def test_plantcv_flip(): img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) device, flipped_img = pcv.flip(img=img, direction="horizontal", device=0, debug=None) assert all([i == j] for i, j in zip(np.shape(flipped_img), TEST_COLOR_DIM))
def main(): # Get options args = options() # Read image img, path, filename = pcv.readimage(args.image) # Pipeline step device = 0 # Convert RGB to HSV and extract the Saturation channel device, s = pcv.rgb2gray_hsv(img, 's', device, args.debug) # Threshold the Saturation image device, s_thresh = pcv.binary_threshold(s, 36, 255, 'light', device, args.debug) # Median Filter device, s_mblur = pcv.median_blur(s_thresh, 0, device, args.debug) device, s_cnt = pcv.median_blur(s_thresh, 0, device, args.debug) # Fill small objects #device, s_fill = pcv.fill(s_mblur, s_cnt, 0, device, args.debug) # Convert RGB to LAB and extract the Blue channel device, b = pcv.rgb2gray_lab(img, 'b', device, args.debug) # Threshold the blue image device, b_thresh = pcv.binary_threshold(b, 137, 255, 'light', device, args.debug) device, b_cnt = pcv.binary_threshold(b, 137, 255, 'light', device, args.debug) # Fill small objects #device, b_fill = pcv.fill(b_thresh, b_cnt, 10, device, args.debug) # Join the thresholded saturation and blue-yellow images device, bs = pcv.logical_and(s_mblur, b_cnt, device, args.debug) # Apply Mask (for vis images, mask_color=white) device, masked = pcv.apply_mask(img, bs, 'white', device, args.debug) # Convert RGB to LAB and extract the Green-Magenta and Blue-Yellow channels device, masked_a = pcv.rgb2gray_lab(masked, 'a', device, args.debug) device, masked_b = pcv.rgb2gray_lab(masked, 'b', device, args.debug) # Threshold the green-magenta and blue images device, maskeda_thresh = pcv.binary_threshold(masked_a, 127, 255, 'dark', device, args.debug) device, maskedb_thresh = pcv.binary_threshold(masked_b, 128, 255, 'light', device, args.debug) # Join the thresholded saturation and blue-yellow images (OR) device, ab = pcv.logical_or(maskeda_thresh, maskedb_thresh, device, args.debug) device, ab_cnt = pcv.logical_or(maskeda_thresh, maskedb_thresh, device, args.debug) # Fill small noise device, ab_fill1 = pcv.fill(ab, ab_cnt, 2, device, args.debug) # Dilate to join small objects with larger ones device, ab_cnt1=pcv.dilate(ab_fill1, 3, 2, device, args.debug) device, ab_cnt2=pcv.dilate(ab_fill1, 3, 2, device, args.debug) # Fill dilated image mask device, ab_cnt3=pcv.fill(ab_cnt2,ab_cnt1,150,device,args.debug) device, masked2 = pcv.apply_mask(masked, ab_cnt3, 'white', device, args.debug) # Convert RGB to LAB and extract the Green-Magenta and Blue-Yellow channels device, masked2_a = pcv.rgb2gray_lab(masked2, 'a', device, args.debug) device, masked2_b = pcv.rgb2gray_lab(masked2, 'b', device, args.debug) # Threshold the green-magenta and blue images device, masked2a_thresh = pcv.binary_threshold(masked2_a, 127, 255, 'dark', device, args.debug) device, masked2b_thresh = pcv.binary_threshold(masked2_b, 128, 255, 'light', device, args.debug) device, ab_fill = pcv.logical_or(masked2a_thresh, masked2b_thresh, device, args.debug) # Identify objects device, id_objects,obj_hierarchy = pcv.find_objects(masked2, ab_fill, device, args.debug) # Define ROI device, roi1, roi_hierarchy= pcv.define_roi(masked2,'rectangle', device, None, 'default', args.debug,True, 550, 0,-600,-907) # Decide which objects to keep device,roi_objects, hierarchy3, kept_mask, obj_area = pcv.roi_objects(img,'partial',roi1,roi_hierarchy,id_objects,obj_hierarchy,device, args.debug) # Object combine kept objects device, obj, mask = pcv.object_composition(img, roi_objects, hierarchy3, device, args.debug) ############## VIS Analysis ################ outfile=False if args.writeimg==True: outfile=args.outdir+"/"+filename # Find shape properties, output shape image (optional) device, shape_header,shape_data,shape_img = pcv.analyze_object(img, args.image, obj, mask, device,args.debug,outfile) # Shape properties relative to user boundary line (optional) device, boundary_header,boundary_data, boundary_img1= pcv.analyze_bound(img, args.image,obj, mask, 935, device,args.debug,outfile) # Determine color properties: Histograms, Color Slices and Pseudocolored Images, output color analyzed images (optional) device, color_header,color_data,color_img= pcv.analyze_color(img, args.image, mask, 256, device, args.debug,None,'v','img',300,outfile) # Output shape and color data result=open(args.result,"a") result.write('\t'.join(map(str,shape_header))) result.write("\n") result.write('\t'.join(map(str,shape_data))) result.write("\n") for row in shape_img: result.write('\t'.join(map(str,row))) result.write("\n") result.write('\t'.join(map(str,color_header))) result.write("\n") result.write('\t'.join(map(str,color_data))) result.write("\n") result.write('\t'.join(map(str,boundary_header))) result.write("\n") result.write('\t'.join(map(str,boundary_data))) result.write("\n") result.write('\t'.join(map(str,boundary_img1))) result.write("\n") for row in color_img: result.write('\t'.join(map(str,row))) result.write("\n") result.close() ############################# Use VIS image mask for NIR image######################### # Find matching NIR image device, nirpath=pcv.get_nir(path,filename,device,args.debug) nir, path1, filename1=pcv.readimage(nirpath) nir2=cv2.imread(nirpath,-1) # Flip mask device, f_mask= pcv.flip(mask,"vertical",device,args.debug) # Reize mask device, nmask = pcv.resize(f_mask, 0.118069,0.118069, device, args.debug) # position, and crop mask device,newmask=pcv.crop_position_mask(nir,nmask,device,40,3,"top","right",args.debug) # Identify objects device, nir_objects,nir_hierarchy = pcv.find_objects(nir, newmask, device, args.debug) # Object combine kept objects device, nir_combined, nir_combinedmask = pcv.object_composition(nir, nir_objects, nir_hierarchy, device, args.debug) ####################################### Analysis ############################################# outfile1=False if args.writeimg==True: outfile1=args.outdir+"/"+filename1 device,nhist_header, nhist_data,nir_imgs= pcv.analyze_NIR_intensity(nir2, filename1, nir_combinedmask, 256, device,False, args.debug, outfile1) device, nshape_header, nshape_data, nir_shape = pcv.analyze_object(nir2, filename1, nir_combined, nir_combinedmask, device, args.debug, outfile1) coresult=open(args.coresult,"a") coresult.write('\t'.join(map(str,nhist_header))) coresult.write("\n") coresult.write('\t'.join(map(str,nhist_data))) coresult.write("\n") for row in nir_imgs: coresult.write('\t'.join(map(str,row))) coresult.write("\n") coresult.write('\t'.join(map(str,nshape_header))) coresult.write("\n") coresult.write('\t'.join(map(str,nshape_data))) coresult.write("\n") coresult.write('\t'.join(map(str,nir_shape))) coresult.write("\n") coresult.close()
def main(): # Get options args = options() # Read image img, path, filename = pcv.readimage(args.image) brass_mask = cv2.imread(args.roi) # Pipeline step device = 0 # Convert RGB to HSV and extract the Saturation channel device, s = pcv.rgb2gray_hsv(img, "s", device, args.debug) # Threshold the Saturation image device, s_thresh = pcv.binary_threshold(s, 49, 255, "light", device, args.debug) # Median Filter device, s_mblur = pcv.median_blur(s_thresh, 5, device, args.debug) device, s_cnt = pcv.median_blur(s_thresh, 5, device, args.debug) # Fill small objects device, s_fill = pcv.fill(s_mblur, s_cnt, 150, device, args.debug) # Convert RGB to LAB and extract the Blue channel device, b = pcv.rgb2gray_lab(img, "b", device, args.debug) # Threshold the blue image device, b_thresh = pcv.binary_threshold(b, 138, 255, "light", device, args.debug) device, b_cnt = pcv.binary_threshold(b, 138, 255, "light", device, args.debug) # Fill small objects device, b_fill = pcv.fill(b_thresh, b_cnt, 150, device, args.debug) # Join the thresholded saturation and blue-yellow images device, bs = pcv.logical_and(s_fill, b_fill, device, args.debug) # Apply Mask (for vis images, mask_color=white) device, masked = pcv.apply_mask(img, bs, "white", device, args.debug) # Mask pesky brass piece device, brass_mask1 = pcv.rgb2gray_hsv(brass_mask, "v", device, args.debug) device, brass_thresh = pcv.binary_threshold(brass_mask1, 0, 255, "light", device, args.debug) device, brass_inv = pcv.invert(brass_thresh, device, args.debug) device, brass_masked = pcv.apply_mask(masked, brass_inv, "white", device, args.debug) # Further mask soil and car device, masked_a = pcv.rgb2gray_lab(brass_masked, "a", device, args.debug) device, soil_car = pcv.binary_threshold(masked_a, 128, 255, "dark", device, args.debug) device, soil_masked = pcv.apply_mask(brass_masked, soil_car, "white", device, args.debug) # Convert RGB to LAB and extract the Green-Magenta and Blue-Yellow channels device, soil_a = pcv.rgb2gray_lab(soil_masked, "a", device, args.debug) device, soil_b = pcv.rgb2gray_lab(soil_masked, "b", device, args.debug) # Threshold the green-magenta and blue images device, soila_thresh = pcv.binary_threshold(soil_a, 118, 255, "dark", device, args.debug) device, soilb_thresh = pcv.binary_threshold(soil_b, 150, 255, "light", device, args.debug) # Join the thresholded saturation and blue-yellow images (OR) device, soil_ab = pcv.logical_or(soila_thresh, soilb_thresh, device, args.debug) device, soil_ab_cnt = pcv.logical_or(soila_thresh, soilb_thresh, device, args.debug) # Fill small objects device, soil_cnt = pcv.fill(soil_ab, soil_ab_cnt, 75, device, args.debug) # Median Filter # device, soil_mblur = pcv.median_blur(soil_fill, 5, device, args.debug) # device, soil_cnt = pcv.median_blur(soil_fill, 5, device, args.debug) # Apply mask (for vis images, mask_color=white) device, masked2 = pcv.apply_mask(soil_masked, soil_cnt, "white", device, args.debug) # Identify objects device, id_objects, obj_hierarchy = pcv.find_objects(masked2, soil_cnt, device, args.debug) # Define ROI device, roi1, roi_hierarchy = pcv.define_roi( img, "circle", device, None, "default", args.debug, True, 0, 0, -200, -200 ) # Decide which objects to keep device, roi_objects, hierarchy3, kept_mask, obj_area = pcv.roi_objects( img, "partial", roi1, roi_hierarchy, id_objects, obj_hierarchy, device, args.debug ) # Object combine kept objects device, obj, mask = pcv.object_composition(img, roi_objects, hierarchy3, device, args.debug) ############## VIS Analysis ################ outfile = False if args.writeimg == True: outfile = args.outdir + "/" + filename # Find shape properties, output shape image (optional) device, shape_header, shape_data, shape_img = pcv.analyze_object( img, args.image, obj, mask, device, args.debug, outfile ) # Determine color properties: Histograms, Color Slices and Pseudocolored Images, output color analyzed images (optional) device, color_header, color_data, color_img = pcv.analyze_color( img, args.image, mask, 256, device, args.debug, None, "v", "img", 300, outfile ) # Output shape and color data result = open(args.result, "a") result.write("\t".join(map(str, shape_header))) result.write("\n") result.write("\t".join(map(str, shape_data))) result.write("\n") for row in shape_img: result.write("\t".join(map(str, row))) result.write("\n") result.write("\t".join(map(str, color_header))) result.write("\n") result.write("\t".join(map(str, color_data))) result.write("\n") for row in color_img: result.write("\t".join(map(str, row))) result.write("\n") result.close() ############################# Use VIS image mask for NIR image######################### # Find matching NIR image device, nirpath = pcv.get_nir(path, filename, device, args.debug) nir, path1, filename1 = pcv.readimage(nirpath) nir2 = cv2.imread(nirpath, -1) # Flip mask device, f_mask = pcv.flip(mask, "horizontal", device, args.debug) # Reize mask device, nmask = pcv.resize(f_mask, 0.1304, 0.1304, device, args.debug) # position, and crop mask device, newmask = pcv.crop_position_mask(nir, nmask, device, 9, 12, "top", "left", args.debug) # Identify objects device, nir_objects, nir_hierarchy = pcv.find_objects(nir, newmask, device, args.debug) # Object combine kept objects device, nir_combined, nir_combinedmask = pcv.object_composition(nir, nir_objects, nir_hierarchy, device, args.debug) ####################################### Analysis ############################################# outfile1 = False if args.writeimg == True: outfile1 = args.outdir + "/" + filename1 device, nhist_header, nhist_data, nir_imgs = pcv.analyze_NIR_intensity( nir2, filename1, nir_combinedmask, 256, device, False, args.debug, outfile1 ) device, nshape_header, nshape_data, nir_shape = pcv.analyze_object( nir2, filename1, nir_combined, nir_combinedmask, device, args.debug, outfile1 ) coresult = open(args.coresult, "a") coresult.write("\t".join(map(str, nhist_header))) coresult.write("\n") coresult.write("\t".join(map(str, nhist_data))) coresult.write("\n") for row in nir_imgs: coresult.write("\t".join(map(str, row))) coresult.write("\n") coresult.write("\t".join(map(str, nshape_header))) coresult.write("\n") coresult.write("\t".join(map(str, nshape_data))) coresult.write("\n") coresult.write("\t".join(map(str, nir_shape))) coresult.write("\n") coresult.close()
def main(): # Get options args = options() # Read image img, path, filename = pcv.readimage(args.image) brass_mask = cv2.imread(args.roi) # Pipeline step device = 0 # Convert RGB to HSV and extract the Saturation channel device, s = pcv.rgb2gray_hsv(img, 's', device, args.debug) # Threshold the Saturation image device, s_thresh = pcv.binary_threshold(s, 49, 255, 'light', device, args.debug) # Median Filter device, s_mblur = pcv.median_blur(s_thresh, 5, device, args.debug) device, s_cnt = pcv.median_blur(s_thresh, 5, device, args.debug) # Fill small objects device, s_fill = pcv.fill(s_mblur, s_cnt, 150, device, args.debug) # Convert RGB to LAB and extract the Blue channel device, b = pcv.rgb2gray_lab(img, 'b', device, args.debug) # Threshold the blue image device, b_thresh = pcv.binary_threshold(b, 138, 255, 'light', device, args.debug) device, b_cnt = pcv.binary_threshold(b, 138, 255, 'light', device, args.debug) # Fill small objects device, b_fill = pcv.fill(b_thresh, b_cnt, 100, device, args.debug) # Join the thresholded saturation and blue-yellow images device, bs = pcv.logical_and(s_fill, b_fill, device, args.debug) # Apply Mask (for vis images, mask_color=white) device, masked = pcv.apply_mask(img, bs, 'white', device, args.debug) # Mask pesky brass piece device, brass_mask1 = pcv.rgb2gray_hsv(brass_mask, 'v', device, args.debug) device, brass_thresh = pcv.binary_threshold(brass_mask1, 0, 255, 'light', device, args.debug) device, brass_inv = pcv.invert(brass_thresh, device, args.debug) device, brass_masked = pcv.apply_mask(masked, brass_inv, 'white', device, args.debug) # Further mask soil and car device, masked_a = pcv.rgb2gray_lab(brass_masked, 'a', device, args.debug) device, soil_car1 = pcv.binary_threshold(masked_a, 128, 255, 'dark', device, args.debug) device, soil_car2 = pcv.binary_threshold(masked_a, 128, 255, 'light', device, args.debug) device, soil_car = pcv.logical_or(soil_car1, soil_car2, device, args.debug) device, soil_masked = pcv.apply_mask(brass_masked, soil_car, 'white', device, args.debug) # Convert RGB to LAB and extract the Green-Magenta and Blue-Yellow channels device, soil_a = pcv.rgb2gray_lab(soil_masked, 'a', device, args.debug) device, soil_b = pcv.rgb2gray_lab(soil_masked, 'b', device, args.debug) # Threshold the green-magenta and blue images device, soila_thresh = pcv.binary_threshold(soil_a, 124, 255, 'dark', device, args.debug) device, soilb_thresh = pcv.binary_threshold(soil_b, 148, 255, 'light', device, args.debug) # Join the thresholded saturation and blue-yellow images (OR) device, soil_ab = pcv.logical_or(soila_thresh, soilb_thresh, device, args.debug) device, soil_ab_cnt = pcv.logical_or(soila_thresh, soilb_thresh, device, args.debug) # Fill small objects device, soil_cnt = pcv.fill(soil_ab, soil_ab_cnt, 150, device, args.debug) # Median Filter #device, soil_mblur = pcv.median_blur(soil_fill, 5, device, args.debug) #device, soil_cnt = pcv.median_blur(soil_fill, 5, device, args.debug) # Apply mask (for vis images, mask_color=white) device, masked2 = pcv.apply_mask(soil_masked, soil_cnt, 'white', device, args.debug) # Identify objects device, id_objects, obj_hierarchy = pcv.find_objects( masked2, soil_cnt, device, args.debug) # Define ROI device, roi1, roi_hierarchy = pcv.define_roi(img, 'rectangle', device, None, 'default', args.debug, True, 600, 450, -600, -350) # Decide which objects to keep device, roi_objects, hierarchy3, kept_mask, obj_area = pcv.roi_objects( img, 'partial', roi1, roi_hierarchy, id_objects, obj_hierarchy, device, args.debug) # Object combine kept objects device, obj, mask = pcv.object_composition(img, roi_objects, hierarchy3, device, args.debug) ############## VIS Analysis ################ outfile = False if args.writeimg == True: outfile = args.outdir + "/" + filename # Find shape properties, output shape image (optional) device, shape_header, shape_data, shape_img = pcv.analyze_object( img, args.image, obj, mask, device, args.debug, outfile) # Determine color properties: Histograms, Color Slices and Pseudocolored Images, output color analyzed images (optional) device, color_header, color_data, color_img = pcv.analyze_color( img, args.image, mask, 256, device, args.debug, None, 'v', 'img', 300, outfile) # Output shape and color data result = open(args.result, "a") result.write('\t'.join(map(str, shape_header))) result.write("\n") result.write('\t'.join(map(str, shape_data))) result.write("\n") for row in shape_img: result.write('\t'.join(map(str, row))) result.write("\n") result.write('\t'.join(map(str, color_header))) result.write("\n") result.write('\t'.join(map(str, color_data))) result.write("\n") for row in color_img: result.write('\t'.join(map(str, row))) result.write("\n") result.close() ############################# Use VIS image mask for NIR image######################### # Find matching NIR image device, nirpath = pcv.get_nir(path, filename, device, args.debug) nir, path1, filename1 = pcv.readimage(nirpath) nir2 = cv2.imread(nirpath, -1) # Flip mask device, f_mask = pcv.flip(mask, "horizontal", device, args.debug) # Reize mask device, nmask = pcv.resize(f_mask, 0.116148, 0.116148, device, args.debug) # position, and crop mask device, newmask = pcv.crop_position_mask(nir, nmask, device, 15, 5, "top", "right", args.debug) # Identify objects device, nir_objects, nir_hierarchy = pcv.find_objects( nir, newmask, device, args.debug) # Object combine kept objects device, nir_combined, nir_combinedmask = pcv.object_composition( nir, nir_objects, nir_hierarchy, device, args.debug) ####################################### Analysis ############################################# outfile1 = False if args.writeimg == True: outfile1 = args.outdir + "/" + filename1 device, nhist_header, nhist_data, nir_imgs = pcv.analyze_NIR_intensity( nir2, filename1, nir_combinedmask, 256, device, False, args.debug, outfile1) device, nshape_header, nshape_data, nir_shape = pcv.analyze_object( nir2, filename1, nir_combined, nir_combinedmask, device, args.debug, outfile1) coresult = open(args.coresult, "a") coresult.write('\t'.join(map(str, nhist_header))) coresult.write("\n") coresult.write('\t'.join(map(str, nhist_data))) coresult.write("\n") for row in nir_imgs: coresult.write('\t'.join(map(str, row))) coresult.write("\n") coresult.write('\t'.join(map(str, nshape_header))) coresult.write("\n") coresult.write('\t'.join(map(str, nshape_data))) coresult.write("\n") coresult.write('\t'.join(map(str, nir_shape))) coresult.write("\n") coresult.close()
def process_sv_images_core(vis_id, vis_img, nir_id, nir_rgb, nir_cv2, traits, debug=None): # Pipeline step device = 0 # Convert RGB to HSV and extract the Saturation channel device, s = pcv.rgb2gray_hsv(vis_img, 's', device, debug) # Threshold the Saturation image device, s_thresh = pcv.binary_threshold(s, 36, 255, 'light', device, debug) # Median Filter device, s_mblur = pcv.median_blur(s_thresh, 5, device, debug) device, s_cnt = pcv.median_blur(s_thresh, 5, device, debug) # Fill small objects # device, s_fill = pcv.fill(s_mblur, s_cnt, 0, device, args.debug) # Convert RGB to LAB and extract the Blue channel device, b = pcv.rgb2gray_lab(vis_img, 'b', device, debug) # Threshold the blue image device, b_thresh = pcv.binary_threshold(b, 137, 255, 'light', device, debug) device, b_cnt = pcv.binary_threshold(b, 137, 255, 'light', device, debug) # Fill small objects # device, b_fill = pcv.fill(b_thresh, b_cnt, 10, device, args.debug) # Join the thresholded saturation and blue-yellow images device, bs = pcv.logical_and(s_mblur, b_cnt, device, debug) # Apply Mask (for vis images, mask_color=white) device, masked = pcv.apply_mask(vis_img, bs, 'white', device, debug) # Convert RGB to LAB and extract the Green-Magenta and Blue-Yellow channels device, masked_a = pcv.rgb2gray_lab(masked, 'a', device, debug) device, masked_b = pcv.rgb2gray_lab(masked, 'b', device, debug) # Threshold the green-magenta and blue images device, maskeda_thresh = pcv.binary_threshold(masked_a, 127, 255, 'dark', device, debug) device, maskedb_thresh = pcv.binary_threshold(masked_b, 128, 255, 'light', device, debug) # Join the thresholded saturation and blue-yellow images (OR) device, ab = pcv.logical_or(maskeda_thresh, maskedb_thresh, device, debug) device, ab_cnt = pcv.logical_or(maskeda_thresh, maskedb_thresh, device, debug) # Fill small noise device, ab_fill1 = pcv.fill(ab, ab_cnt, 200, device, debug) # Dilate to join small objects with larger ones device, ab_cnt1 = pcv.dilate(ab_fill1, 3, 2, device, debug) device, ab_cnt2 = pcv.dilate(ab_fill1, 3, 2, device, debug) # Fill dilated image mask device, ab_cnt3 = pcv.fill(ab_cnt2, ab_cnt1, 150, device, debug) device, masked2 = pcv.apply_mask(masked, ab_cnt3, 'white', device, debug) # Convert RGB to LAB and extract the Green-Magenta and Blue-Yellow channels device, masked2_a = pcv.rgb2gray_lab(masked2, 'a', device, debug) device, masked2_b = pcv.rgb2gray_lab(masked2, 'b', device, debug) # Threshold the green-magenta and blue images device, masked2a_thresh = pcv.binary_threshold(masked2_a, 127, 255, 'dark', device, debug) device, masked2b_thresh = pcv.binary_threshold(masked2_b, 128, 255, 'light', device, debug) device, masked2a_thresh_blur = pcv.median_blur(masked2a_thresh, 5, device, debug) device, masked2b_thresh_blur = pcv.median_blur(masked2b_thresh, 13, device, debug) device, ab_fill = pcv.logical_or(masked2a_thresh_blur, masked2b_thresh_blur, device, debug) # Identify objects device, id_objects, obj_hierarchy = pcv.find_objects(masked2, ab_fill, device, debug) # Define ROI device, roi1, roi_hierarchy = pcv.define_roi(masked2, 'rectangle', device, None, 'default', debug, True, 700, 0, -600, -300) # Decide which objects to keep device, roi_objects, hierarchy3, kept_mask, obj_area = pcv.roi_objects(vis_img, 'partial', roi1, roi_hierarchy, id_objects, obj_hierarchy, device, debug) # Object combine kept objects device, obj, mask = pcv.object_composition(vis_img, roi_objects, hierarchy3, device, debug) ############## VIS Analysis ################ # Find shape properties, output shape image (optional) device, shape_header, shape_data, shape_img = pcv.analyze_object(vis_img, vis_id, obj, mask, device, debug) # Shape properties relative to user boundary line (optional) device, boundary_header, boundary_data, boundary_img1 = pcv.analyze_bound(vis_img, vis_id, obj, mask, 384, device, debug) # Determine color properties: Histograms, Color Slices and # Pseudocolored Images, output color analyzed images (optional) device, color_header, color_data, color_img = pcv.analyze_color(vis_img, vis_id, mask, 256, device, debug, None, 'v', 'img', 300) # Output shape and color data vis_traits = {} for i in range(1, len(shape_header)): vis_traits[shape_header[i]] = shape_data[i] for i in range(1, len(boundary_header)): vis_traits[boundary_header[i]] = boundary_data[i] for i in range(2, len(color_header)): vis_traits[color_header[i]] = serialize_color_data(color_data[i]) ############################# Use VIS image mask for NIR image######################### # Flip mask device, f_mask = pcv.flip(mask, "vertical", device, debug) # Reize mask device, nmask = pcv.resize(f_mask, 0.1154905775, 0.1154905775, device, debug) # position, and crop mask device, newmask = pcv.crop_position_mask(nir_rgb, nmask, device, 30, 4, "top", "right", debug) # Identify objects device, nir_objects, nir_hierarchy = pcv.find_objects(nir_rgb, newmask, device, debug) # Object combine kept objects device, nir_combined, nir_combinedmask = pcv.object_composition(nir_rgb, nir_objects, nir_hierarchy, device, debug) ####################################### Analysis ############################################# device, nhist_header, nhist_data, nir_imgs = pcv.analyze_NIR_intensity(nir_cv2, nir_id, nir_combinedmask, 256, device, False, debug) device, nshape_header, nshape_data, nir_shape = pcv.analyze_object(nir_cv2, nir_id, nir_combined, nir_combinedmask, device, debug) nir_traits = {} for i in range(1, len(nshape_header)): nir_traits[nshape_header[i]] = nshape_data[i] for i in range(2, len(nhist_header)): nir_traits[nhist_header[i]] = serialize_color_data(nhist_data[i]) # Add data to traits table traits['sv_area'].append(vis_traits['area']) traits['hull_area'].append(vis_traits['hull-area']) traits['solidity'].append(vis_traits['solidity']) traits['height'].append(vis_traits['height_above_bound']) traits['perimeter'].append(vis_traits['perimeter']) return [vis_traits, nir_traits]
