Exemplo n.º 1
0
def list_datasets() -> List[str]:
    """Lists dataset names from object storage.

    Returns:
        list: A list of all datasets names.
    """
    datasets = []

    # ensures MinIO bucket exists
    make_bucket(BUCKET_NAME)

    objects = MINIO_CLIENT.list_objects_v2(BUCKET_NAME, PREFIX + "/")

    for obj in objects:
        name = obj.object_name[len(PREFIX) + 1:-1]
        datasets.append(name)

    return datasets
Exemplo n.º 2
0
def list_metrics(experiment_id: Optional[str] = None,
                 operator_id: Optional[str] = None,
                 run_id: Optional[str] = None) -> List[Dict[str, object]]:
    """Lists metrics from object storage.
    Args:
        experiment_id (str, optional): the experiment uuid. Defaults to None.
        operator_id (str, optional): the operator uuid. Defaults to None.
        run_id (str, optional): the run id. Defaults to None.
    Returns:
        list: A list of metrics.
    Raises:
        TypeError: when experiment_id is undefined in args and env.
        TypeError: when operator_id is undefined in args and env.
    """
    if experiment_id is None:
        experiment_id = get_experiment_id()

    if operator_id is None:
        operator_id = get_operator_id()

    # ensures MinIO bucket exists
    make_bucket(BUCKET_NAME)

    if run_id is None:
        # gets run_id from env variable
        # Attention: returns None if env is unset
        run_id = get_run_id()
    elif run_id == "latest":
        try:
            metadata = stat_metadata(experiment_id, operator_id)
            run_id = metadata.get("run_id")
        except FileNotFoundError:
            return []

    try:
        object_name = operator_filepath(METRICS_FILE, experiment_id, operator_id, run_id)
        data = MINIO_CLIENT.get_object(
            bucket_name=BUCKET_NAME,
            object_name=object_name,
        )
    except (NoSuchBucket, NoSuchKey):
        raise FileNotFoundError(f"No such file or directory: '{experiment_id}'")

    return load(data)
Exemplo n.º 3
0
def save_model(**kwargs):
    """Serializes and saves models.

    Args:
        **kwargs: the models as keyword arguments.

    Raises:
        TypeError: when a figure is not a matplotlib figure.

    Raises:
        TypeError: when experiment_id is undefined in args and env.
        TypeError: when operator_id is undefined in args and env.
    """
    experiment_id = kwargs.get("experiment_id")
    if experiment_id is None:
        experiment_id = get_experiment_id()

    operator_id = kwargs.get("operator_id")
    if operator_id is None:
        operator_id = get_operator_id()

    object_name = f"{PREFIX_1}/{experiment_id}/{PREFIX_2}/{operator_id}/{MODEL_FILE}"

    model_buffer = BytesIO()
    dump(kwargs, model_buffer)
    model_buffer.seek(0, SEEK_SET)

    # ensures MinIO bucket exists
    make_bucket(BUCKET_NAME)

    # uploads file to MinIO
    MINIO_CLIENT.put_object(
        bucket_name=BUCKET_NAME,
        object_name=object_name,
        data=model_buffer,
        length=model_buffer.getbuffer().nbytes,
    )
Exemplo n.º 4
0
def save_metrics(experiment_id: Optional[str] = None,
                 operator_id: Optional[str] = None,
                 run_id: Optional[str] = None,
                 **kwargs):
    """Saves metrics of an experiment to the object storage.
    Args:
        experiment_id (str, optional): the experiment uuid. Defaults to None
        operator_id (str, optional): the operator uuid. Defaults to None
        run_id (str, optional): the run id. Defaults to None.
        **kwargs: the metrics dict.
    Raises:
        TypeError: when experiment_id is undefined in args and env.
        TypeError: when operator_id is undefined in args and env.
    """
    if experiment_id is None:
        experiment_id = get_experiment_id()

    if operator_id is None:
        operator_id = get_operator_id()

    if run_id is None:
        # gets run_id from env variables
        # Attention: returns None if env is unset
        run_id = get_run_id()

    # ensures MinIO bucket exists
    make_bucket(BUCKET_NAME)

    if run_id:
        metadata = {}
        try:
            metadata = stat_metadata(experiment_id, operator_id)
            if run_id == "latest":
                run_id = metadata.get("run_id")
        except FileNotFoundError:
            pass
        metadata["run_id"] = run_id

        # encodes metadata to JSON format and uploads to MinIO
        buffer = BytesIO(dumps(metadata).encode())
        MINIO_CLIENT.put_object(
            bucket_name=BUCKET_NAME,
            object_name=f'experiments/{experiment_id}/operators/{operator_id}/.metadata',
            data=buffer,
            length=buffer.getbuffer().nbytes,
        )

    object_name = operator_filepath(METRICS_FILE, experiment_id, operator_id, run_id)

    encoded_metrics = []

    # retrieves the metrics saved previosuly
    try:
        data = MINIO_CLIENT.get_object(
            bucket_name=BUCKET_NAME,
            object_name=object_name,
        )
        encoded_metrics = loads(data.read())
    except NoSuchKey:
        pass

    # appends new metrics
    encoded_metrics.extend(_encode_metrics(kwargs))

    # puts metrics into buffer
    buffer = BytesIO(dumps(encoded_metrics).encode())

    # uploads metrics to MinIO
    MINIO_CLIENT.put_object(
        bucket_name=BUCKET_NAME,
        object_name=object_name,
        data=buffer,
        length=buffer.getbuffer().nbytes,
    )
Exemplo n.º 5
0
def save_dataset(name: str,
                 data: Union[pd.DataFrame, BinaryIO] = None,
                 df: pd.DataFrame = None,
                 metadata: Optional[Dict[str, str]] = None,
                 run_id: Optional[str] = None,
                 operator_id: Optional[str] = None):
    """Saves a dataset and its metadata to the object storage.

