Exemplo n.º 1
0
class TreeMutation(object):
    def __init__(self, config, **kwargs):
        self.config = config
        self.recorder = kwargs.get("recorder", None)
        self.generator = TreeGenerator(self.config)

        # mutation stats
        self.method = None
        self.index = None
        self.mutation_probability = None
        self.random_probability = None
        self.mutated = False
        self.before_mutation = None
        self.after_mutation = None

    def generate_new_node(self, details):
        if details is None:
            return None

        elif details["type"] == NodeType.FUNCTION:
            return Node(
                NodeType.FUNCTION,
                name=details["name"],
                arity=details["arity"],
                branches=[]
            )

        elif details["type"] == NodeType.CLASS_FUNCTION:
            return Node(
                NodeType.CLASS_FUNCTION,
                name=details["name"],
                arity=details["arity"],
                branches=[]
            )

        elif details["type"] == NodeType.INPUT:
            return Node(
                NodeType.INPUT,
                name=details["name"]
            )

        elif details["type"] == NodeType.CONSTANT:
            return Node(
                NodeType.CONSTANT,
                name=details.get("name", None),
                value=details["value"]
            )

        elif details["type"] == NodeType.RANDOM_CONSTANT:
            resolved_details = self.generator.resolve_random_constant(details)
            return Node(
                NodeType.CONSTANT,
                name=resolved_details.get("name", None),
                value=resolved_details["value"]
            )

    def mutate_new_node_details(self, old_node):
        # determine what kind of old_node it is
        node_pool = []
        if old_node.is_function() or old_node.is_class_function():
            tmp = list(self.config["function_nodes"])
            tmp = [n for n in tmp if n["arity"] == old_node.arity]
            node_pool.extend(tmp)

        elif old_node.is_terminal():
            node_pool.extend(self.config["terminal_nodes"])

        # check the node and return
        retry = 0
        retry_limit = 100
        while True:
            if retry == retry_limit:
                return None
            else:
                retry += 1

            n_details = sample(node_pool, 1)[0]
            if n_details["type"] == NodeType.RANDOM_CONSTANT:
                n_details = self.generator.resolve_random_constant(n_details)
            elif n_details["type"] == NodeType.CLASS_FUNCTION:
                n_details = self.generator.resolve_class_function(n_details)
            new_node = self.generate_new_node(n_details)

            if old_node.equals(new_node) is False:
                return n_details

    def point_mutation(self, tree, mutation_index=None):
        # mutate node
        self.index = randint(0, len(tree.program) - 1)
        node = tree.program[self.index]
        new_node = self.mutate_new_node_details(node)

        if new_node is None:
            return

        elif node.is_function():
            node.name = new_node["name"]

        elif node.is_terminal():
            node.node_type = new_node.get("type")
            node.name = new_node.get("name", None)
            node.value = new_node.get("value", None)

        tree.update()
        self.mutated = True

    def hoist_mutation(self, tree, mutation_index=None):
        # new indivdiaul generated from subtree
        node = None
        if mutation_index is None:
            self.index = randint(0, len(tree.program) - 2)
            node = tree.program[self.index]
        else:
            self.index = mutation_index
            node = tree.program[mutation_index]

        tree.root = node
        tree.update()
        self.mutated = True

    def subtree_mutation(self, tree, mutation_index=None):
        # subtree exchanged against external random subtree
        node = None
        if mutation_index is None:
            self.index = randint(0, len(tree.program) - 1)
            node = tree.program[self.index]
        else:
            self.index = mutation_index
            node = tree.program[mutation_index]

        self.generator.max_depth = randint(1, 3)
        sub_tree = self.generator.generate_tree()
        if node is not tree.root:
            tree.replace_node(node, sub_tree.root)
        else:
            tree.root = sub_tree.root
        tree.update()
        self.mutated = True

    def shrink_mutation(self, tree, mutation_index=None):
        # replace subtree with terminal
        if len(tree.func_nodes):
            node = None
            if mutation_index is None:
                self.index = randint(0, len(tree.func_nodes) - 1)
                node = tree.func_nodes[self.index]

                while node is tree.root:
                    self.index = randint(0, len(tree.func_nodes) - 1)
                    node = tree.func_nodes[self.index]
            else:
                self.index = mutation_index
                node = tree.program[mutation_index]

