Exemplo n.º 1
0
def get_effhist(ax1,image,name=None):
    colors = plot.colors
    get_effhist.color_index+=1  
    data = image.imdata[~np.isnan(image.imdata)].flatten()

    if np.nanmin(data) == 0:
        binn = np.logspace(1,np.log10(np.nanmax(data)))
        label = plot.sn_mag(image.nprim)+" primaries\nMin: "+str(0)+"\nMax: "+plot.sn(np.nanmax(data))
    else:
        binn = np.logspace(np.log10(np.nanmin(data)),np.log10(np.nanmax(data)))
        label = plot.sn_mag(image.nprim)+" primaries\nMin: "+plot.sn(np.nanmin(data))+"\nMax: "+plot.sn(np.nanmax(data))

    hist,bins = np.histogram(data, bins=binn)
    center = (bins[:-1] + bins[1:]) / 2
    bins=center
    # hist[0] = 0
    # hist[-1] = 0
    
    if name is None:
        ax1.plot(bins,hist/float(hist.max()),label=label,color=colors[get_effhist.color_index],drawstyle='steps')
    else:
        ax1.plot(bins,hist/float(hist.max()),label=name+'\nMedian gain: '+plot.sn(np.median(data)),color=colors[get_effhist.color_index],drawstyle='steps')
    
    ax1.semilogx()
    plot.texax(ax1)
    # print 'Median of efficiency:',np.median(data)
    # print 'Mean of efficiency:',np.mean(data)
    return [np.nanmin(data),np.median(data),np.nanmax(data),np.mean(data)]
Exemplo n.º 2
0
def plot_all_ranges(ax1,ct):
    for i in range(len(ct['ct']['data'])):
        x,y,fo=ct['ct']['x'],ct['ct']['data'][i],ct['ct']['falloff'][i]
        ax1.step(x, y, label=ct['name']+'ct', color='steelblue', lw=1, where='mid',clip_on=False, alpha=0.5)
        ax1.axvline(fo, color='steelblue', ls='-',lw=1, alpha=0.5)

    ax1.set_xlabel('Depth [mm]', fontsize=FONTSIZE)
    ax1.set_ylabel('PG detected [counts]', fontsize=FONTSIZE)
    ax1.set_title(plot.sn(ct['nprim'],0)+' primaries', fontsize=Fontsize)
    plot.texax(ax1)

    for i in range(len(ct['rpct']['data'])):
        x,y,fo=ct['rpct']['x'],ct['rpct']['data'][i],ct['rpct']['falloff'][i]
        ax1.step(x, y, label=ct['name']+'ct', color='indianred', lw=1, where='mid',clip_on=False, alpha=0.5)
        ax1.axvline(fo, color='indianred', ls='-',lw=1, alpha=0.5)

    if str(ct['nprim'])[1] == '0':
        ax1.set_title('PG detection for '+plot.sn_mag(ct['nprim'])+' primaries', fontsize=Fontsize)
    else:
        ax1.set_title('PG detection for '+plot.sn(ct['nprim'])+' primaries', fontsize=Fontsize)
    ax1.set_ylim(bottom=0)

    ct_labelextra = ''
    rpct_labelextra = ''
    if True:
        ct_labelextra += 'CT DE: '+plot.sn(ct['ct']['detyieldmu']) #yield per prot
        rpct_labelextra += 'RPCT DE: '+plot.sn(ct['rpct']['detyieldmu'])

    ax1.text(0.05, 0.95, ct_labelextra , ha='left', va='center', fontsize=Fontsize, transform=ax1.transAxes)
    ax1.text(0.05, 0.8, rpct_labelextra , ha='left', va='center', fontsize=Fontsize, transform=ax1.transAxes)
    plot.texax(ax1)
Exemplo n.º 3
0
def get_unc(ax1,dataset,refdata,ax,typ='parodi'):
    colors = plot.colors
    color_index=0
    
    #asume voxels are 2mm
    if 'Z' in ax and 'parodi' in typ:
        x_axis = np.linspace(0,222,111)
    if 'Y' in ax and 'head' in typ:
        x_axis = np.linspace(0,170,85)
    if 'E' in ax:
        x_axis = np.linspace(0,10,250)

    for key, valuee in iter(sorted(dataset.iteritems())):
        value = valuee[ax]
        ax1.step(x_axis,[x*100. for x in value['unc']], label=plot.sn_mag(key)+' primaries', color=colors[color_index])
        color_index+=1

    refdata = refdata[ax]
    ax1.step(x_axis,[x*100. for x in refdata['unc']], label='Reference', color='k')

    ax1.semilogy()
    ax1.autoscale(axis='x',tight=True)
    #ax1.yaxis.set_major_formatter(mpl.ticker.FormatStrFormatter('%.0f%%'))
    
    #PG falloff line
    spectcutoff = [1,8]
    if ax == 'E':
        ax1.set_xlim(spectcutoff)
    # if ax == 'E':
    #     ax1.axvline(spectcutoff[0], color='#999999', ls='--')
    #     ax1.axvline(spectcutoff[1], color='#999999', ls='--')

    plot.texax(ax1)
Exemplo n.º 4
0
def get_yield(ax1,dataset,refdata,ax,typ='parodi'):
    colors = plot.colors
    color_index=0
    
    #asume voxels are 2mm
    if 'Z' in ax and 'parodi' in typ:
        x_axis = np.linspace(0,222,111)
    if 'Y' in ax and 'head' in typ:
        x_axis = np.linspace(0,170,85)
    if 'E' in ax:
        x_axis = np.linspace(0,10,250)

    for key, valuee in iter(sorted(dataset.iteritems())):
        # if TLE
        value = valuee[ax]
        # print ax, len(value['yield'])
        ax1.step(x_axis,value['yield'], label=plot.sn_mag(key)+' primaries', color=colors[color_index], lw=0.5)
        plot.fill_between_steps(ax1, x_axis, value['yield-unc'], value['yield+unc'], alpha=0.5, color=colors[color_index], lw=0.5)
        color_index+=1

