask, 256, device, debug,
                                                                    None, 'v', 'img', 300)

    # Output shape and color data
    vis_traits = {}
    for i in range(1, len(shape_header)):
        vis_traits[shape_header[i]] = shape_data[i]
    for i in range(1, len(boundary_header)):
        vis_traits[boundary_header[i]] = boundary_data[i]
    for i in range(2, len(color_header)):
        vis_traits[color_header[i]] = serialize_color_data(color_data[i])


    ############################# Use VIS image mask for NIR image#########################
    # Flip mask
    device, f_mask = pcv.flip(mask, "vertical", device, debug)

    # Reize mask
    device, nmask = pcv.resize(f_mask, 0.1154905775, 0.1154905775, device, debug)

    # position, and crop mask
    device, newmask = pcv.crop_position_mask(nir_rgb, nmask, device, 30, 4, "top", "right", debug)

    # Identify objects
    device, nir_objects, nir_hierarchy = pcv.find_objects(nir_rgb, newmask, device, debug)

    # Object combine kept objects
    device, nir_combined, nir_combinedmask = pcv.object_composition(nir_rgb, nir_objects, nir_hierarchy, device, debug)

    ####################################### Analysis #############################################
    device, nhist_header, nhist_data, nir_imgs = pcv.analyze_NIR_intensity(nir_cv2, nir_id, nir_combinedmask, 256,
                                                                           device, False, debug)
    device, nshape_header, nshape_data, nir_shape = pcv.analyze_object(nir_cv2, nir_id, nir_combined, nir_combinedmask,
                                                                       device, debug)

    nir_traits = {}
    for i in range(1, len(nshape_header)):
        nir_traits[nshape_header[i]] = nshape_data[i]
    for i in range(2, len(nhist_header)):
        nir_traits[nhist_header[i]] = serialize_color_data(nhist_data[i])

    # Add data to traits table
    traits['sv_area'].append(vis_traits['area'])
    traits['hull_area'].append(vis_traits['hull-area'])
    traits['solidity'].append(vis_traits['solidity'])
    traits['height'].append(vis_traits['height_above_bound'])
    traits['perimeter'].append(vis_traits['perimeter'])

    return [vis_traits, nir_traits]
def process_tv_images_core(vis_id, vis_img, nir_id, nir_rgb, nir_cv2, brass_mask, traits, debug=None):
    device = 0

    # Convert RGB to HSV and extract the Saturation channel
    device, s = pcv.rgb2gray_hsv(vis_img, 's', device, debug)

    # Threshold the Saturation image
    device, s_thresh = pcv.binary_threshold(s, 75, 255, 'light', device, debug)

    # Median Filter
    device, s_mblur = pcv.median_blur(s_thresh, 5, device, debug)
    device, s_cnt = pcv.median_blur(s_thresh, 5, device, debug)

    # Fill small objects
    device, s_fill = pcv.fill(s_mblur, s_cnt, 150, device, debug)

    # Convert RGB to LAB and extract the Blue channel
    device, b = pcv.rgb2gray_lab(vis_img, 'b', device, debug)

    # Threshold the blue image
    device, b_thresh = pcv.binary_threshold(b, 138, 255, 'light', device, debug)
    device, b_cnt = pcv.binary_threshold(b, 138, 255, 'light', device, debug)

    # Fill small objects
    device, b_fill = pcv.fill(b_thresh, b_cnt, 100, device, debug)

    # Join the thresholded saturation and blue-yellow images
    device, bs = pcv.logical_and(s_fill, b_fill, device, debug)

    # Apply Mask (for vis images, mask_color=white)
    device, masked = pcv.apply_mask(vis_img, bs, 'white', device, debug)

    # Mask pesky brass piece
    device, brass_mask1 = pcv.rgb2gray_hsv(brass_mask, 'v', device, debug)
    device, brass_thresh = pcv.binary_threshold(brass_mask1, 0, 255, 'light', device, debug)
    device, brass_inv = pcv.invert(brass_thresh, device, debug)
    device, brass_masked = pcv.apply_mask(masked, brass_inv, 'white', device, debug)

    # Further mask soil and car
    device, masked_a = pcv.rgb2gray_lab(brass_masked, 'a', device, debug)
    device, soil_car1 = pcv.binary_threshold(masked_a, 128, 255, 'dark', device, debug)
    device, soil_car2 = pcv.binary_threshold(masked_a, 128, 255, 'light', device, debug)
    device, soil_car = pcv.logical_or(soil_car1, soil_car2, device, debug)
    device, soil_masked = pcv.apply_mask(brass_masked, soil_car, 'white', device, debug)

    # Convert RGB to LAB and extract the Green-Magenta and Blue-Yellow channels
    device, soil_a = pcv.rgb2gray_lab(soil_masked, 'a', device, debug)
    device, soil_b = pcv.rgb2gray_lab(soil_masked, 'b', device, debug)

    # Threshold the green-magenta and blue images
    device, soila_thresh = pcv.binary_threshold(soil_a, 124, 255, 'dark', device, debug)
    device, soilb_thresh = pcv.binary_threshold(soil_b, 148, 255, 'light', device, debug)

    # Join the thresholded saturation and blue-yellow images (OR)
    device, soil_ab = pcv.logical_or(soila_thresh, soilb_thresh, device, debug)
    device, soil_ab_cnt = pcv.logical_or(soila_thresh, soilb_thresh, device, debug)

    # Fill small objects
    device, soil_cnt = pcv.fill(soil_ab, soil_ab_cnt, 300, device, debug)

    # Apply mask (for vis images, mask_color=white)
    device, masked2 = pcv.apply_mask(soil_masked, soil_cnt, 'white', device, debug)

    # Identify objects
    device, id_objects, obj_hierarchy = pcv.find_objects(masked2, soil_cnt, device, debug)

    # Define ROI
    device, roi1, roi_hierarchy = pcv.define_roi(vis_img, 'rectangle', device, None, 'default', debug, True, 600, 450, -600,
                                                 -350)

    # Decide which objects to keep
    device, roi_objects, hierarchy3, kept_mask, obj_area = pcv.roi_objects(vis_img, 'partial', roi1, roi_hierarchy,
                                                                           id_objects, obj_hierarchy, device, debug)

    # Object combine kept objects
    device, obj, mask = pcv.object_composition(vis_img, roi_objects, hierarchy3, device, debug)

    # Find shape properties, output shape image (optional)
    device, shape_header, shape_data, shape_img = pcv.analyze_object(vis_img, vis_id, obj, mask, device, debug)

    # Determine color properties
    device, color_header, color_data, color_img = pcv.analyze_color(vis_img, vis_id, mask, 256, device, debug, None,
                                                                    'v', 'img', 300)

