Exemplo n.º 1
0
def stellarHaloMFRatio(path,
                       database,
                       redshifts,
                       output_folder,
                       outfile,
                       xmin=10.0,
                       xmax=14.4,
                       ymin=-3,
                       ymax=-1,
                       nbins=15,
                       h=0.7):
    '''
    Plots stellar to dark matter halo mass ratios as a function of redshift.
    '''
    #get Behroozi et al. fits
    BFits = g.glob(
        '/Users/niemi/Dropbox/Research/Observations/behroozi/results/*.dat')

    #get a colour scheme
    cols = pt.give_colours()

    #scale the SAM's output masses with this factor
    multiply = 1e9

    #make the figure and axes instance
    fig = P.figure()
    ax = fig.add_subplot(111)

    #plot the different redshifts
    for ii, redshift in enumerate(redshifts):
        #get redshift, add 0.1 so that int/floor returns the closest int
        tmp = redshift.split()
        rd = int(float(tmp[2]) + 0.1)

        #generate the SQL query
        query = '''select mstar_disk, mbulge, mhalo from galpropz where ''' + redshift
        query += ' and mstar_disk >= 0.0 and mbulge >= 0.0'
        query += ' and mstar_disk + mbulge > 0.0'
        query += ' and gal_id = 1'

        #load Behroozi et al fit data
        BF = N.loadtxt(BFits[ii + 1])
        ax.plot(
            BF[:, 0],  # - N.log10(h),
            BF[:, 1],
            color=cols[ii],
            ls='--',
            label='Behroozi et al.: $z \sim %s$' %
            (BFits[ii + 1].split('z')[2][:4]))

        logging.debug(BFits[ii + 1])

        #get data from the SQLite3 db
        dat = db.sqlite.get_data_sqlite(path, database, query)

        #rename data and calculate the ratio
        mstar = dat[:, 0] + dat[:, 1]
        mhalo = dat[:, 2]
        ratio = N.log10(mstar / mhalo)
        mhalo = N.log10(mhalo * multiply)
        #print ratio, N.min(ratio), N.max(ratio)

        #debug output
        ngal = len(mstar)
        logging.debug('%i galaxies found at z = %i\n' % (ngal, rd))

        #bin the data
        xbin_mid, y50, y16, y84 = dm.percentile_bins(mhalo,
                                                     ratio,
                                                     xmin,
                                                     xmax,
                                                     nxbins=nbins)
        msk = y50 > -10
        #plot the binned data
        #        ax.errorbar(xbin_mid[msk],
        #                    y50[msk],
        #                    yerr = [y50[msk]-y16[msk], y84[msk]-y50[msk]],
        #                    color = cols[ii],
        #                    label = 'Bolshoi+SAM: $z \sim %i$' % rd)
        ax.plot(xbin_mid[msk],
                y50[msk],
                color=cols[ii],
                ms='o',
                ls='-',
                label='Bolshoi+SAM: $z \sim %i$' % rd)

    #set axes scales and labels
    ax.set_xlim(xmin, xmax)
    ax.set_ylim(ymin, ymax)
    ax.set_xlabel(
        r'$\log_{10} \left ( M_{\mathrm{dm}} \ [\mathrm{M}_{\odot}] \right )$')
    ax.set_ylabel(
        r'$\log_{10} \left (\frac{M_{\star}}{M_{\mathrm{dm}}} \right )$')
    #set small ticks
    m = ax.get_yticks()[1] - ax.get_yticks()[0]
    yminorLocator = MultipleLocator(m / 5.)
    yminorFormattor = NullFormatter()
    ax.yaxis.set_minor_locator(yminorLocator)
    ax.yaxis.set_minor_formatter(yminorFormattor)
    m = ax.get_xticks()[1] - ax.get_xticks()[0]
    xminorLocator = MultipleLocator(m / 5.)
    xminorFormattor = NullFormatter()
    ax.xaxis.set_minor_locator(xminorLocator)
    ax.xaxis.set_minor_formatter(xminorFormattor)

    P.legend(shadow=True, fancybox=True, numpoints=1)
    P.savefig(output_folder + outfile + '.pdf')
    P.close()
Exemplo n.º 2
0
def stellarHaloMFRatioMultiPanel(path,
                                 database,
                                 redshifts,
                                 output_folder,
                                 outfile,
                                 xmin=10.0,
                                 xmax=14.4,
                                 ymin=-3,
                                 ymax=-1,
                                 nbins=15):
    '''
    Plots stellar to dark matter halo mass ratios as a function of redshift.
    '''
    #get Behroozi et al. fits
    BFits = g.glob(hm +
                   '/Dropbox/Research/Observations/behroozi/results/*.dat')