            candidate_nodes = tree.term_nodes
            candidate_nodes.extend(tree.input_nodes)
            new_node_detail = sample(candidate_nodes, 1)[0]
            node_details = self.mutate_new_node_details(new_node_detail)
            new_node = self.generate_new_node(node_details)

            if new_node:
                tree.replace_node(node, new_node)
                tree.update()
                self.mutated = True

    def expansion_mutation(self, tree, mutation_index=None):
        # terminal exchanged against external random subtree
        node = None
        if mutation_index is None:
            prob = random()

            if tree.size == 1:
                return

            elif prob > 0.5 and len(tree.term_nodes) > 0:
                self.index = randint(0, len(tree.term_nodes) - 1)
                node = tree.term_nodes[self.index]

            elif prob < 0.5 and len(tree.input_nodes) > 0:
                self.index = randint(0, len(tree.input_nodes) - 1)
                node = tree.input_nodes[self.index]

            elif len(tree.term_nodes) > 0:
                self.index = randint(0, len(tree.term_nodes) - 1)
                node = tree.term_nodes[self.index]

            elif len(tree.input_nodes) > 0:
                self.index = randint(0, len(tree.input_nodes) - 1)
                node = tree.input_nodes[self.index]

        else:
            self.index = mutation_index
            node = tree.program[mutation_index]

        sub_tree = self.generator.generate_tree()
        tree.replace_node(node, sub_tree.root)
        tree.update()
        self.mutated = True

    def mutate(self, tree):
        mutation_methods = {
            "POINT_MUTATION": self.point_mutation,
            "HOIST_MUTATION": self.hoist_mutation,
            "SUBTREE_MUTATION": self.subtree_mutation,
            "SHRINK_MUTATION": self.shrink_mutation,
            "EXPAND_MUTATION": self.expansion_mutation
        }

        self.method = sample(self.config["mutation"]["methods"], 1)[0]
        self.index = None
        self.mutation_probability = self.config["mutation"]["probability"]
        self.random_probability = random()
        self.mutated = False
        self.before_mutation = None
        self.after_mutation = None

        # record before mutation
        self.before_mutation = tree.to_dict()["program"]

        # mutate
        if self.mutation_probability >= self.random_probability:
            mutation_func = mutation_methods[self.method]
            mutation_func(tree)

        # record after mutation
        self.after_mutation = tree.to_dict()["program"]

        # record
        if self.recorder is not None:
            self.recorder.record(RecordType.MUTATION, self)

    def to_dict(self):
        self_dict = {
            "method": self.method,
            "mutation_index": self.index,
            "mutation_probability": self.mutation_probability,
            "random_probability": self.random_probability,
            "mutated": self.mutated,
            "before_mutation": self.before_mutation,
            "after_mutation": self.after_mutation
        }

        return self_dict
Exemplo n.º 2
0
class TreeGeneratorTests(unittest.TestCase):
    def setUp(self):
        self.config = {
            "max_population": 10,

            "tree_generation": {
                "tree_type": "SYMBOLIC_REGRESSION",
                "method": "RAMPED_HALF_AND_HALF_METHOD",
                "initial_max_depth": 3
            },

            "function_nodes": [
                {"type": "FUNCTION", "arity": 2, "name": "ADD"},
                {"type": "FUNCTION", "arity": 2, "name": "SUB"},
                {"type": "FUNCTION", "arity": 2, "name": "MUL"},
                {"type": "FUNCTION", "arity": 2, "name": "DIV"},
                {"type": "FUNCTION", "arity": 1, "name": "COS"},
                {"type": "FUNCTION", "arity": 1, "name": "SIN"}
            ],

            "terminal_nodes": [
                {"type": "CONSTANT", "value": 1.0},
                {"type": "INPUT", "name": "x"},
                {"type": "INPUT", "name": "y"},
                {
                    "type": "RANDOM_CONSTANT",
                    "data_range": {
                        "upper_bound": 10.0,
                        "lower_bound": -10.0,
                        "decimal_places": 1
                    }
                }
            ],