    # Output shape and color data
    vis_traits = {}
    for i in range(1, len(shape_header)):
        vis_traits[shape_header[i]] = shape_data[i]
    for i in range(2, len(color_header)):
        vis_traits[color_header[i]] = serialize_color_data(color_data[i])

    ############################# Use VIS image mask for NIR image#########################


    # Flip mask
    device, f_mask = pcv.flip(mask, "horizontal", device, debug)

    # Reize mask
    device, nmask = pcv.resize(f_mask, 0.116148, 0.116148, device, debug)

    # position, and crop mask
    device, newmask = pcv.crop_position_mask(nir_rgb, nmask, device, 15, 5, "top", "right", debug)

    # Identify objects
    device, nir_objects, nir_hierarchy = pcv.find_objects(nir_rgb, newmask, device, debug)

    # Object combine kept objects
    device, nir_combined, nir_combinedmask = pcv.object_composition(nir_rgb, nir_objects, nir_hierarchy, device, debug)

    ####################################### Analysis #############################################

    device, nhist_header, nhist_data, nir_imgs = pcv.analyze_NIR_intensity(nir_cv2, nir_id, nir_combinedmask, 256,
                                                                           device, False, debug)
    device, nshape_header, nshape_data, nir_shape = pcv.analyze_object(nir_cv2, nir_id, nir_combined, nir_combinedmask,
                                                                       device, debug)

    nir_traits = {}
    for i in range(1, len(nshape_header)):
        nir_traits[nshape_header[i]] = nshape_data[i]
    for i in range(2, len(nhist_header)):
        nir_traits[nhist_header[i]] = serialize_color_data(nhist_data[i])

    # Add data to traits table
    traits['tv_area'] = vis_traits['area']

    return [vis_traits, nir_traits]
def process_sv_images(session, url, vis_id, nir_id, traits, debug=None):
    """Process side-view images from Clowder.

    Inputs:
    session = requests session object
    url     = Clowder URL
    vis_id  = The Clowder ID of an RGB image
    nir_img = The Clowder ID of an NIR grayscale image
    traits  = traits table (dictionary)
    debug   = None, print, or plot. Print = save to file, Plot = print to screen

    :param session: requests session object
    :param url: str
    :param vis_id: str
    :param nir_id: str
    :param traits: dict
    :param debug: str
    :return traits: dict
    """
    # Read VIS image from Clowder
    vis_r = session.get(posixpath.join(url, "api/files", vis_id), stream=True)
    img_array = np.asarray(bytearray(vis_r.content), dtype="uint8")
    img = cv2.imdecode(img_array, -1)

    # Pipeline step
    device = 0

    # Convert RGB to HSV and extract the Saturation channel
    device, s = pcv.rgb2gray_hsv(img, 's', device, debug)

    # Threshold the Saturation image
    device, s_thresh = pcv.binary_threshold(s, 36, 255, 'light', device, debug)

    # Median Filter
    device, s_mblur = pcv.median_blur(s_thresh, 5, device, debug)
    device, s_cnt = pcv.median_blur(s_thresh, 5, device, debug)

    # Fill small objects
    # device, s_fill = pcv.fill(s_mblur, s_cnt, 0, device, args.debug)

    # Convert RGB to LAB and extract the Blue channel
    device, b = pcv.rgb2gray_lab(img, 'b', device, debug)

    # Threshold the blue image
    device, b_thresh = pcv.binary_threshold(b, 137, 255, 'light', device, debug)
    device, b_cnt = pcv.binary_threshold(b, 137, 255, 'light', device, debug)

    # Fill small objects
    # device, b_fill = pcv.fill(b_thresh, b_cnt, 10, device, args.debug)

    # Join the thresholded saturation and blue-yellow images
    device, bs = pcv.logical_and(s_mblur, b_cnt, device, debug)

    # Apply Mask (for vis images, mask_color=white)
    device, masked = pcv.apply_mask(img, bs, 'white', device, debug)

    # Convert RGB to LAB and extract the Green-Magenta and Blue-Yellow channels
    device, masked_a = pcv.rgb2gray_lab(masked, 'a', device, debug)
    device, masked_b = pcv.rgb2gray_lab(masked, 'b', device, debug)

    # Threshold the green-magenta and blue images
    device, maskeda_thresh = pcv.binary_threshold(masked_a, 127, 255, 'dark', device, debug)
    device, maskedb_thresh = pcv.binary_threshold(masked_b, 128, 255, 'light', device, debug)

    # Join the thresholded saturation and blue-yellow images (OR)
    device, ab = pcv.logical_or(maskeda_thresh, maskedb_thresh, device, debug)
    device, ab_cnt = pcv.logical_or(maskeda_thresh, maskedb_thresh, device, debug)

    # Fill small noise
    device, ab_fill1 = pcv.fill(ab, ab_cnt, 200, device, debug)

    # Dilate to join small objects with larger ones
    device, ab_cnt1 = pcv.dilate(ab_fill1, 3, 2, device, debug)
    device, ab_cnt2 = pcv.dilate(ab_fill1, 3, 2, device, debug)

    # Fill dilated image mask
    device, ab_cnt3 = pcv.fill(ab_cnt2, ab_cnt1, 150, device, debug)
    device, masked2 = pcv.apply_mask(masked, ab_cnt3, 'white', device, debug)

    # Convert RGB to LAB and extract the Green-Magenta and Blue-Yellow channels
    device, masked2_a = pcv.rgb2gray_lab(masked2, 'a', device, debug)
    device, masked2_b = pcv.rgb2gray_lab(masked2, 'b', device, debug)

    # Threshold the green-magenta and blue images
    device, masked2a_thresh = pcv.binary_threshold(masked2_a, 127, 255, 'dark', device, debug)
    device, masked2b_thresh = pcv.binary_threshold(masked2_b, 128, 255, 'light', device, debug)

    device, masked2a_thresh_blur = pcv.median_blur(masked2a_thresh, 5, device, debug)
    device, masked2b_thresh_blur = pcv.median_blur(masked2b_thresh, 13, device, debug)

    device, ab_fill = pcv.logical_or(masked2a_thresh_blur, masked2b_thresh_blur, device, debug)

    # Identify objects
    device, id_objects, obj_hierarchy = pcv.find_objects(masked2, ab_fill, device, debug)

    # Define ROI
    device, roi1, roi_hierarchy = pcv.define_roi(masked2, 'rectangle', device, None, 'default', debug, True, 700,
                                                 0, -600, -300)