    #get a colour scheme
    cols = pt.give_colours()

    #scale the SAM's output masses with this factor
    multiply = 1e9

    #make the figure and axes instance
    fig = P.figure()
    P.subplots_adjust(left=0.13, bottom=0.1, wspace=0.0, hspace=0.0)

    #plot the different redshifts
    for ii, redshift in enumerate(redshifts):
        #get redshift, add 0.1 so that int/floor returns the closest int
        tmp = redshift.split()
        rd = int(float(tmp[2]) + 0.1)

        #generate the SQL query
        query = '''select mstar_disk, mbulge, mhalo from galpropz where ''' + redshift
        query += ' and mstar_disk >= 0.0 and mbulge >= 0.0'
        query += ' and mstar_disk + mbulge > 0.0'
        query += ' and gal_id = 1'

        if ii < 6:
            ax = fig.add_subplot(2, 3, ii + 1)

        #get data from the SQLite3 db
        dat = db.sqlite.get_data_sqlite(path, database, query)

        #rename data and calculate the ratio
        mstar = dat[:, 0] + dat[:, 1]
        mhalo = dat[:, 2]
        ratio = N.log10(mstar / mhalo)
        mhalo = N.log10(mhalo * multiply)
        #print ratio, N.min(ratio), N.max(ratio)

        #debug output
        ngal = len(mstar)
        logging.debug('%i galaxies found at z = %i\n' % (ngal, rd))

        #bin the data
        xbin_mid, y50, y16, y84 = dm.percentile_bins(mhalo,
                                                     ratio,
                                                     xmin,
                                                     xmax,
                                                     nxbins=nbins)
        msk = y50 > -10
        #plot the binned data
        if ii == 6:
            ax.plot(xbin_mid[msk], y50[msk], 'k--', label='Bolshoi+SAM')
        else:
            ax.errorbar(xbin_mid[msk],
                        y50[msk],
                        yerr=[y50[msk] - y16[msk], y84[msk] - y50[msk]],
                        color='k',
                        label='Bolshoi+SAM')

        #load Behroozi et al fit data
        BF = N.loadtxt(BFits[ii + 1])
        #plot Behroozi data
        if ii == 6:
            ax.plot(BF[:, 0],
                    BF[:, 1],
                    color='r',
                    ls='--',
                    label='Behroozi et al.')
        else:
            ax.plot(BF[:, 0],
                    BF[:, 1],
                    color='r',
                    ls='-',
                    label='Behroozi et al.')

        #output some information
        logging.debug(BFits[ii + 1])

        #mark the redshift
        if ii < 5:
            P.text(0.5,
                   0.93,
                   r'$ z \sim %.1f $' % (rd),
                   horizontalalignment='center',
                   verticalalignment='center',
                   transform=ax.transAxes,
                   fontsize=12)
        elif ii == 5:
            P.text(0.5,
                   0.93,
                   r'$z \sim %.1f (s)\ \& \ %.1f (d)$' % (rd, rd + 1),
                   horizontalalignment='center',
                   verticalalignment='center',
                   transform=ax.transAxes,
                   fontsize=12)

        #set axes scales and labels
        ax.set_xlim(xmin - 0.1, xmax)
        ax.set_ylim(ymin, ymax)

        #set small ticks
        m = ax.get_yticks()[1] - ax.get_yticks()[0]
        yminorLocator = MultipleLocator(m / 5.)
        yminorFormattor = NullFormatter()
        ax.yaxis.set_minor_locator(yminorLocator)
        ax.yaxis.set_minor_formatter(yminorFormattor)
        m = ax.get_xticks()[1] - ax.get_xticks()[0]
        xminorLocator = MultipleLocator(m / 5.)
        xminorFormattor = NullFormatter()
        ax.xaxis.set_minor_locator(xminorLocator)
        ax.xaxis.set_minor_formatter(xminorFormattor)

        #set legend
        if ii == 4:
            ax.legend(shadow=True,
                      fancybox=True,
                      numpoints=1,
                      loc='lower right')