def process_tv_images_core(vis_id, vis_img, nir_id, nir_rgb, nir_cv2, brass_mask, traits, debug=None): device = 0 # Convert RGB to HSV and extract the Saturation channel device, s = pcv.rgb2gray_hsv(vis_img, 's', device, debug) # Threshold the Saturation image device, s_thresh = pcv.binary_threshold(s, 75, 255, 'light', device, debug) # Median Filter device, s_mblur = pcv.median_blur(s_thresh, 5, device, debug) device, s_cnt = pcv.median_blur(s_thresh, 5, device, debug) # Fill small objects device, s_fill = pcv.fill(s_mblur, s_cnt, 150, device, debug) # Convert RGB to LAB and extract the Blue channel device, b = pcv.rgb2gray_lab(vis_img, 'b', device, debug) # Threshold the blue image device, b_thresh = pcv.binary_threshold(b, 138, 255, 'light', device, debug) device, b_cnt = pcv.binary_threshold(b, 138, 255, 'light', device, debug) # Fill small objects device, b_fill = pcv.fill(b_thresh, b_cnt, 100, device, debug) # Join the thresholded saturation and blue-yellow images device, bs = pcv.logical_and(s_fill, b_fill, device, debug) # Apply Mask (for vis images, mask_color=white) device, masked = pcv.apply_mask(vis_img, bs, 'white', device, debug) # Mask pesky brass piece device, brass_mask1 = pcv.rgb2gray_hsv(brass_mask, 'v', device, debug) device, brass_thresh = pcv.binary_threshold(brass_mask1, 0, 255, 'light', device, debug) device, brass_inv = pcv.invert(brass_thresh, device, debug) device, brass_masked = pcv.apply_mask(masked, brass_inv, 'white', device, debug) # Further mask soil and car device, masked_a = pcv.rgb2gray_lab(brass_masked, 'a', device, debug) device, soil_car1 = pcv.binary_threshold(masked_a, 128, 255, 'dark', device, debug) device, soil_car2 = pcv.binary_threshold(masked_a, 128, 255, 'light', device, debug) device, soil_car = pcv.logical_or(soil_car1, soil_car2, device, debug) device, soil_masked = pcv.apply_mask(brass_masked, soil_car, 'white', device, debug) # Convert RGB to LAB and extract the Green-Magenta and Blue-Yellow channels device, soil_a = pcv.rgb2gray_lab(soil_masked, 'a', device, debug) device, soil_b = pcv.rgb2gray_lab(soil_masked, 'b', device, debug) # Threshold the green-magenta and blue images device, soila_thresh = pcv.binary_threshold(soil_a, 124, 255, 'dark', device, debug) device, soilb_thresh = pcv.binary_threshold(soil_b, 148, 255, 'light', device, debug) # Join the thresholded saturation and blue-yellow images (OR) device, soil_ab = pcv.logical_or(soila_thresh, soilb_thresh, device, debug) device, soil_ab_cnt = pcv.logical_or(soila_thresh, soilb_thresh, device, debug) # Fill small objects device, soil_cnt = pcv.fill(soil_ab, soil_ab_cnt, 300, device, debug) # Apply mask (for vis images, mask_color=white) device, masked2 = pcv.apply_mask(soil_masked, soil_cnt, 'white', device, debug) # Identify objects device, id_objects, obj_hierarchy = pcv.find_objects(masked2, soil_cnt, device, debug) # Define ROI device, roi1, roi_hierarchy = pcv.define_roi(vis_img, 'rectangle', device, None, 'default', debug, True, 600, 450, -600, -350) # Decide which objects to keep device, roi_objects, hierarchy3, kept_mask, obj_area = pcv.roi_objects(vis_img, 'partial', roi1, roi_hierarchy, id_objects, obj_hierarchy, device, debug) # Object combine kept objects device, obj, mask = pcv.object_composition(vis_img, roi_objects, hierarchy3, device, debug) # Find shape properties, output shape image (optional) device, shape_header, shape_data, shape_img = pcv.analyze_object(vis_img, vis_id, obj, mask, device, debug) # Determine color properties device, color_header, color_data, color_img = pcv.analyze_color(vis_img, vis_id, mask, 256, device, debug, None, 'v', 'img', 300) # Output shape and color data vis_traits = {} for i in range(1, len(shape_header)): vis_traits[shape_header[i]] = shape_data[i] for i in range(2, len(color_header)): vis_traits[color_header[i]] = serialize_color_data(color_data[i]) ############################# Use VIS image mask for NIR image######################### # Flip mask device, f_mask = pcv.flip(mask, "horizontal", device, debug) # Reize mask device, nmask = pcv.resize(f_mask, 0.116148, 0.116148, device, debug) # position, and crop mask device, newmask = pcv.crop_position_mask(nir_rgb, nmask, device, 15, 5, "top", "right", debug) # Identify objects device, nir_objects, nir_hierarchy = pcv.find_objects(nir_rgb, newmask, device, debug) # Object combine kept objects device, nir_combined, nir_combinedmask = pcv.object_composition(nir_rgb, nir_objects, nir_hierarchy, device, debug) ####################################### Analysis ############################################# device, nhist_header, nhist_data, nir_imgs = pcv.analyze_NIR_intensity(nir_cv2, nir_id, nir_combinedmask, 256, device, False, debug) device, nshape_header, nshape_data, nir_shape = pcv.analyze_object(nir_cv2, nir_id, nir_combined, nir_combinedmask, device, debug) nir_traits = {} for i in range(1, len(nshape_header)): nir_traits[nshape_header[i]] = nshape_data[i] for i in range(2, len(nhist_header)): nir_traits[nhist_header[i]] = serialize_color_data(nhist_data[i]) # Add data to traits table traits['tv_area'] = vis_traits['area'] return [vis_traits, nir_traits]
def process_sv_images(session, url, vis_id, nir_id, traits, debug=None): """Process side-view images from Clowder. Inputs: session = requests session object url = Clowder URL vis_id = The Clowder ID of an RGB image nir_img = The Clowder ID of an NIR grayscale image traits = traits table (dictionary) debug = None, print, or plot. Print = save to file, Plot = print to screen :param session: requests session object :param url: str :param vis_id: str :param nir_id: str :param traits: dict :param debug: str :return traits: dict """ # Read VIS image from Clowder vis_r = session.get(posixpath.join(url, "api/files", vis_id), stream=True) img_array = np.asarray(bytearray(vis_r.content), dtype="uint8") img = cv2.imdecode(img_array, -1) # Pipeline step device = 0 # Convert RGB to HSV and extract the Saturation channel device, s = pcv.rgb2gray_hsv(img, 's', device, debug) # Threshold the Saturation image device, s_thresh = pcv.binary_threshold(s, 36, 255, 'light', device, debug) # Median Filter device, s_mblur = pcv.median_blur(s_thresh, 5, device, debug) device, s_cnt = pcv.median_blur(s_thresh, 5, device, debug) # Fill small objects # device, s_fill = pcv.fill(s_mblur, s_cnt, 0, device, args.debug) # Convert RGB to LAB and extract the Blue channel device, b = pcv.rgb2gray_lab(img, 'b', device, debug) # Threshold the blue image device, b_thresh = pcv.binary_threshold(b, 137, 255, 'light', device, debug) device, b_cnt = pcv.binary_threshold(b, 137, 255, 'light', device, debug) # Fill small objects # device, b_fill = pcv.fill(b_thresh, b_cnt, 10, device, args.debug) # Join the thresholded saturation and blue-yellow images device, bs = pcv.logical_and(s_mblur, b_cnt, device, debug) # Apply Mask (for vis images, mask_color=white) device, masked = pcv.apply_mask(img, bs, 'white', device, debug) # Convert RGB to LAB and extract the Green-Magenta and Blue-Yellow channels device, masked_a = pcv.rgb2gray_lab(masked, 'a', device, debug) device, masked_b = pcv.rgb2gray_lab(masked, 'b', device, debug) # Threshold the green-magenta and blue images device, maskeda_thresh = pcv.binary_threshold(masked_a, 127, 255, 'dark', device, debug) device, maskedb_thresh = pcv.binary_threshold(masked_b, 128, 255, 'light', device, debug) # Join the thresholded saturation and blue-yellow images (OR) device, ab = pcv.logical_or(maskeda_thresh, maskedb_thresh, device, debug) device, ab_cnt = pcv.logical_or(maskeda_thresh, maskedb_thresh, device, debug) # Fill small noise device, ab_fill1 = pcv.fill(ab, ab_cnt, 200, device, debug) # Dilate to join small objects with larger ones device, ab_cnt1 = pcv.dilate(ab_fill1, 3, 2, device, debug) device, ab_cnt2 = pcv.dilate(ab_fill1, 3, 2, device, debug) # Fill dilated image mask device, ab_cnt3 = pcv.fill(ab_cnt2, ab_cnt1, 150, device, debug) device, masked2 = pcv.apply_mask(masked, ab_cnt3, 'white', device, debug) # Convert RGB to LAB and extract the Green-Magenta and Blue-Yellow channels device, masked2_a = pcv.rgb2gray_lab(masked2, 'a', device, debug) device, masked2_b = pcv.rgb2gray_lab(masked2, 'b', device, debug) # Threshold the green-magenta and blue images device, masked2a_thresh = pcv.binary_threshold(masked2_a, 127, 255, 'dark', device, debug) device, masked2b_thresh = pcv.binary_threshold(masked2_b, 128, 255, 'light', device, debug) device, masked2a_thresh_blur = pcv.median_blur(masked2a_thresh, 5, device, debug) device, masked2b_thresh_blur = pcv.median_blur(masked2b_thresh, 13, device, debug) device, ab_fill = pcv.logical_or(masked2a_thresh_blur, masked2b_thresh_blur, device, debug) # Identify objects device, id_objects, obj_hierarchy = pcv.find_objects(masked2, ab_fill, device, debug) # Define ROI device, roi1, roi_hierarchy = pcv.define_roi(masked2, 'rectangle', device, None, 'default', debug, True, 700, 0, -600, -300) # Decide which objects to keep device, roi_objects, hierarchy3, kept_mask, obj_area = pcv.roi_objects(img, 'partial', roi1, roi_hierarchy, id_objects, obj_hierarchy, device, debug) # Object combine kept objects device, obj, mask = pcv.object_composition(img, roi_objects, hierarchy3, device, debug) ############## VIS Analysis ################ # Find shape properties, output shape image (optional) device, shape_header, shape_data, shape_img = pcv.analyze_object(img, vis_id, obj, mask, device, debug) # Shape properties relative to user boundary line (optional) device, boundary_header, boundary_data, boundary_img1 = pcv.analyze_bound(img, vis_id, obj, mask, 384, device, debug) # Determine color properties: Histograms, Color Slices and # Pseudocolored Images, output color analyzed images (optional) device, color_header, color_data, color_img = pcv.analyze_color(img, vis_id, mask, 256, device, debug, None, 'v', 'img', 300) # Output shape and color data vis_traits = {} for i in range(1, len(shape_header)): vis_traits[shape_header[i]] = shape_data[i] for i in range(1, len(boundary_header)): vis_traits[boundary_header[i]] = boundary_data[i] for i in range(2, len(color_header)): vis_traits[color_header[i]] = serialize_color_data(color_data[i]) #print(vis_traits) add_plantcv_metadata(session, url, vis_id, vis_traits) ############################# Use VIS image mask for NIR image######################### # Read NIR image from Clowder nir_r = session.get(posixpath.join(url, "api/files", nir_id), stream=True) nir_array = np.asarray(bytearray(nir_r.content), dtype="uint8") nir = cv2.imdecode(nir_array, -1) nir_rgb = cv2.cvtColor(nir, cv2.COLOR_GRAY2BGR) # Flip mask device, f_mask = pcv.flip(mask, "vertical", device, debug) # Reize mask device, nmask = pcv.resize(f_mask, 0.1154905775, 0.1154905775, device, debug) # position, and crop mask device, newmask = pcv.crop_position_mask(nir_rgb, nmask, device, 30, 4, "top", "right", debug) # Identify objects device, nir_objects, nir_hierarchy = pcv.find_objects(nir_rgb, newmask, device, debug) # Object combine kept objects device, nir_combined, nir_combinedmask = pcv.object_composition(nir_rgb, nir_objects, nir_hierarchy, device, debug) ####################################### Analysis ############################################# device, nhist_header, nhist_data, nir_imgs = pcv.analyze_NIR_intensity(nir, nir_id, nir_combinedmask, 256, device, False, debug) device, nshape_header, nshape_data, nir_shape = pcv.analyze_object(nir, nir_id, nir_combined, nir_combinedmask, device, debug) nir_traits = {} for i in range(1, len(nshape_header)): nir_traits[nshape_header[i]] = nshape_data[i] for i in range(2, len(nhist_header)): nir_traits[nhist_header[i]] = serialize_color_data(nhist_data[i]) #print(nir_traits) add_plantcv_metadata(session, url, nir_id, nir_traits) # Add data to traits table traits['sv_area'].append(vis_traits['area']) traits['hull_area'].append(vis_traits['hull-area']) traits['solidity'].append(vis_traits['solidity']) traits['height'].append(vis_traits['height_above_bound']) traits['perimeter'].append(vis_traits['perimeter']) return traits
def process_tv_images(session, url, vis_id, nir_id, traits, debug=False): """Process top-view images. Inputs: session = requests session object url = Clowder URL vis_id = The Clowder ID of an RGB image nir_img = The Clowder ID of an NIR grayscale image traits = traits table (dictionary) debug = None, print, or plot. Print = save to file, Plot = print to screen. :param session: requests session object :param url: str :param vis_id: str :param nir_id: str :param traits: dict :param debug: str :return traits: dict """ # Read VIS image from Clowder vis_r = session.get(posixpath.join(url, "api/files", vis_id), stream=True) img_array = np.asarray(bytearray(vis_r.content), dtype="uint8") img = cv2.imdecode(img_array, -1) # Read the VIS top-view image mask for zoom = 1 from Clowder mask_r = session.get(posixpath.join(url, "api/files/57451b28e4b0efbe2dc3d4d5"), stream=True) mask_array = np.asarray(bytearray(mask_r.content), dtype="uint8") brass_mask = cv2.imdecode(mask_array, -1) device = 0 # Convert RGB to HSV and extract the Saturation channel device, s = pcv.rgb2gray_hsv(img, 's', device, debug) # Threshold the Saturation image device, s_thresh = pcv.binary_threshold(s, 75, 255, 'light', device, debug) # Median Filter device, s_mblur = pcv.median_blur(s_thresh, 5, device, debug) device, s_cnt = pcv.median_blur(s_thresh, 5, device, debug) # Fill small objects device, s_fill = pcv.fill(s_mblur, s_cnt, 150, device, debug) # Convert RGB to LAB and extract the Blue channel device, b = pcv.rgb2gray_lab(img, 'b', device, debug) # Threshold the blue image device, b_thresh = pcv.binary_threshold(b, 138, 255, 'light', device, debug) device, b_cnt = pcv.binary_threshold(b, 138, 255, 'light', device, debug) # Fill small objects device, b_fill = pcv.fill(b_thresh, b_cnt, 100, device, debug) # Join the thresholded saturation and blue-yellow images device, bs = pcv.logical_and(s_fill, b_fill, device, debug) # Apply Mask (for vis images, mask_color=white) device, masked = pcv.apply_mask(img, bs, 'white', device, debug) # Mask pesky brass piece device, brass_mask1 = pcv.rgb2gray_hsv(brass_mask, 'v', device, debug) device, brass_thresh = pcv.binary_threshold(brass_mask1, 0, 255, 'light', device, debug) device, brass_inv = pcv.invert(brass_thresh, device, debug) device, brass_masked = pcv.apply_mask(masked, brass_inv, 'white', device, debug) # Further mask soil and car device, masked_a = pcv.rgb2gray_lab(brass_masked, 'a', device, debug) device, soil_car1 = pcv.binary_threshold(masked_a, 128, 255, 'dark', device, debug) device, soil_car2 = pcv.binary_threshold(masked_a, 128, 255, 'light', device, debug) device, soil_car = pcv.logical_or(soil_car1, soil_car2, device, debug) device, soil_masked = pcv.apply_mask(brass_masked, soil_car, 'white', device, debug) # Convert RGB to LAB and extract the Green-Magenta and Blue-Yellow channels device, soil_a = pcv.rgb2gray_lab(soil_masked, 'a', device, debug) device, soil_b = pcv.rgb2gray_lab(soil_masked, 'b', device, debug) # Threshold the green-magenta and blue images device, soila_thresh = pcv.binary_threshold(soil_a, 124, 255, 'dark', device, debug) device, soilb_thresh = pcv.binary_threshold(soil_b, 148, 255, 'light', device, debug) # Join the thresholded saturation and blue-yellow images (OR) device, soil_ab = pcv.logical_or(soila_thresh, soilb_thresh, device, debug) device, soil_ab_cnt = pcv.logical_or(soila_thresh, soilb_thresh, device, debug) # Fill small objects device, soil_cnt = pcv.fill(soil_ab, soil_ab_cnt, 300, device, debug) # Apply mask (for vis images, mask_color=white) device, masked2 = pcv.apply_mask(soil_masked, soil_cnt, 'white', device, debug) # Identify objects device, id_objects, obj_hierarchy = pcv.find_objects(masked2, soil_cnt, device, debug) # Define ROI device, roi1, roi_hierarchy = pcv.define_roi(img, 'rectangle', device, None, 'default', debug, True, 600, 450, -600, -350) # Decide which objects to keep device, roi_objects, hierarchy3, kept_mask, obj_area = pcv.roi_objects(img, 'partial', roi1, roi_hierarchy, id_objects, obj_hierarchy, device, debug) # Object combine kept objects device, obj, mask = pcv.object_composition(img, roi_objects, hierarchy3, device, debug) # Find