    # Decide which objects to keep
    device, roi_objects, hierarchy3, kept_mask, obj_area = pcv.roi_objects(img, 'partial', roi1, roi_hierarchy,
                                                                           id_objects, obj_hierarchy, device,
                                                                           debug)

    # Object combine kept objects
    device, obj, mask = pcv.object_composition(img, roi_objects, hierarchy3, device, debug)

    ############## VIS Analysis ################
    # Find shape properties, output shape image (optional)
    device, shape_header, shape_data, shape_img = pcv.analyze_object(img, vis_id, obj, mask, device, debug)

    # Shape properties relative to user boundary line (optional)
    device, boundary_header, boundary_data, boundary_img1 = pcv.analyze_bound(img, vis_id, obj, mask, 384, device,
                                                                              debug)

    # Determine color properties: Histograms, Color Slices and
    # Pseudocolored Images, output color analyzed images (optional)
    device, color_header, color_data, color_img = pcv.analyze_color(img, vis_id, mask, 256, device, debug,
                                                                    None, 'v', 'img', 300)

    # Output shape and color data
    vis_traits = {}
    for i in range(1, len(shape_header)):
        vis_traits[shape_header[i]] = shape_data[i]
    for i in range(1, len(boundary_header)):
        vis_traits[boundary_header[i]] = boundary_data[i]
    for i in range(2, len(color_header)):
        vis_traits[color_header[i]] = serialize_color_data(color_data[i])
    #print(vis_traits)
    add_plantcv_metadata(session, url, vis_id, vis_traits)

    ############################# Use VIS image mask for NIR image#########################
    # Read NIR image from Clowder
    nir_r = session.get(posixpath.join(url, "api/files", nir_id), stream=True)
    nir_array = np.asarray(bytearray(nir_r.content), dtype="uint8")
    nir = cv2.imdecode(nir_array, -1)
    nir_rgb = cv2.cvtColor(nir, cv2.COLOR_GRAY2BGR)

    # Flip mask
    device, f_mask = pcv.flip(mask, "vertical", device, debug)

    # Reize mask
    device, nmask = pcv.resize(f_mask, 0.1154905775, 0.1154905775, device, debug)

    # position, and crop mask
    device, newmask = pcv.crop_position_mask(nir_rgb, nmask, device, 30, 4, "top", "right", debug)

    # Identify objects
    device, nir_objects, nir_hierarchy = pcv.find_objects(nir_rgb, newmask, device, debug)

    # Object combine kept objects
    device, nir_combined, nir_combinedmask = pcv.object_composition(nir_rgb, nir_objects, nir_hierarchy, device, debug)

    ####################################### Analysis #############################################
    device, nhist_header, nhist_data, nir_imgs = pcv.analyze_NIR_intensity(nir, nir_id, nir_combinedmask, 256,
                                                                           device, False, debug)
    device, nshape_header, nshape_data, nir_shape = pcv.analyze_object(nir, nir_id, nir_combined, nir_combinedmask,
                                                                       device, debug)

    nir_traits = {}
    for i in range(1, len(nshape_header)):
        nir_traits[nshape_header[i]] = nshape_data[i]
    for i in range(2, len(nhist_header)):
        nir_traits[nhist_header[i]] = serialize_color_data(nhist_data[i])
    #print(nir_traits)
    add_plantcv_metadata(session, url, nir_id, nir_traits)

    # Add data to traits table
    traits['sv_area'].append(vis_traits['area'])
    traits['hull_area'].append(vis_traits['hull-area'])
    traits['solidity'].append(vis_traits['solidity'])
    traits['height'].append(vis_traits['height_above_bound'])
    traits['perimeter'].append(vis_traits['perimeter'])

    return traits
def process_tv_images(session, url, vis_id, nir_id, traits, debug=False):
    """Process top-view images.

    Inputs:
    session = requests session object
    url     = Clowder URL
    vis_id  = The Clowder ID of an RGB image
    nir_img = The Clowder ID of an NIR grayscale image
    traits  = traits table (dictionary)
    debug   = None, print, or plot. Print = save to file, Plot = print to screen.

    :param session: requests session object
    :param url: str
    :param vis_id: str
    :param nir_id: str
    :param traits: dict
    :param debug: str
    :return traits: dict
    """
    # Read VIS image from Clowder
    vis_r = session.get(posixpath.join(url, "api/files", vis_id), stream=True)
    img_array = np.asarray(bytearray(vis_r.content), dtype="uint8")
    img = cv2.imdecode(img_array, -1)

    # Read the VIS top-view image mask for zoom = 1 from Clowder
    mask_r = session.get(posixpath.join(url, "api/files/57451b28e4b0efbe2dc3d4d5"), stream=True)
    mask_array = np.asarray(bytearray(mask_r.content), dtype="uint8")
    brass_mask = cv2.imdecode(mask_array, -1)

    device = 0

    # Convert RGB to HSV and extract the Saturation channel
    device, s = pcv.rgb2gray_hsv(img, 's', device, debug)

    # Threshold the Saturation image
    device, s_thresh = pcv.binary_threshold(s, 75, 255, 'light', device, debug)

    # Median Filter
    device, s_mblur = pcv.median_blur(s_thresh, 5, device, debug)
    device, s_cnt = pcv.median_blur(s_thresh, 5, device, debug)

    # Fill small objects
    device, s_fill = pcv.fill(s_mblur, s_cnt, 150, device, debug)

    # Convert RGB to LAB and extract the Blue channel
    device, b = pcv.rgb2gray_lab(img, 'b', device, debug)

    # Threshold the blue image
    device, b_thresh = pcv.binary_threshold(b, 138, 255, 'light', device, debug)
    device, b_cnt = pcv.binary_threshold(b, 138, 255, 'light', device, debug)

    # Fill small objects
    device, b_fill = pcv.fill(b_thresh, b_cnt, 100, device, debug)

    # Join the thresholded saturation and blue-yellow images
    device, bs = pcv.logical_and(s_fill, b_fill, device, debug)

    # Apply Mask (for vis images, mask_color=white)
    device, masked = pcv.apply_mask(img, bs, 'white', device, debug)

    # Mask pesky brass piece
    device, brass_mask1 = pcv.rgb2gray_hsv(brass_mask, 'v', device, debug)
    device, brass_thresh = pcv.binary_threshold(brass_mask1, 0, 255, 'light', device, debug)
    device, brass_inv = pcv.invert(brass_thresh, device, debug)
    device, brass_masked = pcv.apply_mask(masked, brass_inv, 'white', device, debug)