            "input_variables": [
                {"name": "x"},
                {"name": "y"}
            ]
        }

        self.functions = GPFunctionRegistry("SYMBOLIC_REGRESSION")
        self.generator = TreeGenerator(self.config)
        self.parser = TreeParser()

    def tearDown(self):
        del self.config
        del self.generator
        del self.parser

    def test_generate_func_node(self):
        # SYMBOLIC REGRESSION TREES
        for i in range(100):
            node = self.generator.generate_func_node()
            self.assertEquals(node.node_type, NodeType.FUNCTION)

        # CLASSIFICATION TREES
        self.config["tree_generation"]["tree_type"] = "CLASSIFICATION_TREE"
        self.config["function_nodes"] = [
            {
                "type": "CLASS_FUNCTION",
                "name": "GREATER_THAN",
                "arity": 2,

                "data_range": {
                    "lower_bound": 0.0,
                    "upper_bound": 10.0,
                    "decimal_places": 1
                }
            }
        ]
        self.config["class_attributes"] = [
            "attrubte_1",
            "attrubte_2",
            "attrubte_3"
        ]
        generator = TreeGenerator(self.config)
        for i in range(100):
            node = generator.generate_func_node()
            class_attribute = node.class_attribute
            self.assertEquals(node.node_type, NodeType.CLASS_FUNCTION)
            self.assertTrue(class_attribute in self.config["class_attributes"])

    def test_resolve_random_constant(self):
        upper_bound = 10.0
        lower_bound = -10.0
        decimal_places = 0

        for i in range(100):
            n_details = {
                "type": "RANDOM_CONSTANT",
                "data_range": {
                    "lower_bound": lower_bound,
                    "upper_bound": upper_bound,
                    "decimal_places": decimal_places
                }
            }
            new_n_details = self.generator.resolve_random_constant(n_details)
            node_type = new_n_details["type"]
            node_value = new_n_details["value"]

            self.assertEquals(node_type, "CONSTANT")
            self.assertTrue(upper_bound >= node_value)
            self.assertTrue(lower_bound <= node_value)
            self.assertEquals(node_value, int(node_value))

        upper_bound = 100.0
        lower_bound = -100.0
        decimal_places = 1

        for i in range(100):
            n_details = {
                "type": "RANDOM_CONSTANT",
                "data_range": {
                    "lower_bound": lower_bound,
                    "upper_bound": upper_bound,
                    "decimal_places": decimal_places
                }
            }
            new_n_details = self.generator.resolve_random_constant(n_details)
            node_type = new_n_details["type"]
            node_value = new_n_details["value"]

            self.assertEquals(node_type, "CONSTANT")
            self.assertTrue(upper_bound >= node_value)
            self.assertTrue(lower_bound <= node_value)

            node_value = decimal.Decimal(str(node_value))
            node_decimal_places = abs(node_value.as_tuple().exponent)
            self.assertEquals(decimal_places, node_decimal_places)

    def test_generate_term_node(self):
        for i in range(100):
            node = self.generator.generate_term_node()
            self.assertTrue(
                node.node_type == NodeType.CONSTANT or NodeType.INPUT
            )

    def test_full_method(self):
        tests = 1

        for i in xrange(tests):
            tree = self.generator.full_method()

            # asserts
            init_max = self.config["tree_generation"]["initial_max_depth"]
            self.assertEquals(tree.depth, init_max)
            self.assertTrue(tree.size > init_max)

    def test_grow_method(self):
        tests = 1000

        for i in xrange(tests):
            tree = self.generator.grow_method()

            # asserts
            init_max = self.config["tree_generation"]["initial_max_depth"]
            self.assertEquals(tree.depth, init_max)
            self.assertTrue(tree.size > init_max)

    def test_generate_tree_from_dict(self):
        population = self.generator.init()
        tree = population.individuals[0]
        tree_dict = self.parser.tree_to_dict(tree, tree.root)
        tree_generated = self.generator.generate_tree_from_dict(tree_dict)

        program_str = ""
        for i in tree.program:
            if i.name is not None:
                program_str += i.name
            else:
                program_str += str(i.value)

        generated_str = ""
        for i in tree_generated.program:
            if i.name is not None:
                generated_str += i.name
            else:
                generated_str += str(i.value)

        self.assertEquals(program_str, generated_str)

