Exemplo n.º 1
0
    def it_skips_too_oval():
        """It doesn't have to work perfectly every time, but pass once in a 10 try loop"""
        n_fails = 0
        for i in range(10):
            failed = 0
            locs = [[64, 54], [64, 70]]
            with synth.Synth(overwrite=True, dim=(128, 128)) as s:
                peaks = synth.PeaksModelGaussianCircular(
                    n_peaks=len(locs)
                ).amps_constant(val=4_000)
                peaks.std_x = [1.0, 1.0]
                peaks.std_y = [1.0, 2.0]
                synth.CameraModel(bias=bg_mean, std=bg_std)
                peaks.locs = locs
                im = s.render_chcy()[0, 0]
                im = im - bg_mean

            psf, reasons = worker._psf_estimate(
                im, peaks.locs, mea=17, return_reasons=True
            )
            for loc, reason in zip(peaks.locs, reasons):
                if loc[1] < 64:
                    if reason[worker.PSFEstimateMaskFields.skipped_too_oval] != 0:
                        failed += 1
                else:
                    if reason[worker.PSFEstimateMaskFields.skipped_too_oval] != 1:
                        failed += 1

            if failed != 0:
                n_fails += 1

        assert n_fails < 3
Exemplo n.º 2
0
 def it_skips_near_edges():
     peaks, im, std = _make_image(0.0)
     psf, reasons = worker._psf_estimate(im, peaks.locs, mea=17, return_reasons=True)
     for loc, reason in zip(peaks.locs, reasons):
         skipped = reason[worker.PSFEstimateMaskFields.skipped_near_edges]
         if loc[0] < 5 or loc[0] > 1024 - 5 or loc[1] < 5 or loc[1] > 1024 - 5:
             assert skipped == 1
Exemplo n.º 3
0
 def it_skips_nans():
     peaks, im = _make_image_n_locs([[64, 50], [64, 70]])
     im[64, 50] = np.nan
     psf, reasons = worker._psf_estimate(im, peaks.locs, mea=17, return_reasons=True)
     for loc, reason in zip(peaks.locs, reasons):
         if loc[1] < 64:
             assert reason[worker.PSFEstimateMaskFields.skipped_has_nan] == 1
         else:
             assert reason[worker.PSFEstimateMaskFields.skipped_has_nan] == 0
Exemplo n.º 4
0
 def it_skips_darks():
     peaks, im = _make_image_n_locs([[64, 54]])
     psf, reasons = worker._psf_estimate(
         im, peaks.locs, mea=17, threshold_abs=bg_std * 3, return_reasons=True
     )
     peaks.locs = [[64, 54], [64, 80]]
     for loc, reason in zip(peaks.locs, reasons):
         if loc[1] < 64:
             assert reason[worker.PSFEstimateMaskFields.skipped_too_dark] == 0
         else:
             assert reason[worker.PSFEstimateMaskFields.skipped_too_dark] == 1
Exemplo n.º 5
0
    def it_extracts_a_clean_psf_with_subpixel_alignment():
        # Sweep over various psf z depths
        # Generate a seris of small synth images (representing a region over many fields)
        # Pass in the locs directly from the synth image maker (bypassing peak finder)
        # Check that we get back a good approximation of the PSF

        for i, depth in enumerate(np.linspace(-0.25, 0.25, 4)):
            peaks, im, expected_std = _make_image(depth)

            psf, reasons = worker._psf_estimate(
                im, peaks.locs, mea=17, return_reasons=True
            )

            fit_params, _ = imops.fit_gauss2(psf)
            got = np.array(fit_params)
            expected = np.array([np.nan, expected_std, expected_std, 8, 8, 0, 0, 17])
            assert np.all((got[1:] - expected[1:]) ** 2 < 0.15 ** 2)
Exemplo n.º 6
0
 def it_does_not_return_reasons_if_requested():
     im = np.zeros((100, 100))
     psf = worker._psf_estimate(im, [[64, 64]], mea=17, return_reasons=False)
     assert psf.shape == (17, 17)
Exemplo n.º 7
0
 def it_returns_reason_by_default():
     im = np.zeros((100, 100))
     psf, reasons = worker._psf_estimate(im, [[64, 64]], mea=17)
     assert psf.shape == (17, 17) and reasons.shape == (1, 8)
Exemplo n.º 8
0
 def it_normalizes():
     peaks, im, std = _make_image(0.0, 100)
     psf = worker._psf_estimate(im, peaks.locs, mea=17, return_reasons=False)
     assert utils.np_within(np.sum(psf), 1.0, 0.001)
Exemplo n.º 9
0
 def it_does_not_skip_contentions():
     peaks, im = _make_image_n_locs([[64, 50], [64, 60]])
     psf, reasons = worker._psf_estimate(im, peaks.locs, mea=17, return_reasons=True)
     for loc, reason in zip(peaks.locs, reasons):
         assert reason[worker.PSFEstimateMaskFields.skipped_too_crowded] == 0