    # Further mask soil and car
    device, masked_a = pcv.rgb2gray_lab(brass_masked, 'a', device, debug)
    device, soil_car1 = pcv.binary_threshold(masked_a, 128, 255, 'dark', device, debug)
    device, soil_car2 = pcv.binary_threshold(masked_a, 128, 255, 'light', device, debug)
    device, soil_car = pcv.logical_or(soil_car1, soil_car2, device, debug)
    device, soil_masked = pcv.apply_mask(brass_masked, soil_car, 'white', device, debug)

    # Convert RGB to LAB and extract the Green-Magenta and Blue-Yellow channels
    device, soil_a = pcv.rgb2gray_lab(soil_masked, 'a', device, debug)
    device, soil_b = pcv.rgb2gray_lab(soil_masked, 'b', device, debug)

    # Threshold the green-magenta and blue images
    device, soila_thresh = pcv.binary_threshold(soil_a, 124, 255, 'dark', device, debug)
    device, soilb_thresh = pcv.binary_threshold(soil_b, 148, 255, 'light', device, debug)

    # Join the thresholded saturation and blue-yellow images (OR)
    device, soil_ab = pcv.logical_or(soila_thresh, soilb_thresh, device, debug)
    device, soil_ab_cnt = pcv.logical_or(soila_thresh, soilb_thresh, device, debug)

    # Fill small objects
    device, soil_cnt = pcv.fill(soil_ab, soil_ab_cnt, 300, device, debug)

    # Apply mask (for vis images, mask_color=white)
    device, masked2 = pcv.apply_mask(soil_masked, soil_cnt, 'white', device, debug)

    # Identify objects
    device, id_objects, obj_hierarchy = pcv.find_objects(masked2, soil_cnt, device, debug)

    # Define ROI
    device, roi1, roi_hierarchy = pcv.define_roi(img, 'rectangle', device, None, 'default', debug, True, 600, 450, -600,
                                                 -350)

    # Decide which objects to keep
    device, roi_objects, hierarchy3, kept_mask, obj_area = pcv.roi_objects(img, 'partial', roi1, roi_hierarchy,
                                                                           id_objects, obj_hierarchy, device, debug)

    # Object combine kept objects
    device, obj, mask = pcv.object_composition(img, roi_objects, hierarchy3, device, debug)

    # Find shape properties, output shape image (optional)
    device, shape_header, shape_data, shape_img = pcv.analyze_object(img, vis_id, obj, mask, device, debug)

    # Determine color properties
    device, color_header, color_data, color_img = pcv.analyze_color(img, vis_id, mask, 256, device, debug, None,
                                                                    'v', 'img', 300)

    # Output shape and color data
    vis_traits = {}
    for i in range(1, len(shape_header)):
        vis_traits[shape_header[i]] = shape_data[i]
    for i in range(2, len(color_header)):
        vis_traits[color_header[i]] = serialize_color_data(color_data[i])
    #print(vis_traits)
    add_plantcv_metadata(session, url, vis_id, vis_traits)

    ############################# Use VIS image mask for NIR image#########################
    # Read NIR image from Clowder
    nir_r = session.get(posixpath.join(url, "api/files", nir_id), stream=True)
    nir_array = np.asarray(bytearray(nir_r.content), dtype="uint8")
    nir = cv2.imdecode(nir_array, -1)
    nir_rgb = cv2.cvtColor(nir, cv2.COLOR_GRAY2BGR)

    # Flip mask
    device, f_mask = pcv.flip(mask, "horizontal", device, debug)

    # Reize mask
    device, nmask = pcv.resize(f_mask, 0.116148, 0.116148, device, debug)

    # position, and crop mask
    device, newmask = pcv.crop_position_mask(nir_rgb, nmask, device, 15, 5, "top", "right", debug)

    # Identify objects
    device, nir_objects, nir_hierarchy = pcv.find_objects(nir_rgb, newmask, device, debug)

    # Object combine kept objects
    device, nir_combined, nir_combinedmask = pcv.object_composition(nir_rgb, nir_objects, nir_hierarchy, device, debug)

    ####################################### Analysis #############################################

    device, nhist_header, nhist_data, nir_imgs = pcv.analyze_NIR_intensity(nir, nir_id, nir_combinedmask, 256,
                                                                           device, False, debug)
    device, nshape_header, nshape_data, nir_shape = pcv.analyze_object(nir, nir_id, nir_combined, nir_combinedmask,
                                                                       device, debug)

    nir_traits = {}
    for i in range(1, len(nshape_header)):
        nir_traits[nshape_header[i]] = nshape_data[i]
    for i in range(2, len(nhist_header)):
        nir_traits[nhist_header[i]] = serialize_color_data(nhist_data[i])
    #print(nir_traits)
    add_plantcv_metadata(session, url, nir_id, nir_traits)

    # Add data to traits table
    traits['tv_area'] = vis_traits['area']

    return traits
def process_sv_images(vis_img, nir_img, debug=None):
    """Process side-view images.

    Inputs:
    vis_img = An RGB image.
    nir_img = An NIR grayscale image.
    debug   = None, print, or plot. Print = save to file, Plot = print to screen.

    :param vis_img: str
    :param nir_img: str
    :param debug: str
    :return:
    """
    # Read VIS image
    img, path, filename = pcv.readimage(vis_img)

    # Pipeline step
    device = 0

    # Convert RGB to HSV and extract the Saturation channel
    device, s = pcv.rgb2gray_hsv(img, 's', device, debug)

    # Threshold the Saturation image
    device, s_thresh = pcv.binary_threshold(s, 36, 255, 'light', device, debug)

    # Median Filter
    device, s_mblur = pcv.median_blur(s_thresh, 5, device, debug)
    device, s_cnt = pcv.median_blur(s_thresh, 5, device, debug)

    # Fill small objects
    # device, s_fill = pcv.fill(s_mblur, s_cnt, 0, device, args.debug)

    # Convert RGB to LAB and extract the Blue channel
    device, b = pcv.rgb2gray_lab(img, 'b', device, debug)

    # Threshold the blue image
    device, b_thresh = pcv.binary_threshold(b, 137, 255, 'light', device, debug)
    device, b_cnt = pcv.binary_threshold(b, 137, 255, 'light', device, debug)

    # Fill small objects
    # device, b_fill = pcv.fill(b_thresh, b_cnt, 10, device, args.debug)

    # Join the thresholded saturation and blue-yellow images
    device, bs = pcv.logical_and(s_mblur, b_cnt, device, debug)

    # Apply Mask (for vis images, mask_color=white)
    device, masked = pcv.apply_mask(img, bs, 'white', device, debug)

    # Convert RGB to LAB and extract the Green-Magenta and Blue-Yellow channels
    device, masked_a = pcv.rgb2gray_lab(masked, 'a', device, debug)
    device, masked_b = pcv.rgb2gray_lab(masked, 'b', device, debug)