shape properties, output shape image (optional) device, shape_header, shape_data, shape_img = pcv.analyze_object(img, vis_id, obj, mask, device, debug) # Determine color properties device, color_header, color_data, color_img = pcv.analyze_color(img, vis_id, mask, 256, device, debug, None, 'v', 'img', 300) # Output shape and color data vis_traits = {} for i in range(1, len(shape_header)): vis_traits[shape_header[i]] = shape_data[i] for i in range(2, len(color_header)): vis_traits[color_header[i]] = serialize_color_data(color_data[i]) #print(vis_traits) add_plantcv_metadata(session, url, vis_id, vis_traits) ############################# Use VIS image mask for NIR image######################### # Read NIR image from Clowder nir_r = session.get(posixpath.join(url, "api/files", nir_id), stream=True) nir_array = np.asarray(bytearray(nir_r.content), dtype="uint8") nir = cv2.imdecode(nir_array, -1) nir_rgb = cv2.cvtColor(nir, cv2.COLOR_GRAY2BGR) # Flip mask device, f_mask = pcv.flip(mask, "horizontal", device, debug) # Reize mask device, nmask = pcv.resize(f_mask, 0.116148, 0.116148, device, debug) # position, and crop mask device, newmask = pcv.crop_position_mask(nir_rgb, nmask, device, 15, 5, "top", "right", debug) # Identify objects device, nir_objects, nir_hierarchy = pcv.find_objects(nir_rgb, newmask, device, debug) # Object combine kept objects device, nir_combined, nir_combinedmask = pcv.object_composition(nir_rgb, nir_objects, nir_hierarchy, device, debug) ####################################### Analysis ############################################# device, nhist_header, nhist_data, nir_imgs = pcv.analyze_NIR_intensity(nir, nir_id, nir_combinedmask, 256, device, False, debug) device, nshape_header, nshape_data, nir_shape = pcv.analyze_object(nir, nir_id, nir_combined, nir_combinedmask, device, debug) nir_traits = {} for i in range(1, len(nshape_header)): nir_traits[nshape_header[i]] = nshape_data[i] for i in range(2, len(nhist_header)): nir_traits[nhist_header[i]] = serialize_color_data(nhist_data[i]) #print(nir_traits) add_plantcv_metadata(session, url, nir_id, nir_traits) # Add data to traits table traits['tv_area'] = vis_traits['area'] return traits
def process_sv_images(vis_img, nir_img, debug=None): """Process side-view images. Inputs: vis_img = An RGB image. nir_img = An NIR grayscale image. debug = None, print, or plot. Print = save to file, Plot = print to screen. :param vis_img: str :param nir_img: str :param debug: str :return: """ # Read VIS image img, path, filename = pcv.readimage(vis_img) # Pipeline step device = 0 # Convert RGB to HSV and extract the Saturation channel device, s = pcv.rgb2gray_hsv(img, 's', device, debug) # Threshold the Saturation image device, s_thresh = pcv.binary_threshold(s, 36, 255, 'light', device, debug) # Median Filter device, s_mblur = pcv.median_blur(s_thresh, 5, device, debug) device, s_cnt = pcv.median_blur(s_thresh, 5, device, debug) # Fill small objects # device, s_fill = pcv.fill(s_mblur, s_cnt, 0, device, args.debug) # Convert RGB to LAB and extract the Blue channel device, b = pcv.rgb2gray_lab(img, 'b', device, debug) # Threshold the blue image device, b_thresh = pcv.binary_threshold(b, 137, 255, 'light', device, debug) device, b_cnt = pcv.binary_threshold(b, 137, 255, 'light', device, debug) # Fill small objects # device, b_fill = pcv.fill(b_thresh, b_cnt, 10, device, args.debug) # Join the thresholded saturation and blue-yellow images device, bs = pcv.logical_and(s_mblur, b_cnt, device, debug) # Apply Mask (for vis images, mask_color=white) device, masked = pcv.apply_mask(img, bs, 'white', device, debug) # Convert RGB to LAB and extract the Green-Magenta and Blue-Yellow channels device, masked_a = pcv.rgb2gray_lab(masked, 'a', device, debug) device, masked_b = pcv.rgb2gray_lab(masked, 'b', device, debug) # Threshold the green-magenta and blue images device, maskeda_thresh = pcv.binary_threshold(masked_a, 127, 255, 'dark', device, debug) device, maskedb_thresh = pcv.binary_threshold(masked_b, 128, 255, 'light', device, debug) # Join the thresholded saturation and blue-yellow images (OR) device, ab = pcv.logical_or(maskeda_thresh, maskedb_thresh, device, debug) device, ab_cnt = pcv.logical_or(maskeda_thresh, maskedb_thresh, device, debug) # Fill small noise device, ab_fill1 = pcv.fill(ab, ab_cnt, 200, device, debug) # Dilate to join small objects with larger ones device, ab_cnt1 = pcv.dilate(ab_fill1, 3, 2, device, debug) device, ab_cnt2 = pcv.dilate(ab_fill1, 3, 2, device, debug) # Fill dilated image mask device, ab_cnt3 = pcv.fill(ab_cnt2, ab_cnt1, 150, device, debug) device, masked2 = pcv.apply_mask(masked, ab_cnt3, 'white', device, debug) # Convert RGB to LAB and extract the Green-Magenta and Blue-Yellow channels device, masked2_a = pcv.rgb2gray_lab(masked2, 'a', device, debug) device, masked2_b = pcv.rgb2gray_lab(masked2, 'b', device, debug) # Threshold the green-magenta and blue images device, masked2a_thresh = pcv.binary_threshold(masked2_a, 127, 255, 'dark', device, debug) device, masked2b_thresh = pcv.binary_threshold(masked2_b, 128, 255, 'light', device, debug) device, masked2a_thresh_blur = pcv.median_blur(masked2a_thresh, 5, device, debug) device, masked2b_thresh_blur = pcv.median_blur(masked2b_thresh, 13, device, debug) device, ab_fill = pcv.logical_or(masked2a_thresh_blur, masked2b_thresh_blur, device, debug) # Identify objects device, id_objects, obj_hierarchy = pcv.find_objects(masked2, ab_fill, device, debug) # Define ROI device, roi1, roi_hierarchy = pcv.define_roi(masked2, 'rectangle', device, None, 'default', debug, True, 700, 0, -600, -300) # Decide which objects to keep device, roi_objects, hierarchy3, kept_mask, obj_area = pcv.roi_objects(img, 'partial', roi1, roi_hierarchy, id_objects, obj_hierarchy, device, debug) # Object combine kept objects device, obj, mask = pcv.object_composition(img, roi_objects, hierarchy3, device, debug) ############## VIS Analysis ################ # Find shape properties, output shape image (optional) device, shape_header, shape_data, shape_img = pcv.analyze_object(img, vis_img, obj, mask, device, debug) # Shape properties relative to user boundary line (optional) device, boundary_header, boundary_data, boundary_img1 = pcv.analyze_bound(img, vis_img, obj, mask, 384, device, debug) # Determine color properties: Histograms, Color Slices and # Pseudocolored Images, output color analyzed images (optional) device, color_header, color_data, color_img = pcv.analyze_color(img, vis_img, mask, 256, device, debug, None, 'v', 'img', 300) # Output shape and color data print('\t'.join(map(str, shape_header)) + '\n') print('\t'.join(map(str, shape_data)) + '\n') for row in shape_img: print('\t'.join(map(str, row)) + '\n') print('\t'.join(map(str, color_header)) + '\n') print('\t'.join(map(str, color_data)) + '\n') print('\t'.join(map(str, boundary_header)) + '\n') print('\t'.join(map(str, boundary_data)) + '\n') print('\t'.join(map(str, boundary_img1)) + '\n') for row in color_img: print('\t'.join(map(str, row)) + '\n') ############################# Use VIS image mask for NIR image######################### # Read NIR image nir, path1, filename1 = pcv.readimage(nir_img) nir2 = cv2.imread(nir_img, -1) # Flip mask device, f_mask = pcv.flip(mask, "vertical", device, debug) # Reize mask device, nmask = pcv.resize(f_mask, 0.1154905775, 0.1154905775, device, debug) # position, and crop mask device, newmask = pcv.crop_position_mask(nir, nmask, device, 30, 4, "top", "right", debug) # Identify objects device, nir_objects, nir_hierarchy = pcv.find_objects(nir, newmask, device, debug) # Object combine kept objects device, nir_combined, nir_combinedmask = pcv.object_composition(nir, nir_objects, nir_hierarchy, device, debug) ####################################### Analysis ############################################# device, nhist_header, nhist_data, nir_imgs = pcv.analyze_NIR_intensity(nir2, filename1, nir_combinedmask, 256, device, False, debug) device, nshape_header, nshape_data, nir_shape = pcv.analyze_object(nir2, filename1, nir_combined, nir_combinedmask, device, debug) print('\t'.join(map(str, nhist_header)) + '\n') print('\t'.join(map(str, nhist_data)) + '\n') for row in nir_imgs: print('\t'.join(map(str, row)) + '\n') print('\t'.join(map(str, nshape_header)) + '\n') print('\t'.join(map(str, nshape_data)) + '\n') print('\t'.join(map(str, nir_shape)) + '\n')