        #set ylabel
        if ii == 0 or ii == 3:
            ax.set_ylabel(
                r'$\log_{10} \left (\frac{M_{\star}}{M_{\mathrm{dm}}} \right )$'
            )

        #set xlabel
        if ii == 4:  # or ii == 3 or ii == 5:
            ax.set_xlabel(
                r'$\log_{10} \left ( M_{\mathrm{dm}} \ [\mathrm{M}_{\odot}] \right )$'
            )

        #remove some y ticks
        if ii == 0 or ii == 3:
            ax.set_yticks(ax.get_yticks()[:-1])
        else:
            ax.set_yticklabels([])

        #remove some x ticks
        if ii == 3 or ii == 4 or ii == 5:
            #ax.set_xticks(ax.get_xticks()[:-1])
            continue
        elif ii == 6:
            continue
        else:
            ax.set_xticklabels([])

    P.savefig(output_folder + outfile + 'Multi.pdf')
    P.close()
Exemplo n.º 3
0
def stellarHaloMFRatio(path, database, redshifts,
                       output_folder, outfile,
                       xmin=10.0, xmax=14.4,
                       ymin=-3, ymax=-1,
                       nbins=15, h=0.7):
    '''
    Plots stellar to dark matter halo mass ratios as a function of redshift.
    '''
    #get Behroozi et al. fits
    BFits = g.glob('/Users/niemi/Dropbox/Research/Observations/behroozi/results/*.dat')

    #get a colour scheme
    cols = pt.give_colours()

    #scale the SAM's output masses with this factor
    multiply = 1e9

    #make the figure and axes instance
    fig = P.figure()
    ax = fig.add_subplot(111)

    #plot the different redshifts
    for ii, redshift in enumerate(redshifts):
        #get redshift, add 0.1 so that int/floor returns the closest int
        tmp = redshift.split()
        rd = int(float(tmp[2]) + 0.1)

        #generate the SQL query
        query = '''select mstar_disk, mbulge, mhalo from galpropz where ''' + redshift
        query += ' and mstar_disk >= 0.0 and mbulge >= 0.0'
        query += ' and mstar_disk + mbulge > 0.0'
        query += ' and gal_id = 1'

        #load Behroozi et al fit data
        BF = N.loadtxt(BFits[ii + 1])
        ax.plot(BF[:, 0], # - N.log10(h),
                BF[:, 1],
                color=cols[ii],
                ls='--',
                label='Behroozi et al.: $z \sim %s$' % (BFits[ii + 1].split('z')[2][:4]))

        logging.debug(BFits[ii + 1])

        #get data from the SQLite3 db
        dat = db.sqlite.get_data_sqlite(path, database, query)

        #rename data and calculate the ratio
        mstar = dat[:, 0] + dat[:, 1]
        mhalo = dat[:, 2]
        ratio = N.log10(mstar / mhalo)
        mhalo = N.log10(mhalo * multiply)
        #print ratio, N.min(ratio), N.max(ratio)

        #debug output
        ngal = len(mstar)
        logging.debug('%i galaxies found at z = %i\n' % (ngal, rd))

        #bin the data
        xbin_mid, y50, y16, y84 = dm.percentile_bins(mhalo,
                                                     ratio,
                                                     xmin,
                                                     xmax,
                                                     nxbins=nbins)
        msk = y50 > -10
        #plot the binned data
        #        ax.errorbar(xbin_mid[msk],
        #                    y50[msk],
        #                    yerr = [y50[msk]-y16[msk], y84[msk]-y50[msk]],
        #                    color = cols[ii],
        #                    label = 'Bolshoi+SAM: $z \sim %i$' % rd)
        ax.plot(xbin_mid[msk],
                y50[msk],
                color=cols[ii],
                ms='o',
                ls='-',
                label='Bolshoi+SAM: $z \sim %i$' % rd)



    #set axes scales and labels
    ax.set_xlim(xmin, xmax)
    ax.set_ylim(ymin, ymax)
    ax.set_xlabel(r'$\log_{10} \left ( M_{\mathrm{dm}} \ [\mathrm{M}_{\odot}] \right )$')
    ax.set_ylabel(r'$\log_{10} \left (\frac{M_{\star}}{M_{\mathrm{dm}}} \right )$')
    #set small ticks
    m = ax.get_yticks()[1] - ax.get_yticks()[0]
    yminorLocator = MultipleLocator(m / 5.)
    yminorFormattor = NullFormatter()
    ax.yaxis.set_minor_locator(yminorLocator)
    ax.yaxis.set_minor_formatter(yminorFormattor)
    m = ax.get_xticks()[1] - ax.get_xticks()[0]
    xminorLocator = MultipleLocator(m / 5.)
    xminorFormattor = NullFormatter()
    ax.xaxis.set_minor_locator(xminorLocator)
    ax.xaxis.set_minor_formatter(xminorFormattor)