    # Threshold the green-magenta and blue images
    device, maskeda_thresh = pcv.binary_threshold(masked_a, 127, 255, 'dark', device, debug)
    device, maskedb_thresh = pcv.binary_threshold(masked_b, 128, 255, 'light', device, debug)

    # Join the thresholded saturation and blue-yellow images (OR)
    device, ab = pcv.logical_or(maskeda_thresh, maskedb_thresh, device, debug)
    device, ab_cnt = pcv.logical_or(maskeda_thresh, maskedb_thresh, device, debug)

    # Fill small noise
    device, ab_fill1 = pcv.fill(ab, ab_cnt, 200, device, debug)

    # Dilate to join small objects with larger ones
    device, ab_cnt1 = pcv.dilate(ab_fill1, 3, 2, device, debug)
    device, ab_cnt2 = pcv.dilate(ab_fill1, 3, 2, device, debug)

    # Fill dilated image mask
    device, ab_cnt3 = pcv.fill(ab_cnt2, ab_cnt1, 150, device, debug)
    device, masked2 = pcv.apply_mask(masked, ab_cnt3, 'white', device, debug)

    # Convert RGB to LAB and extract the Green-Magenta and Blue-Yellow channels
    device, masked2_a = pcv.rgb2gray_lab(masked2, 'a', device, debug)
    device, masked2_b = pcv.rgb2gray_lab(masked2, 'b', device, debug)

    # Threshold the green-magenta and blue images
    device, masked2a_thresh = pcv.binary_threshold(masked2_a, 127, 255, 'dark', device, debug)
    device, masked2b_thresh = pcv.binary_threshold(masked2_b, 128, 255, 'light', device, debug)

    device, masked2a_thresh_blur = pcv.median_blur(masked2a_thresh, 5, device, debug)
    device, masked2b_thresh_blur = pcv.median_blur(masked2b_thresh, 13, device, debug)

    device, ab_fill = pcv.logical_or(masked2a_thresh_blur, masked2b_thresh_blur, device, debug)

    # Identify objects
    device, id_objects, obj_hierarchy = pcv.find_objects(masked2, ab_fill, device, debug)

    # Define ROI
    device, roi1, roi_hierarchy = pcv.define_roi(masked2, 'rectangle', device, None, 'default', debug, True, 700,
                                                 0, -600, -300)

    # Decide which objects to keep
    device, roi_objects, hierarchy3, kept_mask, obj_area = pcv.roi_objects(img, 'partial', roi1, roi_hierarchy,
                                                                           id_objects, obj_hierarchy, device,
                                                                           debug)

    # Object combine kept objects
    device, obj, mask = pcv.object_composition(img, roi_objects, hierarchy3, device, debug)

    ############## VIS Analysis ################
    # Find shape properties, output shape image (optional)
    device, shape_header, shape_data, shape_img = pcv.analyze_object(img, vis_img, obj, mask, device, debug)

    # Shape properties relative to user boundary line (optional)
    device, boundary_header, boundary_data, boundary_img1 = pcv.analyze_bound(img, vis_img, obj, mask, 384, device,
                                                                              debug)

    # Determine color properties: Histograms, Color Slices and
    # Pseudocolored Images, output color analyzed images (optional)
    device, color_header, color_data, color_img = pcv.analyze_color(img, vis_img, mask, 256, device, debug,
                                                                    None, 'v', 'img', 300)

    # Output shape and color data
    print('\t'.join(map(str, shape_header)) + '\n')
    print('\t'.join(map(str, shape_data)) + '\n')
    for row in shape_img:
        print('\t'.join(map(str, row)) + '\n')
    print('\t'.join(map(str, color_header)) + '\n')
    print('\t'.join(map(str, color_data)) + '\n')
    print('\t'.join(map(str, boundary_header)) + '\n')
    print('\t'.join(map(str, boundary_data)) + '\n')
    print('\t'.join(map(str, boundary_img1)) + '\n')
    for row in color_img:
        print('\t'.join(map(str, row)) + '\n')

    ############################# Use VIS image mask for NIR image#########################
    # Read NIR image
    nir, path1, filename1 = pcv.readimage(nir_img)
    nir2 = cv2.imread(nir_img, -1)

    # Flip mask
    device, f_mask = pcv.flip(mask, "vertical", device, debug)

    # Reize mask
    device, nmask = pcv.resize(f_mask, 0.1154905775, 0.1154905775, device, debug)

    # position, and crop mask
    device, newmask = pcv.crop_position_mask(nir, nmask, device, 30, 4, "top", "right", debug)

    # Identify objects
    device, nir_objects, nir_hierarchy = pcv.find_objects(nir, newmask, device, debug)

    # Object combine kept objects
    device, nir_combined, nir_combinedmask = pcv.object_composition(nir, nir_objects, nir_hierarchy, device, debug)

    ####################################### Analysis #############################################
    device, nhist_header, nhist_data, nir_imgs = pcv.analyze_NIR_intensity(nir2, filename1, nir_combinedmask, 256,
                                                                           device, False, debug)
    device, nshape_header, nshape_data, nir_shape = pcv.analyze_object(nir2, filename1, nir_combined, nir_combinedmask,
                                                                       device, debug)

    print('\t'.join(map(str, nhist_header)) + '\n')
    print('\t'.join(map(str, nhist_data)) + '\n')
    for row in nir_imgs:
        print('\t'.join(map(str, row)) + '\n')
    print('\t'.join(map(str, nshape_header)) + '\n')
    print('\t'.join(map(str, nshape_data)) + '\n')
    print('\t'.join(map(str, nir_shape)) + '\n')
def process_tv_images(vis_img, nir_img, debug=False):
    """Process top-view images.

    Inputs:
    vis_img = An RGB image.
    nir_img = An NIR grayscale image.
    debug   = None, print, or plot. Print = save to file, Plot = print to screen.