def process_tv_images(vis_img, nir_img, debug=False): """Process top-view images. Inputs: vis_img = An RGB image. nir_img = An NIR grayscale image. debug = None, print, or plot. Print = save to file, Plot = print to screen. :param vis_img: str :param nir_img: str :param debug: str :return: """ # Read image img, path, filename = pcv.readimage(vis_img) brass_mask = cv2.imread('mask_brass_tv_z1_L1.png') device = 0 # Convert RGB to HSV and extract the Saturation channel device, s = pcv.rgb2gray_hsv(img, 's', device, debug) # Threshold the Saturation image device, s_thresh = pcv.binary_threshold(s, 75, 255, 'light', device, debug) # Median Filter device, s_mblur = pcv.median_blur(s_thresh, 5, device, debug) device, s_cnt = pcv.median_blur(s_thresh, 5, device, debug) # Fill small objects device, s_fill = pcv.fill(s_mblur, s_cnt, 150, device, debug) # Convert RGB to LAB and extract the Blue channel device, b = pcv.rgb2gray_lab(img, 'b', device, debug) # Threshold the blue image device, b_thresh = pcv.binary_threshold(b, 138, 255, 'light', device, debug) device, b_cnt = pcv.binary_threshold(b, 138, 255, 'light', device, debug) # Fill small objects device, b_fill = pcv.fill(b_thresh, b_cnt, 100, device, debug) # Join the thresholded saturation and blue-yellow images device, bs = pcv.logical_and(s_fill, b_fill, device, debug) # Apply Mask (for vis images, mask_color=white) device, masked = pcv.apply_mask(img, bs, 'white', device, debug) # Mask pesky brass piece device, brass_mask1 = pcv.rgb2gray_hsv(brass_mask, 'v', device, debug) device, brass_thresh = pcv.binary_threshold(brass_mask1, 0, 255, 'light', device, debug) device, brass_inv = pcv.invert(brass_thresh, device, debug) device, brass_masked = pcv.apply_mask(masked, brass_inv, 'white', device, debug) # Further mask soil and car device, masked_a = pcv.rgb2gray_lab(brass_masked, 'a', device, debug) device, soil_car1 = pcv.binary_threshold(masked_a, 128, 255, 'dark', device, debug) device, soil_car2 = pcv.binary_threshold(masked_a, 128, 255, 'light', device, debug) device, soil_car = pcv.logical_or(soil_car1, soil_car2, device, debug) device, soil_masked = pcv.apply_mask(brass_masked, soil_car, 'white', device, debug) # Convert RGB to LAB and extract the Green-Magenta and Blue-Yellow channels device, soil_a = pcv.rgb2gray_lab(soil_masked, 'a', device, debug) device, soil_b = pcv.rgb2gray_lab(soil_masked, 'b', device, debug) # Threshold the green-magenta and blue images device, soila_thresh = pcv.binary_threshold(soil_a, 124, 255, 'dark', device, debug) device, soilb_thresh = pcv.binary_threshold(soil_b, 148, 255, 'light', device, debug) # Join the thresholded saturation and blue-yellow images (OR) device, soil_ab = pcv.logical_or(soila_thresh, soilb_thresh, device, debug) device, soil_ab_cnt = pcv.logical_or(soila_thresh, soilb_thresh, device, debug) # Fill small objects device, soil_cnt = pcv.fill(soil_ab, soil_ab_cnt, 300, device, debug) # Apply mask (for vis images, mask_color=white) device, masked2 = pcv.apply_mask(soil_masked, soil_cnt, 'white', device, debug) # Identify objects device, id_objects, obj_hierarchy = pcv.find_objects(masked2, soil_cnt, device, debug) # Define ROI device, roi1, roi_hierarchy = pcv.define_roi(img, 'rectangle', device, None, 'default', debug, True, 600, 450, -600, -350) # Decide which objects to keep device, roi_objects, hierarchy3, kept_mask, obj_area = pcv.roi_objects(img, 'partial', roi1, roi_hierarchy, id_objects, obj_hierarchy, device, debug) # Object combine kept objects device, obj, mask = pcv.object_composition(img, roi_objects, hierarchy3, device, debug) # Find shape properties, output shape image (optional) device, shape_header, shape_data, shape_img = pcv.analyze_object(img, vis_img, obj, mask, device, debug) # Determine color properties device, color_header, color_data, color_img = pcv.analyze_color(img, vis_img, mask, 256, device, debug, None, 'v', 'img', 300) print('\t'.join(map(str, shape_header)) + '\n') print('\t'.join(map(str, shape_data)) + '\n') for row in shape_img: print('\t'.join(map(str, row)) + '\n') print('\t'.join(map(str, color_header)) + '\n') print('\t'.join(map(str, color_data)) + '\n') for row in color_img: print('\t'.join(map(str, row)) + '\n') ############################# Use VIS image mask for NIR image######################### # Read NIR image nir, path1, filename1 = pcv.readimage(nir_img) nir2 = cv2.imread(nir_img, -1) # Flip mask device, f_mask = pcv.flip(mask, "horizontal", device, debug) # Reize mask device, nmask = pcv.resize(f_mask, 0.116148, 0.116148, device, debug) # position, and crop mask device, newmask = pcv.crop_position_mask(nir, nmask, device, 15, 5, "top", "right", debug) # Identify objects device, nir_objects, nir_hierarchy = pcv.find_objects(nir, newmask, device, debug) # Object combine kept objects device, nir_combined, nir_combinedmask = pcv.object_composition(nir, nir_objects, nir_hierarchy, device, debug) ####################################### Analysis ############################################# device, nhist_header, nhist_data, nir_imgs = pcv.analyze_NIR_intensity(nir2, filename1, nir_combinedmask, 256, device, False, debug) device, nshape_header, nshape_data, nir_shape = pcv.analyze_object(nir2, filename1, nir_combined, nir_combinedmask, device, debug) print('\t'.join(map(str,nhist_header)) + '\n') print('\t'.join(map(str,nhist_data)) + '\n') for row in nir_imgs: print('\t'.join(map(str,row)) + '\n') print('\t'.join(map(str,nshape_header)) + '\n') print('\t'.join(map(str,nshape_data)) + '\n') print('\t'.join(map(str,nir_shape)) + '\n')
def process_tv_images_core(vis_id, vis_img, nir_id, nir_rgb, nir_cv2, brass_mask, traits, debug=None): device = 0 # Convert RGB to HSV and extract the Saturation channel device, s = pcv.rgb2gray_hsv(vis_img, 's', device, debug) # Threshold the Saturation image device, s_thresh = pcv.binary_threshold(s, 75, 255, 'light', device, debug) # Median Filter device, s_mblur = pcv.median_blur(s_thresh, 5, device, debug) device, s_cnt = pcv.median_blur(s_thresh, 5, device, debug) # Fill small objects device, s_fill = pcv.fill(s_mblur, s_cnt, 150, device, debug) # Convert RGB to LAB and extract the Blue channel device, b = pcv.rgb2gray_lab(vis_img, 'b', device, debug) # Threshold the blue image device, b_thresh = pcv.binary_threshold(b, 138, 255, 'light', device, debug) device, b_cnt = pcv.binary_threshold(b, 138, 255, 'light', device, debug) # Fill small objects device, b_fill = pcv.fill(b_thresh, b_cnt, 100, device, debug) # Join the thresholded saturation and blue-yellow images device, bs = pcv.logical_and(s_fill, b_fill, device, debug) # Apply Mask (for vis images, mask_color=white) device, masked = pcv.apply_mask(vis_img, bs, 'white', device, debug) # Mask pesky brass piece device, brass_mask1 = pcv.rgb2gray_hsv(brass_mask, 'v', device, debug) device, brass_thresh = pcv.binary_threshold(brass_mask1, 0, 255, 'light', device, debug) device, brass_inv = pcv.invert(brass_thresh, device, debug) device, brass_masked = pcv.apply_mask(masked, brass_inv, 'white', device, debug) # Further mask soil and car device, masked_a = pcv.rgb2gray_lab(brass_masked, 'a', device, debug) device, soil_car1 = pcv.binary_threshold(masked_a, 128, 255, 'dark', device, debug) device, soil_car2 = pcv.binary_threshold(masked_a, 128, 255, 'light', device, debug) device, soil_car = pcv.logical_or(soil_car1, soil_car2, device, debug) device, soil_masked = pcv.apply_mask(brass_masked, soil_car, 'white', device, debug) # Convert RGB to LAB and extract the Green-Magenta and Blue-Yellow channels device, soil_a = pcv.rgb2gray_lab(soil_masked, 'a', device, debug) device, soil_b = pcv.rgb2gray_lab(soil_masked, 'b', device, debug) # Threshold the green-magenta and blue images device, soila_thresh = pcv.binary_threshold(soil_a, 124, 255, 'dark', device, debug) device, soilb_thresh = pcv.binary_threshold(soil_b, 148, 255, 'light', device, debug) # Join the thresholded saturation and blue-yellow images (OR) device, soil_ab = pcv.logical_or(soila_thresh, soilb_thresh, device, debug) device, soil_ab_cnt = pcv.logical_or(soila_thresh, soilb_thresh, device, debug) # Fill small objects device, soil_cnt = pcv.fill(soil_ab, soil_ab_cnt, 300, device, debug) # Apply mask (for vis images, mask_color=white) device, masked2 = pcv.apply_mask(soil_masked, soil_cnt, 