    P.legend(shadow=True, fancybox=True, numpoints=1)
    P.savefig(output_folder + outfile + '.pdf')
    P.close()
Exemplo n.º 4
0
def stellarHaloMFRatioMultiPanel(path, database, redshifts,
                                 output_folder, outfile,
                                 xmin=10.0, xmax=14.4,
                                 ymin=-3, ymax=-1,
                                 nbins=15):
    '''
    Plots stellar to dark matter halo mass ratios as a function of redshift.
    '''
    #get Behroozi et al. fits
    BFits = g.glob(hm + '/Dropbox/Research/Observations/behroozi/results/*.dat')

    #get a colour scheme
    cols = pt.give_colours()

    #scale the SAM's output masses with this factor
    multiply = 1e9

    #make the figure and axes instance
    fig = P.figure()
    P.subplots_adjust(left=0.13,
                      bottom=0.1,
                      wspace=0.0,
                      hspace=0.0)

    #plot the different redshifts
    for ii, redshift in enumerate(redshifts):
        #get redshift, add 0.1 so that int/floor returns the closest int
        tmp = redshift.split()
        rd = int(float(tmp[2]) + 0.1)

        #generate the SQL query
        query = '''select mstar_disk, mbulge, mhalo from galpropz where ''' + redshift
        query += ' and mstar_disk >= 0.0 and mbulge >= 0.0'
        query += ' and mstar_disk + mbulge > 0.0'
        query += ' and gal_id = 1'

        if ii < 6:
            ax = fig.add_subplot(2, 3, ii + 1)

        #get data from the SQLite3 db
        dat = db.sqlite.get_data_sqlite(path, database, query)

        #rename data and calculate the ratio
        mstar = dat[:, 0] + dat[:, 1]
        mhalo = dat[:, 2]
        ratio = N.log10(mstar / mhalo)
        mhalo = N.log10(mhalo * multiply)
        #print ratio, N.min(ratio), N.max(ratio)

        #debug output
        ngal = len(mstar)
        logging.debug('%i galaxies found at z = %i\n' % (ngal, rd))

        #bin the data
        xbin_mid, y50, y16, y84 = dm.percentile_bins(mhalo,
                                                     ratio,
                                                     xmin,
                                                     xmax,
                                                     nxbins=nbins)
        msk = y50 > -10
        #plot the binned data
        if ii == 6:
            ax.plot(xbin_mid[msk],
                    y50[msk],
                    'k--',
                    label='Bolshoi+SAM')
        else:
            ax.errorbar(xbin_mid[msk],
                        y50[msk],
                        yerr=[y50[msk] - y16[msk], y84[msk] - y50[msk]],
                        color='k',
                        label='Bolshoi+SAM')

        #load Behroozi et al fit data
        BF = N.loadtxt(BFits[ii + 1])
        #plot Behroozi data
        if ii == 6:
            ax.plot(BF[:, 0],
                    BF[:, 1],
                    color='r',
                    ls='--',
                    label='Behroozi et al.')
        else:
            ax.plot(BF[:, 0],
                    BF[:, 1],
                    color='r',
                    ls='-',
                    label='Behroozi et al.')

        #output some information
        logging.debug(BFits[ii + 1])

        #mark the redshift
        if ii < 5:
            P.text(0.5, 0.93,
                   r'$ z \sim %.1f $' % (rd),
                   horizontalalignment='center',
                   verticalalignment='center',
                   transform=ax.transAxes,
                   fontsize=12)
        elif ii == 5:
            P.text(0.5, 0.93,
                   r'$z \sim %.1f (s)\ \& \ %.1f (d)$' % (rd, rd + 1),
                   horizontalalignment='center',
                   verticalalignment='center',
                   transform=ax.transAxes,
                   fontsize=12)

        #set axes scales and labels
        ax.set_xlim(xmin - 0.1, xmax)
        ax.set_ylim(ymin, ymax)