    :param vis_img: str
    :param nir_img: str
    :param debug: str
    :return:
    """
    # Read image
    img, path, filename = pcv.readimage(vis_img)
    brass_mask = cv2.imread('mask_brass_tv_z1_L1.png')

    device = 0

    # Convert RGB to HSV and extract the Saturation channel
    device, s = pcv.rgb2gray_hsv(img, 's', device, debug)

    # Threshold the Saturation image
    device, s_thresh = pcv.binary_threshold(s, 75, 255, 'light', device, debug)

    # Median Filter
    device, s_mblur = pcv.median_blur(s_thresh, 5, device, debug)
    device, s_cnt = pcv.median_blur(s_thresh, 5, device, debug)

    # Fill small objects
    device, s_fill = pcv.fill(s_mblur, s_cnt, 150, device, debug)

    # Convert RGB to LAB and extract the Blue channel
    device, b = pcv.rgb2gray_lab(img, 'b', device, debug)

    # Threshold the blue image
    device, b_thresh = pcv.binary_threshold(b, 138, 255, 'light', device, debug)
    device, b_cnt = pcv.binary_threshold(b, 138, 255, 'light', device, debug)

    # Fill small objects
    device, b_fill = pcv.fill(b_thresh, b_cnt, 100, device, debug)

    # Join the thresholded saturation and blue-yellow images
    device, bs = pcv.logical_and(s_fill, b_fill, device, debug)

    # Apply Mask (for vis images, mask_color=white)
    device, masked = pcv.apply_mask(img, bs, 'white', device, debug)

    # Mask pesky brass piece
    device, brass_mask1 = pcv.rgb2gray_hsv(brass_mask, 'v', device, debug)
    device, brass_thresh = pcv.binary_threshold(brass_mask1, 0, 255, 'light', device, debug)
    device, brass_inv = pcv.invert(brass_thresh, device, debug)
    device, brass_masked = pcv.apply_mask(masked, brass_inv, 'white', device, debug)

    # Further mask soil and car
    device, masked_a = pcv.rgb2gray_lab(brass_masked, 'a', device, debug)
    device, soil_car1 = pcv.binary_threshold(masked_a, 128, 255, 'dark', device, debug)
    device, soil_car2 = pcv.binary_threshold(masked_a, 128, 255, 'light', device, debug)
    device, soil_car = pcv.logical_or(soil_car1, soil_car2, device, debug)
    device, soil_masked = pcv.apply_mask(brass_masked, soil_car, 'white', device, debug)

    # Convert RGB to LAB and extract the Green-Magenta and Blue-Yellow channels
    device, soil_a = pcv.rgb2gray_lab(soil_masked, 'a', device, debug)
    device, soil_b = pcv.rgb2gray_lab(soil_masked, 'b', device, debug)

    # Threshold the green-magenta and blue images
    device, soila_thresh = pcv.binary_threshold(soil_a, 124, 255, 'dark', device, debug)
    device, soilb_thresh = pcv.binary_threshold(soil_b, 148, 255, 'light', device, debug)

    # Join the thresholded saturation and blue-yellow images (OR)
    device, soil_ab = pcv.logical_or(soila_thresh, soilb_thresh, device, debug)
    device, soil_ab_cnt = pcv.logical_or(soila_thresh, soilb_thresh, device, debug)

    # Fill small objects
    device, soil_cnt = pcv.fill(soil_ab, soil_ab_cnt, 300, device, debug)

    # Apply mask (for vis images, mask_color=white)
    device, masked2 = pcv.apply_mask(soil_masked, soil_cnt, 'white', device, debug)

    # Identify objects
    device, id_objects, obj_hierarchy = pcv.find_objects(masked2, soil_cnt, device, debug)

    # Define ROI
    device, roi1, roi_hierarchy = pcv.define_roi(img, 'rectangle', device, None, 'default', debug, True, 600, 450, -600,
                                                 -350)

    # Decide which objects to keep
    device, roi_objects, hierarchy3, kept_mask, obj_area = pcv.roi_objects(img, 'partial', roi1, roi_hierarchy,
                                                                           id_objects, obj_hierarchy, device, debug)

    # Object combine kept objects
    device, obj, mask = pcv.object_composition(img, roi_objects, hierarchy3, device, debug)

    # Find shape properties, output shape image (optional)
    device, shape_header, shape_data, shape_img = pcv.analyze_object(img, vis_img, obj, mask, device, debug)

    # Determine color properties
    device, color_header, color_data, color_img = pcv.analyze_color(img, vis_img, mask, 256, device, debug, None,
                                                                    'v', 'img', 300)

    print('\t'.join(map(str, shape_header)) + '\n')
    print('\t'.join(map(str, shape_data)) + '\n')
    for row in shape_img:
        print('\t'.join(map(str, row)) + '\n')
    print('\t'.join(map(str, color_header)) + '\n')
    print('\t'.join(map(str, color_data)) + '\n')
    for row in color_img:
        print('\t'.join(map(str, row)) + '\n')

    ############################# Use VIS image mask for NIR image#########################
    # Read NIR image
    nir, path1, filename1 = pcv.readimage(nir_img)
    nir2 = cv2.imread(nir_img, -1)

    # Flip mask
    device, f_mask = pcv.flip(mask, "horizontal", device, debug)

    # Reize mask
    device, nmask = pcv.resize(f_mask, 0.116148, 0.116148, device, debug)

    # position, and crop mask
    device, newmask = pcv.crop_position_mask(nir, nmask, device, 15, 5, "top", "right", debug)

    # Identify objects
    device, nir_objects, nir_hierarchy = pcv.find_objects(nir, newmask, device, debug)

    # Object combine kept objects
    device, nir_combined, nir_combinedmask = pcv.object_composition(nir, nir_objects, nir_hierarchy, device, debug)

    ####################################### Analysis #############################################

    device, nhist_header, nhist_data, nir_imgs = pcv.analyze_NIR_intensity(nir2, filename1, nir_combinedmask, 256,
                                                                           device, False, debug)
    device, nshape_header, nshape_data, nir_shape = pcv.analyze_object(nir2, filename1, nir_combined, nir_combinedmask,
                                                                       device, debug)

    print('\t'.join(map(str,nhist_header)) + '\n')
    print('\t'.join(map(str,nhist_data)) + '\n')
    for row in nir_imgs:
      print('\t'.join(map(str,row)) + '\n')
    print('\t'.join(map(str,nshape_header)) + '\n')
    print('\t'.join(map(str,nshape_data)) + '\n')
    print('\t'.join(map(str,nir_shape)) + '\n')
Exemplo n.º 11
0
def process_tv_images_core(vis_id,
                           vis_img,
                           nir_id,
                           nir_rgb,
                           nir_cv2,
                           brass_mask,
                           traits,
                           debug=None):
    device = 0

    # Convert RGB to HSV and extract the Saturation channel
    device, s = pcv.rgb2gray_hsv(vis_img, 's', device, debug)

    # Threshold the Saturation image
    device, s_thresh = pcv.binary_threshold(s, 75, 255, 'light', device, debug)

    # Median Filter
    device, s_mblur = pcv.median_blur(s_thresh, 5, device, debug)
    device, s_cnt = pcv.median_blur(s_thresh, 5, device, debug)