    def test_init(self):
        population = self.generator.init()
        self.assertEquals(len(population.individuals), 10)
Exemplo n.º 3
0
class TreeGeneratorTests(unittest.TestCase):
    def setUp(self):
        self.config = {
            "max_population":
            10,
            "tree_generation": {
                "tree_type": "SYMBOLIC_REGRESSION",
                "method": "RAMPED_HALF_AND_HALF_METHOD",
                "initial_max_depth": 3
            },
            "function_nodes": [{
                "type": "FUNCTION",
                "arity": 2,
                "name": "ADD"
            }, {
                "type": "FUNCTION",
                "arity": 2,
                "name": "SUB"
            }, {
                "type": "FUNCTION",
                "arity": 2,
                "name": "MUL"
            }, {
                "type": "FUNCTION",
                "arity": 2,
                "name": "DIV"
            }, {
                "type": "FUNCTION",
                "arity": 1,
                "name": "COS"
            }, {
                "type": "FUNCTION",
                "arity": 1,
                "name": "SIN"
            }],
            "terminal_nodes": [{
                "type": "CONSTANT",
                "value": 1.0
            }, {
                "type": "INPUT",
                "name": "x"
            }, {
                "type": "INPUT",
                "name": "y"
            }, {
                "type": "RANDOM_CONSTANT",
                "data_range": {
                    "upper_bound": 10.0,
                    "lower_bound": -10.0,
                    "decimal_places": 1
                }
            }],
            "input_variables": [{
                "name": "x"
            }, {
                "name": "y"
            }]
        }

        self.functions = GPFunctionRegistry("SYMBOLIC_REGRESSION")
        self.generator = TreeGenerator(self.config)
        self.parser = TreeParser()

    def tearDown(self):
        del self.config
        del self.generator
        del self.parser

    def test_generate_func_node(self):
        # SYMBOLIC REGRESSION TREES
        for i in range(100):
            node = self.generator.generate_func_node()
            self.assertEquals(node.node_type, NodeType.FUNCTION)

        # CLASSIFICATION TREES
        self.config["tree_generation"]["tree_type"] = "CLASSIFICATION_TREE"
        self.config["function_nodes"] = [{
            "type": "CLASS_FUNCTION",
            "name": "GREATER_THAN",
            "arity": 2,
            "data_range": {
                "lower_bound": 0.0,
                "upper_bound": 10.0,
                "decimal_places": 1
            }
        }]
        self.config["class_attributes"] = [
            "attrubte_1", "attrubte_2", "attrubte_3"
        ]
        generator = TreeGenerator(self.config)
        for i in range(100):
            node = generator.generate_func_node()
            class_attribute = node.class_attribute
            self.assertEquals(node.node_type, NodeType.CLASS_FUNCTION)
            self.assertTrue(class_attribute in self.config["class_attributes"])

    def test_resolve_random_constant(self):
        upper_bound = 10.0
        lower_bound = -10.0
        decimal_places = 0

        for i in range(100):
            n_details = {
                "type": "RANDOM_CONSTANT",
                "data_range": {
                    "lower_bound": lower_bound,
                    "upper_bound": upper_bound,
                    "decimal_places": decimal_places
                }
            }
            new_n_details = self.generator.resolve_random_constant(n_details)
            node_type = new_n_details["type"]
            node_value = new_n_details["value"]

            self.assertEquals(node_type, "CONSTANT")
            self.assertTrue(upper_bound >= node_value)
            self.assertTrue(lower_bound <= node_value)
            self.assertEquals(node_value, int(node_value))

        upper_bound = 100.0
        lower_bound = -100.0
        decimal_places = 1

        for i in range(100):
            n_details = {
                "type": "RANDOM_CONSTANT",
                "data_range": {
                    "lower_bound": lower_bound,
                    "upper_bound": upper_bound,
                    "decimal_places": decimal_places
                }
            }
            new_n_details = self.generator.resolve_random_constant(n_details)
            node_type = new_n_details["type"]
            node_value = new_n_details["value"]

            self.assertEquals(node_type, "CONSTANT")
            self.assertTrue(upper_bound >= node_value)
            self.assertTrue(lower_bound <= node_value)

            node_value = decimal.Decimal(str(node_value))
            node_decimal_places = abs(node_value.as_tuple().exponent)
            self.assertEquals(decimal_places, node_decimal_places)

    def test_generate_term_node(self):
        for i in range(100):
            node = self.generator.generate_term_node()
            self.assertTrue(node.node_type == NodeType.CONSTANT
                            or NodeType.INPUT)

    def test_full_method(self):
        tests = 1

        for i in xrange(tests):
            tree = self.generator.full_method()