        #set small ticks
        m = ax.get_yticks()[1] - ax.get_yticks()[0]
        yminorLocator = MultipleLocator(m / 5.)
        yminorFormattor = NullFormatter()
        ax.yaxis.set_minor_locator(yminorLocator)
        ax.yaxis.set_minor_formatter(yminorFormattor)
        m = ax.get_xticks()[1] - ax.get_xticks()[0]
        xminorLocator = MultipleLocator(m / 5.)
        xminorFormattor = NullFormatter()
        ax.xaxis.set_minor_locator(xminorLocator)
        ax.xaxis.set_minor_formatter(xminorFormattor)

        #set legend
        if ii == 4:
            ax.legend(shadow=True,
                      fancybox=True,
                      numpoints=1,
                      loc='lower right')

        #set ylabel
        if ii == 0 or ii == 3:
            ax.set_ylabel(r'$\log_{10} \left (\frac{M_{\star}}{M_{\mathrm{dm}}} \right )$')

        #set xlabel
        if ii == 4: # or ii == 3 or ii == 5:
            ax.set_xlabel(r'$\log_{10} \left ( M_{\mathrm{dm}} \ [\mathrm{M}_{\odot}] \right )$')

        #remove some y ticks
        if ii == 0 or ii == 3:
            ax.set_yticks(ax.get_yticks()[:-1])
        else:
            ax.set_yticklabels([])

        #remove some x ticks
        if ii == 3 or ii == 4 or ii == 5:
            #ax.set_xticks(ax.get_xticks()[:-1])
            continue
        elif ii == 6:
            continue
        else:
            ax.set_xticklabels([])

    P.savefig(output_folder + outfile + 'Multi.pdf')
    P.close()
Exemplo n.º 5
0
def stellarmassfunc_plot(path,
                         database,
                         redshifts,
                         output_folder,
                         outfile,
                         mmax=12.5,
                         mmin=8.0,
                         nbins=30,
                         nvolumes=15,
                         lowlim=-4.9):
    '''
    Plots stellar mass functions as a function of redshift.
    Compares to observations.
    '''
    #get a colour scheme
    cols = pt.give_colours()

    #scale the SAM's output masses
    multiply = 1e9

    #make the figure and axes instance
    fig = P.figure()
    ax = fig.add_subplot(111)

    #get obs constrains
    obs, ids = SMF.stellarMfs()
    o = []
    o.append([
        '$z \sim 1$: Perez-Gonzalez et al. 2007',
        (obs.id == 1) & (obs.z_low > 0.99) & (obs.z_up < 1.4)
    ])
    #o.append(['$z \sim 1$: Drory et al. 2004', (obs.id == 5) & (obs.z_low > 1.) & (obs.z_up < 1.2)])
    o.append([
        '$z \sim 2$: Perez-Gonzalez et al. 2007',
        (obs.id == 1) & (obs.z_low > 1.99) & (obs.z_up < 2.6)
    ])
    #o.append(['$z \sim 2$: Fontana et al. 2006', (obs.id == 6) & (obs.z_low > 1.99) & (obs.z_up < 3.01)])
    #o.append(['$z \sim 2$: Marchesini et al. 2008', (obs.id == 7) & (obs.z_low > 1.99) & (obs.z_up < 3.01)])
    o.append([
        '$z \sim 3$: Perez-Gonzalez et al. 2007',
        (obs.id == 1) & (obs.z_low > 2.99) & (obs.z_up < 3.6)
    ])
    o.append([
        '$z \sim 4$: Perez-Gonzalez et al. 2007',
        (obs.id == 1) & (obs.z_low > 3.49) & (obs.z_up < 4.1)
    ])

    highred = SMF.highRedshiftMFs()

    #make the observational plots
    for i, line in enumerate(o):
        label, mask = line[0], line[1]
        ms = obs.mstar[mask]
        mf = obs.mf[mask]
        errl = obs.err_low[mask]
        errh = obs.err_up[mask]
        msk = mf > -15.0
        ax.errorbar(ms[msk],
                    mf[msk],
                    yerr=[errh[msk], errl[msk]],
                    color=cols[i],
                    ls=':',
                    label=label)

    for i, key in enumerate(sorted(highred.iterkeys())):
        if key != 'stellar_mass':
            ax.plot(highred['stellar_mass'],
                    highred[key],
                    color=cols[i + 2],
                    ls=':',
                    marker='s',
                    label='$%s:$ Gonzalez et al. 2011' %
                    key.replace('=', '\sim'))