    # Fill small objects
    device, s_fill = pcv.fill(s_mblur, s_cnt, 150, device, debug)

    # Convert RGB to LAB and extract the Blue channel
    device, b = pcv.rgb2gray_lab(vis_img, 'b', device, debug)

    # Threshold the blue image
    device, b_thresh = pcv.binary_threshold(b, 138, 255, 'light', device,
                                            debug)
    device, b_cnt = pcv.binary_threshold(b, 138, 255, 'light', device, debug)

    # Fill small objects
    device, b_fill = pcv.fill(b_thresh, b_cnt, 100, device, debug)

    # Join the thresholded saturation and blue-yellow images
    device, bs = pcv.logical_and(s_fill, b_fill, device, debug)

    # Apply Mask (for vis images, mask_color=white)
    device, masked = pcv.apply_mask(vis_img, bs, 'white', device, debug)

    # Mask pesky brass piece
    device, brass_mask1 = pcv.rgb2gray_hsv(brass_mask, 'v', device, debug)
    device, brass_thresh = pcv.binary_threshold(brass_mask1, 0, 255, 'light',
                                                device, debug)
    device, brass_inv = pcv.invert(brass_thresh, device, debug)
    device, brass_masked = pcv.apply_mask(masked, brass_inv, 'white', device,
                                          debug)

    # Further mask soil and car
    device, masked_a = pcv.rgb2gray_lab(brass_masked, 'a', device, debug)
    device, soil_car1 = pcv.binary_threshold(masked_a, 128, 255, 'dark',
                                             device, debug)
    device, soil_car2 = pcv.binary_threshold(masked_a, 128, 255, 'light',
                                             device, debug)
    device, soil_car = pcv.logical_or(soil_car1, soil_car2, device, debug)
    device, soil_masked = pcv.apply_mask(brass_masked, soil_car, 'white',
                                         device, debug)

    # Convert RGB to LAB and extract the Green-Magenta and Blue-Yellow channels
    device, soil_a = pcv.rgb2gray_lab(soil_masked, 'a', device, debug)
    device, soil_b = pcv.rgb2gray_lab(soil_masked, 'b', device, debug)

    # Threshold the green-magenta and blue images
    device, soila_thresh = pcv.binary_threshold(soil_a, 124, 255, 'dark',
                                                device, debug)
    device, soilb_thresh = pcv.binary_threshold(soil_b, 148, 255, 'light',
                                                device, debug)

    # Join the thresholded saturation and blue-yellow images (OR)
    device, soil_ab = pcv.logical_or(soila_thresh, soilb_thresh, device, debug)
    device, soil_ab_cnt = pcv.logical_or(soila_thresh, soilb_thresh, device,
                                         debug)

    # Fill small objects
    device, soil_cnt = pcv.fill(soil_ab, soil_ab_cnt, 300, device, debug)

    # Apply mask (for vis images, mask_color=white)
    device, masked2 = pcv.apply_mask(soil_masked, soil_cnt, 'white', device,
                                     debug)

    # Identify objects
    device, id_objects, obj_hierarchy = pcv.find_objects(
        masked2, soil_cnt, device, debug)

    # Define ROI
    device, roi1, roi_hierarchy = pcv.define_roi(vis_img, 'rectangle', device,
                                                 None, 'default', debug, True,
                                                 600, 450, -600, -350)

    # Decide which objects to keep
    device, roi_objects, hierarchy3, kept_mask, obj_area = pcv.roi_objects(
        vis_img, 'partial', roi1, roi_hierarchy, id_objects, obj_hierarchy,
        device, debug)

    # Object combine kept objects
    device, obj, mask = pcv.object_composition(vis_img, roi_objects,
                                               hierarchy3, device, debug)

    # Find shape properties, output shape image (optional)
    device, shape_header, shape_data, shape_img = pcv.analyze_object(
        vis_img, vis_id, obj, mask, device, debug)

    # Determine color properties
    device, color_header, color_data, color_img = pcv.analyze_color(
        vis_img, vis_id, mask, 256, device, debug, None, 'v', 'img', 300)

    # Output shape and color data
    vis_traits = {}
    for i in range(1, len(shape_header)):
        vis_traits[shape_header[i]] = shape_data[i]
    for i in range(2, len(color_header)):
        vis_traits[color_header[i]] = serialize_color_data(color_data[i])

    ############################# Use VIS image mask for NIR image#########################

    # Flip mask
    device, f_mask = pcv.flip(mask, "horizontal", device, debug)

    # Reize mask
    device, nmask = pcv.resize(f_mask, 0.116148, 0.116148, device, debug)

    # position, and crop mask
    device, newmask = pcv.crop_position_mask(nir_rgb, nmask, device, 15, 5,
                                             "top", "right", debug)

    # Identify objects
    device, nir_objects, nir_hierarchy = pcv.find_objects(
        nir_rgb, newmask, device, debug)

    # Object combine kept objects
    device, nir_combined, nir_combinedmask = pcv.object_composition(
        nir_rgb, nir_objects, nir_hierarchy, device, debug)

    ####################################### Analysis #############################################

    device, nhist_header, nhist_data, nir_imgs = pcv.analyze_NIR_intensity(
        nir_cv2, nir_id, nir_combinedmask, 256, device, False, debug)
    device, nshape_header, nshape_data, nir_shape = pcv.analyze_object(
        nir_cv2, nir_id, nir_combined, nir_combinedmask, device, debug)

    nir_traits = {}
    for i in range(1, len(nshape_header)):
        nir_traits[nshape_header[i]] = nshape_data[i]
    for i in range(2, len(nhist_header)):
        nir_traits[nhist_header[i]] = serialize_color_data(nhist_data[i])

    # Add data to traits table
    traits['tv_area'] = vis_traits['area']

    return [vis_traits, nir_traits]
Exemplo n.º 12
0
def process_sv_images_core(vis_id,
                           vis_img,
                           nir_id,
                           nir_rgb,
                           nir_cv2,
                           traits,
                           debug=None):
    # Pipeline step
    device = 0

    # Convert RGB to HSV and extract the Saturation channel
    device, s = pcv.rgb2gray_hsv(vis_img, 's', device, debug)

    # Threshold the Saturation image
    device, s_thresh = pcv.binary_threshold(s, 36, 255, 'light', device, debug)

    # Median Filter
    device, s_mblur = pcv.median_blur(s_thresh, 5, device, debug)
    device, s_cnt = pcv.median_blur(s_thresh, 5, device, debug)

    # Fill small objects
    # device, s_fill = pcv.fill(s_mblur, s_cnt, 0, device, args.debug)

    # Convert RGB to LAB and extract the Blue channel
    device, b = pcv.rgb2gray_lab(vis_img, 'b', device, debug)

    # Threshold the blue image
    device, b_thresh = pcv.binary_threshold(b, 137, 255, 'light', device,
                                            debug)
    device, b_cnt = pcv.binary_threshold(b, 137, 255, 'light', device, debug)