            # asserts
            init_max = self.config["tree_generation"]["initial_max_depth"]
            self.assertEquals(tree.depth, init_max)
            self.assertTrue(tree.size > init_max)

    def test_grow_method(self):
        tests = 1000

        for i in xrange(tests):
            tree = self.generator.grow_method()

            # asserts
            init_max = self.config["tree_generation"]["initial_max_depth"]
            self.assertEquals(tree.depth, init_max)
            self.assertTrue(tree.size > init_max)

    def test_generate_tree_from_dict(self):
        population = self.generator.init()
        tree = population.individuals[0]
        tree_dict = self.parser.tree_to_dict(tree, tree.root)
        tree_generated = self.generator.generate_tree_from_dict(tree_dict)

        program_str = ""
        for i in tree.program:
            if i.name is not None:
                program_str += i.name
            else:
                program_str += str(i.value)

        generated_str = ""
        for i in tree_generated.program:
            if i.name is not None:
                generated_str += i.name
            else:
                generated_str += str(i.value)

        self.assertEquals(program_str, generated_str)

    def test_init(self):
        population = self.generator.init()
        self.assertEquals(len(population.individuals), 10)
Exemplo n.º 4
0
class TreeMutation(object):
    def __init__(self, config, **kwargs):
        self.config = config
        self.recorder = kwargs.get("recorder", None)
        self.generator = TreeGenerator(self.config)

        # mutation stats
        self.method = None
        self.index = None
        self.mutation_probability = None
        self.random_probability = None
        self.mutated = False
        self.before_mutation = None
        self.after_mutation = None

    def generate_new_node(self, details):
        if details is None:
            return None

        elif details["type"] == NodeType.FUNCTION:
            return Node(NodeType.FUNCTION,
                        name=details["name"],
                        arity=details["arity"],
                        branches=[])

        elif details["type"] == NodeType.CLASS_FUNCTION:
            return Node(NodeType.CLASS_FUNCTION,
                        name=details["name"],
                        arity=details["arity"],
                        branches=[])

        elif details["type"] == NodeType.INPUT:
            return Node(NodeType.INPUT, name=details["name"])

        elif details["type"] == NodeType.CONSTANT:
            return Node(NodeType.CONSTANT,
                        name=details.get("name", None),
                        value=details["value"])

        elif details["type"] == NodeType.RANDOM_CONSTANT:
            resolved_details = self.generator.resolve_random_constant(details)
            return Node(NodeType.CONSTANT,
                        name=resolved_details.get("name", None),
                        value=resolved_details["value"])

    def mutate_new_node_details(self, old_node):
        # determine what kind of old_node it is
        node_pool = []
        if old_node.is_function() or old_node.is_class_function():
            tmp = list(self.config["function_nodes"])
            tmp = [n for n in tmp if n["arity"] == old_node.arity]
            node_pool.extend(tmp)

        elif old_node.is_terminal():
            node_pool.extend(self.config["terminal_nodes"])

        # check the node and return
        retry = 0
        retry_limit = 100
        while True:
            if retry == retry_limit:
                return None
            else:
                retry += 1

            n_details = sample(node_pool, 1)[0]
            if n_details["type"] == NodeType.RANDOM_CONSTANT:
                n_details = self.generator.resolve_random_constant(n_details)
            elif n_details["type"] == NodeType.CLASS_FUNCTION:
                n_details = self.generator.resolve_class_function(n_details)
            new_node = self.generate_new_node(n_details)

            if old_node.equals(new_node) is False:
                return n_details

    def point_mutation(self, tree, mutation_index=None):
        # mutate node
        self.index = randint(0, len(tree.program) - 1)
        node = tree.program[self.index]
        new_node = self.mutate_new_node_details(node)

        if new_node is None:
            return

        elif node.is_function():
            node.name = new_node["name"]

        elif node.is_terminal():
            node.node_type = new_node.get("type")
            node.name = new_node.get("name", None)
            node.value = new_node.get("value", None)