    #plot the different redshifts
    for ii, redshift in enumerate(redshifts):
        #get redshift, add 0.1 so that int/floor returns the closest int
        tmp = redshift.split()
        rd = int(float(tmp[2]) + 0.1)

        #generate the SQL query
        query = '''select mstar_disk, mbulge, gal_id from galpropz where ''' + redshift
        query += ' and (mstar_disk >= 0.0 or mbulge >= 0.0)'
        query += ' and mstar_disk + mbulge > 0.0'

        #get data from the SQLite3 db
        dat = db.sqlite.get_data_sqlite(path, database, query)
        #rename data for convenience
        disk = dat[:, 0]
        bulge = dat[:, 1]
        mstar = N.log10((disk * multiply) + (bulge * multiply))
        #make a dictionary of data
        data = {}
        data['stellar_mass'] = mstar
        data['bulge_mass'] = bulge
        data['galaxy_id'] = dat[:, 2]

        #debug output
        ngal = len(mstar)
        logging.debug('%i galaxies found at z = %i' % (ngal, rd))

        #calculate the stellar mass functions
        mfs = df.stellarMassFunction(
            data,
            mmin=mmin - 0.2,
            #mmax = mmax,
            nvols=nvolumes,
            nbins=nbins - 2 * rd,
            verbose=True)

        #plot the simulation data
        ax.plot(mfs['mass_bins'],
                mfs['mf_stellar_mass'],
                color=cols[ii],
                label='$z \sim %i$: Bolshoi + SAM' % rd)
        #        ax.plot(mfs['mass_bins'],
    #                mfs['mf_central_galaxies'],
    #                color = cols[ii],
    #                ls = '--',
    #                label = '$z \sim %i$: Bolshoi + SAM (CG)' % rd)

    #set axes scales and labels
    ax.set_xlim(mmin, 12.0)
    ax.set_ylim(lowlim, -1.0)
    ax.set_xlabel(
        r'$\log_{10} \left ( M_{\star} \ [\mathrm{M}_{\odot}] \right )$')
    ax.set_ylabel(
        r'$\log_{10} \left ( \frac{\mathrm{d}N}{\mathrm{d}\log_{10} M_{\star}} \right ) \quad [\mathrm{Mpc}^{-3}\ \mathrm{dex}^{-1}] $'
    )
    #set small ticks
    m = ax.get_yticks()[1] - ax.get_yticks()[0]
    yminorLocator = MultipleLocator(m / 5)
    yminorFormattor = NullFormatter()
    ax.yaxis.set_minor_locator(yminorLocator)
    ax.yaxis.set_minor_formatter(yminorFormattor)
    m = ax.get_xticks()[1] - ax.get_xticks()[0]
    xminorLocator = MultipleLocator(m / 5)
    xminorFormattor = NullFormatter()
    ax.xaxis.set_minor_locator(xminorLocator)
    ax.xaxis.set_minor_formatter(xminorFormattor)

    P.legend(shadow=True, fancybox=True, numpoints=1)
    P.savefig(output_folder + outfile + '.pdf')
    P.close()
Exemplo n.º 6
0
def stellarmassfunc_plot(path, database, redshifts,
                         output_folder, outfile,
                         mmax=12.5, mmin=8.0,
                         nbins=30, nvolumes=15,
                         lowlim=-4.9):
    '''
    Plots stellar mass functions as a function of redshift.
    Compares to observations.
    '''
    #get a colour scheme
    cols = pt.give_colours()

    #scale the SAM's output masses
    multiply = 1e9

    #make the figure and axes instance
    fig = P.figure()
    ax = fig.add_subplot(111)

    #get obs constrains
    obs, ids = SMF.stellarMfs()
    o = []
    o.append(['$z \sim 1$: Perez-Gonzalez et al. 2007', (obs.id == 1) & (obs.z_low > 0.99) & (obs.z_up < 1.4)])
    #o.append(['$z \sim 1$: Drory et al. 2004', (obs.id == 5) & (obs.z_low > 1.) & (obs.z_up < 1.2)])
    o.append(['$z \sim 2$: Perez-Gonzalez et al. 2007', (obs.id == 1) & (obs.z_low > 1.99) & (obs.z_up < 2.6)])
    #o.append(['$z \sim 2$: Fontana et al. 2006', (obs.id == 6) & (obs.z_low > 1.99) & (obs.z_up < 3.01)])
    #o.append(['$z \sim 2$: Marchesini et al. 2008', (obs.id == 7) & (obs.z_low > 1.99) & (obs.z_up < 3.01)])
    o.append(['$z \sim 3$: Perez-Gonzalez et al. 2007', (obs.id == 1) & (obs.z_low > 2.99) & (obs.z_up < 3.6)])
    o.append(['$z \sim 4$: Perez-Gonzalez et al. 2007', (obs.id == 1) & (obs.z_low > 3.49) & (obs.z_up < 4.1)])

    highred = SMF.highRedshiftMFs()