    # Fill small objects
    # device, b_fill = pcv.fill(b_thresh, b_cnt, 10, device, args.debug)

    # Join the thresholded saturation and blue-yellow images
    device, bs = pcv.logical_and(s_mblur, b_cnt, device, debug)

    # Apply Mask (for vis images, mask_color=white)
    device, masked = pcv.apply_mask(vis_img, bs, 'white', device, debug)

    # Convert RGB to LAB and extract the Green-Magenta and Blue-Yellow channels
    device, masked_a = pcv.rgb2gray_lab(masked, 'a', device, debug)
    device, masked_b = pcv.rgb2gray_lab(masked, 'b', device, debug)

    # Threshold the green-magenta and blue images
    device, maskeda_thresh = pcv.binary_threshold(masked_a, 127, 255, 'dark',
                                                  device, debug)
    device, maskedb_thresh = pcv.binary_threshold(masked_b, 128, 255, 'light',
                                                  device, debug)

    # Join the thresholded saturation and blue-yellow images (OR)
    device, ab = pcv.logical_or(maskeda_thresh, maskedb_thresh, device, debug)
    device, ab_cnt = pcv.logical_or(maskeda_thresh, maskedb_thresh, device,
                                    debug)

    # Fill small noise
    device, ab_fill1 = pcv.fill(ab, ab_cnt, 200, device, debug)

    # Dilate to join small objects with larger ones
    device, ab_cnt1 = pcv.dilate(ab_fill1, 3, 2, device, debug)
    device, ab_cnt2 = pcv.dilate(ab_fill1, 3, 2, device, debug)

    # Fill dilated image mask
    device, ab_cnt3 = pcv.fill(ab_cnt2, ab_cnt1, 150, device, debug)
    device, masked2 = pcv.apply_mask(masked, ab_cnt3, 'white', device, debug)

    # Convert RGB to LAB and extract the Green-Magenta and Blue-Yellow channels
    device, masked2_a = pcv.rgb2gray_lab(masked2, 'a', device, debug)
    device, masked2_b = pcv.rgb2gray_lab(masked2, 'b', device, debug)

    # Threshold the green-magenta and blue images
    device, masked2a_thresh = pcv.binary_threshold(masked2_a, 127, 255, 'dark',
                                                   device, debug)
    device, masked2b_thresh = pcv.binary_threshold(masked2_b, 128, 255,
                                                   'light', device, debug)

    device, masked2a_thresh_blur = pcv.median_blur(masked2a_thresh, 5, device,
                                                   debug)
    device, masked2b_thresh_blur = pcv.median_blur(masked2b_thresh, 13, device,
                                                   debug)

    device, ab_fill = pcv.logical_or(masked2a_thresh_blur,
                                     masked2b_thresh_blur, device, debug)

    # Identify objects
    device, id_objects, obj_hierarchy = pcv.find_objects(
        masked2, ab_fill, device, debug)

    # Define ROI
    device, roi1, roi_hierarchy = pcv.define_roi(masked2, 'rectangle', device,
                                                 None, 'default', debug, True,
                                                 700, 0, -600, -300)

    # Decide which objects to keep
    device, roi_objects, hierarchy3, kept_mask, obj_area = pcv.roi_objects(
        vis_img, 'partial', roi1, roi_hierarchy, id_objects, obj_hierarchy,
        device, debug)

    # Object combine kept objects
    device, obj, mask = pcv.object_composition(vis_img, roi_objects,
                                               hierarchy3, device, debug)

    ############## VIS Analysis ################
    # Find shape properties, output shape image (optional)
    device, shape_header, shape_data, shape_img = pcv.analyze_object(
        vis_img, vis_id, obj, mask, device, debug)

    # Shape properties relative to user boundary line (optional)
    device, boundary_header, boundary_data, boundary_img1 = pcv.analyze_bound(
        vis_img, vis_id, obj, mask, 384, device, debug)

    # Determine color properties: Histograms, Color Slices and
    # Pseudocolored Images, output color analyzed images (optional)
    device, color_header, color_data, color_img = pcv.analyze_color(
        vis_img, vis_id, mask, 256, device, debug, None, 'v', 'img', 300)

    # Output shape and color data
    vis_traits = {}
    for i in range(1, len(shape_header)):
        vis_traits[shape_header[i]] = shape_data[i]
    for i in range(1, len(boundary_header)):
        vis_traits[boundary_header[i]] = boundary_data[i]
    for i in range(2, len(color_header)):
        vis_traits[color_header[i]] = serialize_color_data(color_data[i])

    ############################# Use VIS image mask for NIR image#########################
    # Flip mask
    device, f_mask = pcv.flip(mask, "vertical", device, debug)

    # Reize mask
    device, nmask = pcv.resize(f_mask, 0.1154905775, 0.1154905775, device,
                               debug)

    # position, and crop mask
    device, newmask = pcv.crop_position_mask(nir_rgb, nmask, device, 30, 4,
                                             "top", "right", debug)

    # Identify objects
    device, nir_objects, nir_hierarchy = pcv.find_objects(
        nir_rgb, newmask, device, debug)

    # Object combine kept objects
    device, nir_combined, nir_combinedmask = pcv.object_composition(
        nir_rgb, nir_objects, nir_hierarchy, device, debug)

    ####################################### Analysis #############################################
    device, nhist_header, nhist_data, nir_imgs = pcv.analyze_NIR_intensity(
        nir_cv2, nir_id, nir_combinedmask, 256, device, False, debug)
    device, nshape_header, nshape_data, nir_shape = pcv.analyze_object(
        nir_cv2, nir_id, nir_combined, nir_combinedmask, device, debug)

    nir_traits = {}
    for i in range(1, len(nshape_header)):
        nir_traits[nshape_header[i]] = nshape_data[i]
    for i in range(2, len(nhist_header)):
        nir_traits[nhist_header[i]] = serialize_color_data(nhist_data[i])

    # Add data to traits table
    traits['sv_area'].append(vis_traits['area'])
    traits['hull_area'].append(vis_traits['hull-area'])
    traits['solidity'].append(vis_traits['solidity'])
    traits['height'].append(vis_traits['height_above_bound'])
    traits['perimeter'].append(vis_traits['perimeter'])

    return [vis_traits, nir_traits]
Exemplo n.º 13
0
def test_plantcv_flip():
    img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR))
    device, flipped_img = pcv.flip(img=img, direction="horizontal", device=0, debug=None)
    assert all([i == j] for i, j in zip(np.shape(flipped_img), TEST_COLOR_DIM))