    Args:
        name (str): the dataset name.
        data (pandas.DataFrame, BinaryIO, optional): the dataset contents as a
            pandas.DataFrame or an `BinaryIO` buffer. Defaults to None.
        df (pandas.DataFrame, optional): the dataset contents as an `pandas.DataFrame`.
            df exists only for compatibility with existing components.
            Use "data" for all types of datasets. Defaults to None.
        metadata (dict, optional): metadata about the dataset. Defaults to None..
        run_id (str, optional): the run id. Defaults to None.
        operator_id (str, optional): the operator uuid. Defaults to None.

    Raises:
        PermissionError: If dataset was read only.
    """
    # ensures MinIO bucket exists
    make_bucket(BUCKET_NAME)

    if run_id is None:
        # gets run_id from env variables
        # Attention: returns None if env is unset
        run_id = get_run_id()

    if operator_id is None:
        # gets operator_id from env variables
        # Attention: returns None if env is unset
        operator_id = get_operator_id(raise_for_none=False)

    # df exists only for compatibility with existing components
    # from now on one must use "data" for all types of datasets
    if df is not None:
        data = df

    try:
        # gets metadata (if dataset exists)
        stored_metadata = stat_dataset(name, run_id)
        metadata_should_be_updated = False

        # update stored metadata values
        if metadata:
            stored_metadata.update(metadata)
        elif isinstance(data, pd.DataFrame):
            metadata_should_be_updated = True

        metadata = stored_metadata
    except FileNotFoundError:
        metadata_should_be_updated = False

    # builds metadata dict:
    # sets filename and run_id
    if metadata is None:
        metadata = {}

    metadata["filename"] = name

    if isinstance(data, pd.DataFrame):
        # sets metadata specific for pandas.DataFrame:
        # columns, featuretypes
        metadata["columns"] = data.columns.tolist()
        metadata["total"] = len(data.index)

        if "featuretypes" not in metadata:
            metadata["featuretypes"] = infer_featuretypes(data)

    # if the metadata was given (set manually), ignore updates, otherwise
    # search for changes and then update current featuretypes to be even with columns
    if metadata_should_be_updated:
        previous_metadata = stat_dataset(name, run_id)
        previous_columns = previous_metadata["columns"]
        previous_featuretypes = previous_metadata["featuretypes"]
        column_to_type = dict(zip(previous_columns, previous_featuretypes))

        new_featuretypes = []
        for new_column in metadata["columns"]:
            if new_column in column_to_type:
                new_featuretypes.append(column_to_type[new_column])
            else:
                new_featuretypes.append(
                    infer_featuretypes(pd.DataFrame(data[new_column]))[0])

        metadata["featuretypes"] = new_featuretypes

    if run_id:
        metadata["run_id"] = run_id

        # When saving a dataset of a run, also
        # set the run_id in datasets/<name>.metadata
        # This enables load_dataset by run="latest"
        try:
            root_metadata = stat_dataset(name, "root")
        except FileNotFoundError:
            root_metadata = {}

        root_metadata["run_id"] = run_id
        object_name = _metadata_filepath(name)
        # encodes metadata to JSON format
        buffer = BytesIO(dumps(root_metadata).encode())
        MINIO_CLIENT.put_object(
            bucket_name=BUCKET_NAME,
            object_name=object_name,
            data=buffer,
            length=buffer.getbuffer().nbytes,
        )

        # create a run metadata to save the last operator id
        # to dataset get loaded on next step of the pipeline flow
        metadata["operator_id"] = operator_id
        object_name = _metadata_filepath(name, run_id=run_id)
        buffer = BytesIO(dumps(metadata).encode())
        MINIO_CLIENT.put_object(
            bucket_name=BUCKET_NAME,
            object_name=object_name,
            data=buffer,
            length=buffer.getbuffer().nbytes,
        )

    path = _data_filepath(name, run_id, operator_id)

    if isinstance(data, pd.DataFrame):
        # uploads dataframe to MinIO as a .csv file
        temp_file = tempfile.NamedTemporaryFile(dir='.', delete=False)
        data.to_csv(temp_file.name, header=True, index=False)
        MINIO_CLIENT.fput_object(bucket_name=BUCKET_NAME,
                                 object_name=path.lstrip(f"{BUCKET_NAME}/"),
                                 file_path=temp_file.name)
        temp_file.close()
        os.remove(temp_file.name)
    else:
        # uploads raw data to MinIO
        buffer = BytesIO(data.read())
        MINIO_CLIENT.put_object(
            bucket_name=BUCKET_NAME,
            object_name=path.lstrip(f"{BUCKET_NAME}/"),
            data=buffer,
            length=buffer.getbuffer().nbytes,
        )

    object_name = _metadata_filepath(name, run_id, operator_id)
    # encodes metadata to JSON format
    buffer = BytesIO(dumps(metadata).encode())
    MINIO_CLIENT.put_object(
        bucket_name=BUCKET_NAME,
        object_name=object_name,
        data=buffer,
        length=buffer.getbuffer().nbytes,
    )