'white', device, debug) # Identify objects device, id_objects, obj_hierarchy = pcv.find_objects( masked2, soil_cnt, device, debug) # Define ROI device, roi1, roi_hierarchy = pcv.define_roi(vis_img, 'rectangle', device, None, 'default', debug, True, 600, 450, -600, -350) # Decide which objects to keep device, roi_objects, hierarchy3, kept_mask, obj_area = pcv.roi_objects( vis_img, 'partial', roi1, roi_hierarchy, id_objects, obj_hierarchy, device, debug) # Object combine kept objects device, obj, mask = pcv.object_composition(vis_img, roi_objects, hierarchy3, device, debug) # Find shape properties, output shape image (optional) device, shape_header, shape_data, shape_img = pcv.analyze_object( vis_img, vis_id, obj, mask, device, debug) # Determine color properties device, color_header, color_data, color_img = pcv.analyze_color( vis_img, vis_id, mask, 256, device, debug, None, 'v', 'img', 300) # Output shape and color data vis_traits = {} for i in range(1, len(shape_header)): vis_traits[shape_header[i]] = shape_data[i] for i in range(2, len(color_header)): vis_traits[color_header[i]] = serialize_color_data(color_data[i]) ############################# Use VIS image mask for NIR image######################### # Flip mask device, f_mask = pcv.flip(mask, "horizontal", device, debug) # Reize mask device, nmask = pcv.resize(f_mask, 0.116148, 0.116148, device, debug) # position, and crop mask device, newmask = pcv.crop_position_mask(nir_rgb, nmask, device, 15, 5, "top", "right", debug) # Identify objects device, nir_objects, nir_hierarchy = pcv.find_objects( nir_rgb, newmask, device, debug) # Object combine kept objects device, nir_combined, nir_combinedmask = pcv.object_composition( nir_rgb, nir_objects, nir_hierarchy, device, debug) ####################################### Analysis ############################################# device, nhist_header, nhist_data, nir_imgs = pcv.analyze_NIR_intensity( nir_cv2, nir_id, nir_combinedmask, 256, device, False, debug) device, nshape_header, nshape_data, nir_shape = pcv.analyze_object( nir_cv2, nir_id, nir_combined, nir_combinedmask, device, debug) nir_traits = {} for i in range(1, len(nshape_header)): nir_traits[nshape_header[i]] = nshape_data[i] for i in range(2, len(nhist_header)): nir_traits[nhist_header[i]] = serialize_color_data(nhist_data[i]) # Add data to traits table traits['tv_area'] = vis_traits['area'] return [vis_traits, nir_traits]
def process_sv_images_core(vis_id, vis_img, nir_id, nir_rgb, nir_cv2, traits, debug=None): # Pipeline step device = 0 # Convert RGB to HSV and extract the Saturation channel device, s = pcv.rgb2gray_hsv(vis_img, 's', device, debug) # Threshold the Saturation image device, s_thresh = pcv.binary_threshold(s, 36, 255, 'light', device, debug) # Median Filter device, s_mblur = pcv.median_blur(s_thresh, 5, device, debug) device, s_cnt = pcv.median_blur(s_thresh, 5, device, debug) # Fill small objects # device, s_fill = pcv.fill(s_mblur, s_cnt, 0, device, args.debug) # Convert RGB to LAB and extract the Blue channel device, b = pcv.rgb2gray_lab(vis_img, 'b', device, debug) # Threshold the blue image device, b_thresh = pcv.binary_threshold(b, 137, 255, 'light', device, debug) device, b_cnt = pcv.binary_threshold(b, 137, 255, 'light', device, debug) # Fill small objects # device, b_fill = pcv.fill(b_thresh, b_cnt, 10, device, args.debug) # Join the thresholded saturation and blue-yellow images device, bs = pcv.logical_and(s_mblur, b_cnt, device, debug) # Apply Mask (for vis images, mask_color=white) device, masked = pcv.apply_mask(vis_img, bs, 'white', device, debug) # Convert RGB to LAB and extract the Green-Magenta and Blue-Yellow channels device, masked_a = pcv.rgb2gray_lab(masked, 'a', device, debug) device, masked_b = pcv.rgb2gray_lab(masked, 'b', device, debug) # Threshold the green-magenta and blue images device, maskeda_thresh = pcv.binary_threshold(masked_a, 127, 255, 'dark', device, debug) device, maskedb_thresh = pcv.binary_threshold(masked_b, 128, 255, 'light', device, debug) # Join the thresholded saturation and blue-yellow images (OR) device, ab = pcv.logical_or(maskeda_thresh, maskedb_thresh, device, debug) device, ab_cnt = pcv.logical_or(maskeda_thresh, maskedb_thresh, device, debug) # Fill small noise device, ab_fill1 = pcv.fill(ab, ab_cnt, 200, device, debug) # Dilate to join small objects with larger ones device, ab_cnt1 = pcv.dilate(ab_fill1, 3, 2, device, debug) device, ab_cnt2 = pcv.dilate(ab_fill1, 3, 2, device, debug) # Fill dilated image mask device, ab_cnt3 = pcv.fill(ab_cnt2, ab_cnt1, 150, device, debug) device, masked2 = pcv.apply_mask(masked, ab_cnt3, 'white', device, debug) # Convert RGB to LAB and extract the Green-Magenta and Blue-Yellow channels device, masked2_a = pcv.rgb2gray_lab(masked2, 'a', device, debug) device, masked2_b = pcv.rgb2gray_lab(masked2, 'b', device, debug) # Threshold the green-magenta and blue images device, masked2a_thresh = pcv.binary_threshold(masked2_a, 127, 255, 'dark', device, debug) device, masked2b_thresh = pcv.binary_threshold(masked2_b, 128, 255, 'light', device, debug) device, masked2a_thresh_blur = pcv.median_blur(masked2a_thresh, 5, device, debug) device, masked2b_thresh_blur = pcv.median_blur(masked2b_thresh, 13, device, debug) device, ab_fill = pcv.logical_or(masked2a_thresh_blur, masked2b_thresh_blur, device, debug) # Identify objects device, id_objects, obj_hierarchy = pcv.find_objects( masked2, ab_fill, device, debug) # Define ROI device, roi1, roi_hierarchy = pcv.define_roi(masked2, 'rectangle', device, None, 'default', debug, True, 700, 0, -600, -300) # Decide which objects to keep device, roi_objects, hierarchy3, kept_mask, obj_area = pcv.roi_objects( vis_img, 'partial', roi1, roi_hierarchy, id_objects, obj_hierarchy, device, debug) # Object combine kept objects device, obj, mask = pcv.object_composition(vis_img, roi_objects, hierarchy3, device, debug) ############## VIS Analysis ################ # Find shape properties, output shape image (optional) device, shape_header, shape_data, shape_img = pcv.analyze_object( vis_img, vis_id, obj, mask, device, debug) # Shape properties relative to user boundary line (optional) device, boundary_header, boundary_data, boundary_img1 = pcv.analyze_bound( vis_img, vis_id, obj, mask, 384, device, debug) # Determine color properties: Histograms, Color Slices and # Pseudocolored Images, output color analyzed images (optional) device, color_header, color_data, color_img = pcv.analyze_color( vis_img, vis_id, mask, 256, device, debug, None, 'v', 'img', 300) # Output shape and color data vis_traits = {} for i in range(1, len(shape_header)): vis_traits[shape_header[i]] = shape_data[i] for i in range(1, len(boundary_header)): vis_traits[boundary_header[i]] = boundary_data[i] for i in range(2, len(color_header)): vis_traits[color_header[i]] = serialize_color_data(color_data[i]) ############################# Use VIS image mask for NIR image######################### # Flip mask device, f_mask = pcv.flip(mask, "vertical", device, debug) # Reize mask device, nmask = pcv.resize(f_mask, 0.1154905775, 0.1154905775, device, debug) # position, and crop mask device, newmask = pcv.crop_position_mask(nir_rgb, nmask, device, 30, 4, "top", "right", debug) # Identify objects device, nir_objects, nir_hierarchy = pcv.find_objects( nir_rgb, newmask, device, debug) # Object combine kept objects device, nir_combined, nir_combinedmask = pcv.object_composition( nir_rgb, nir_objects, nir_hierarchy, device, debug) ####################################### Analysis ############################################# device, nhist_header, nhist_data, nir_imgs = pcv.analyze_NIR_intensity( nir_cv2, nir_id, nir_combinedmask, 256, device, False, debug) device, nshape_header, nshape_data, nir_shape = pcv.analyze_object( nir_cv2, nir_id, nir_combined, nir_combinedmask, device, debug) nir_traits = {} for i in range(1, len(nshape_header)): nir_traits[nshape_header[i]] = nshape_data[i] for i in range(2, len(nhist_header)): nir_traits[nhist_header[i]] = serialize_color_data(nhist_data[i]) # Add data to traits table traits['sv_area'].append(vis_traits['area']) traits['hull_area'].append(vis_traits['hull-area']) traits['solidity'].append(vis_traits['solidity']) traits['height'].append(vis_traits['height_above_bound']) traits['perimeter'].append(vis_traits['perimeter']) return [vis_traits, nir_traits]