        tree.update()
        self.mutated = True

    def hoist_mutation(self, tree, mutation_index=None):
        # new indivdiaul generated from subtree
        node = None
        if mutation_index is None:
            self.index = randint(0, len(tree.program) - 2)
            node = tree.program[self.index]
        else:
            self.index = mutation_index
            node = tree.program[mutation_index]

        tree.root = node
        tree.update()
        self.mutated = True

    def subtree_mutation(self, tree, mutation_index=None):
        # subtree exchanged against external random subtree
        node = None
        if mutation_index is None:
            self.index = randint(0, len(tree.program) - 1)
            node = tree.program[self.index]
        else:
            self.index = mutation_index
            node = tree.program[mutation_index]

        self.generator.max_depth = randint(1, 3)
        sub_tree = self.generator.generate_tree()
        if node is not tree.root:
            tree.replace_node(node, sub_tree.root)
        else:
            tree.root = sub_tree.root
        tree.update()
        self.mutated = True

    def shrink_mutation(self, tree, mutation_index=None):
        # replace subtree with terminal
        if len(tree.func_nodes):
            node = None
            if mutation_index is None:
                self.index = randint(0, len(tree.func_nodes) - 1)
                node = tree.func_nodes[self.index]

                while node is tree.root:
                    self.index = randint(0, len(tree.func_nodes) - 1)
                    node = tree.func_nodes[self.index]
            else:
                self.index = mutation_index
                node = tree.program[mutation_index]

            candidate_nodes = tree.term_nodes
            candidate_nodes.extend(tree.input_nodes)
            new_node_detail = sample(candidate_nodes, 1)[0]
            node_details = self.mutate_new_node_details(new_node_detail)
            new_node = self.generate_new_node(node_details)

            if new_node:
                tree.replace_node(node, new_node)
                tree.update()
                self.mutated = True

    def expansion_mutation(self, tree, mutation_index=None):
        # terminal exchanged against external random subtree
        node = None
        if mutation_index is None:
            prob = random()

            if tree.size == 1:
                return

            elif prob > 0.5 and len(tree.term_nodes) > 0:
                self.index = randint(0, len(tree.term_nodes) - 1)
                node = tree.term_nodes[self.index]

            elif prob < 0.5 and len(tree.input_nodes) > 0:
                self.index = randint(0, len(tree.input_nodes) - 1)
                node = tree.input_nodes[self.index]

            elif len(tree.term_nodes) > 0:
                self.index = randint(0, len(tree.term_nodes) - 1)
                node = tree.term_nodes[self.index]

            elif len(tree.input_nodes) > 0:
                self.index = randint(0, len(tree.input_nodes) - 1)
                node = tree.input_nodes[self.index]

        else:
            self.index = mutation_index
            node = tree.program[mutation_index]

        sub_tree = self.generator.generate_tree()
        tree.replace_node(node, sub_tree.root)
        tree.update()
        self.mutated = True

    def mutate(self, tree):
        mutation_methods = {
            "POINT_MUTATION": self.point_mutation,
            "HOIST_MUTATION": self.hoist_mutation,
            "SUBTREE_MUTATION": self.subtree_mutation,
            "SHRINK_MUTATION": self.shrink_mutation,
            "EXPAND_MUTATION": self.expansion_mutation
        }

        self.method = sample(self.config["mutation"]["methods"], 1)[0]
        self.index = None
        self.mutation_probability = self.config["mutation"]["probability"]
        self.random_probability = random()
        self.mutated = False
        self.before_mutation = None
        self.after_mutation = None

        # record before mutation
        self.before_mutation = tree.to_dict()["program"]

        # mutate
        if self.mutation_probability >= self.random_probability:
            mutation_func = mutation_methods[self.method]
            mutation_func(tree)

        # record after mutation
        self.after_mutation = tree.to_dict()["program"]

        # record
        if self.recorder is not None:
            self.recorder.record(RecordType.MUTATION, self)

    def to_dict(self):
        self_dict = {
            "method": self.method,
            "mutation_index": self.index,
            "mutation_probability": self.mutation_probability,
            "random_probability": self.random_probability,
            "mutated": self.mutated,
            "before_mutation": self.before_mutation,
            "after_mutation": self.after_mutation
        }

        return self_dict