    #make the observational plots
    for i, line in enumerate(o):
        label, mask = line[0], line[1]
        ms = obs.mstar[mask]
        mf = obs.mf[mask]
        errl = obs.err_low[mask]
        errh = obs.err_up[mask]
        msk = mf > - 15.0
        ax.errorbar(ms[msk],
                    mf[msk],
                    yerr=[errh[msk], errl[msk]],
                    color=cols[i],
                    ls=':',
                    label=label)

    for i, key in enumerate(sorted(highred.iterkeys())):
        if key != 'stellar_mass':
            ax.plot(highred['stellar_mass'],
                    highred[key],
                    color=cols[i + 2],
                    ls=':',
                    marker='s',
                    label='$%s:$ Gonzalez et al. 2011' % key.replace('=', '\sim'))


    #plot the different redshifts
    for ii, redshift in enumerate(redshifts):
        #get redshift, add 0.1 so that int/floor returns the closest int
        tmp = redshift.split()
        rd = int(float(tmp[2]) + 0.1)

        #generate the SQL query
        query = '''select mstar_disk, mbulge, gal_id from galpropz where ''' + redshift
        query += ' and (mstar_disk >= 0.0 or mbulge >= 0.0)'
        query += ' and mstar_disk + mbulge > 0.0'

        #get data from the SQLite3 db
        dat = db.sqlite.get_data_sqlite(path, database, query)
        #rename data for convenience
        disk = dat[:, 0]
        bulge = dat[:, 1]
        mstar = N.log10((disk * multiply) + (bulge * multiply))
        #make a dictionary of data
        data = {}
        data['stellar_mass'] = mstar
        data['bulge_mass'] = bulge
        data['galaxy_id'] = dat[:, 2]

        #debug output
        ngal = len(mstar)
        logging.debug('%i galaxies found at z = %i' % (ngal, rd))

        #calculate the stellar mass functions
        mfs = df.stellarMassFunction(data,
                                     mmin=mmin - 0.2,
                                     #mmax = mmax,
                                     nvols=nvolumes,
                                     nbins=nbins - 2 * rd,
                                     verbose=True)

        #plot the simulation data
        ax.plot(mfs['mass_bins'],
                mfs['mf_stellar_mass'],
                color=cols[ii],
                label='$z \sim %i$: Bolshoi + SAM' % rd)
        #        ax.plot(mfs['mass_bins'],
    #                mfs['mf_central_galaxies'],
    #                color = cols[ii],
    #                ls = '--',
    #                label = '$z \sim %i$: Bolshoi + SAM (CG)' % rd)

    #set axes scales and labels
    ax.set_xlim(mmin, 12.0)
    ax.set_ylim(lowlim, -1.0)
    ax.set_xlabel(r'$\log_{10} \left ( M_{\star} \ [\mathrm{M}_{\odot}] \right )$')
    ax.set_ylabel(
        r'$\log_{10} \left ( \frac{\mathrm{d}N}{\mathrm{d}\log_{10} M_{\star}} \right ) \quad [\mathrm{Mpc}^{-3}\ \mathrm{dex}^{-1}] $')
    #set small ticks
    m = ax.get_yticks()[1] - ax.get_yticks()[0]
    yminorLocator = MultipleLocator(m / 5)
    yminorFormattor = NullFormatter()
    ax.yaxis.set_minor_locator(yminorLocator)
    ax.yaxis.set_minor_formatter(yminorFormattor)
    m = ax.get_xticks()[1] - ax.get_xticks()[0]
    xminorLocator = MultipleLocator(m / 5)
    xminorFormattor = NullFormatter()
    ax.xaxis.set_minor_locator(xminorLocator)
    ax.xaxis.set_minor_formatter(xminorFormattor)

    P.legend(shadow=True, fancybox=True, numpoints=1)
    P.savefig(output_folder + outfile + '.pdf')
    P.close()