    #analog reference
    refdata = refdata[ax]
    ax1.step(x_axis,refdata['yield'], label='Reference', color='k', lw=0.5)
    plot.fill_between_steps(ax1, x_axis, refdata['yield-unc'], refdata['yield+unc'], alpha=0.5, color='k', lw=0.5)

    ax1.ticklabel_format(style='sci', axis='y', scilimits=(0,0))
    ax1.autoscale(axis='x',tight=True)

    # #PG falloff line parodi
    spectcutoff = [1,8]
    if ax == 'E':
        ax1.set_xlim(spectcutoff)
    
    plot.texax(ax1)
Exemplo n.º 5
0
def get_effhist(ax1, image, name=None):
    colors = plot.colors
    get_effhist.color_index += 1
    data = image.imdata[~np.isnan(image.imdata)].flatten()

    if np.nanmin(data) == 0:
        binn = np.logspace(1, np.log10(np.nanmax(data)))
        label = plot.sn_mag(
            image.nprim) + " primaries\nMin: " + str(0) + "\nMax: " + plot.sn(
                np.nanmax(data))
    else:
        binn = np.logspace(np.log10(np.nanmin(data)),
                           np.log10(np.nanmax(data)))
        label = plot.sn_mag(image.nprim) + " primaries\nMin: " + plot.sn(
            np.nanmin(data)) + "\nMax: " + plot.sn(np.nanmax(data))

    hist, bins = np.histogram(data, bins=binn)
    center = (bins[:-1] + bins[1:]) / 2
    bins = center
    # hist[0] = 0
    # hist[-1] = 0

    if name is None:
        ax1.plot(bins,
                 hist / float(hist.max()),
                 label=label,
                 color=colors[get_effhist.color_index],
                 drawstyle='steps')
    else:
        ax1.plot(bins,
                 hist / float(hist.max()),
                 label=name + '\nMedian gain: ' + plot.sn(np.median(data)),
                 color=colors[get_effhist.color_index],
                 drawstyle='steps')

    ax1.semilogx()
    plot.texax(ax1)
    # print 'Median of efficiency:',np.median(data)
    # print 'Mean of efficiency:',np.mean(data)
    return [np.nanmin(data), np.median(data), np.nanmax(data), np.mean(data)]
Exemplo n.º 6
0
def get_effhist_oud(ax1, image, name=None):
    colors = plot.colors
    get_effhist.color_index += 1
    data = image.imdata[~np.isnan(image.imdata)].flatten()
    # data=data/np.nanmax(data)
    # with np.errstate(divide='ignore', invalid='ignore'):
    #     data = np.true_divide(data,np.nanmax(data))
    #data = np.nonzero(data)]
    #print image.nprim,np.nanmin(data),np.nanmax(data)
    if np.nanmin(data) == 0:
        label = plot.sn_mag(
            image.nprim) + " primaries\nMin: " + str(0) + "\nMax: " + plot.sn(
                np.nanmax(data))
        y, x, _ = ax1.hist(data,
                           bins=np.logspace(1, np.log10(np.nanmax(data))),
                           label=label,
                           color=colors[get_effhist.color_index],
                           histtype='step',
                           lw=1)
    else:
        label = plot.sn_mag(image.nprim) + " primaries\nMin: " + plot.sn(
            np.nanmin(data)) + "\nMax: " + plot.sn(np.nanmax(data))
        y, x, _ = ax1.hist(data,
                           bins=np.logspace(np.log10(np.nanmin(data)),
                                            np.log10(np.nanmax(data))),
                           label=label,
                           color=colors[get_effhist.color_index],
                           histtype='step',
                           lw=1)
    print y.max()
    # label=str(image.nprim)+" primaries\nMin: "+str(np.nanmin(data))+"\nMax: "+str(np.nanmax(data))
    # ax1.hist(data, bins = np.linspace(np.nanmin(data),np.nanmax(data)) ,label=label,color=colors[get_effhist.color_index],histtype='step', lw=1)
    ax1.semilogx()

    plot.texax(ax1)
    # print 'Median of efficiency:',np.median(data)
    # print 'Mean of efficiency:',np.mean(data)
    return [np.nanmin(data), np.median(data), np.nanmax(data), np.mean(data)]
Exemplo n.º 7
0
def get_yield(ax1, dataset, refdata, ax, typ='parodi'):
    colors = plot.colors
    color_index = 0

    #asume voxels are 2mm
    if 'Z' in ax and 'parodi' in typ:
        x_axis = np.linspace(0, 222, 111)
    if 'Y' in ax and 'head' in typ:
        x_axis = np.linspace(0, 170, 85)
    if 'E' in ax:
        x_axis = np.linspace(0, 10, 250)

    for key, valuee in iter(sorted(dataset.iteritems())):
        # if TLE
        value = valuee[ax]
        # print ax, len(value['yield'])
        ax1.step(x_axis,
                 value['yield'],
                 label=plot.sn_mag(key) + ' primaries',
                 color=colors[color_index],
                 lw=0.5)
        plot.fill_between_steps(ax1,
                                x_axis,
                                value['yield-unc'],
                                value['yield+unc'],
                                alpha=0.5,
                                color=colors[color_index],
                                lw=0.5)
        color_index += 1

    #analog reference
    refdata = refdata[ax]
    ax1.step(x_axis, refdata['yield'], label='Reference', color='k', lw=0.5)
    plot.fill_between_steps(ax1,
                            x_axis,
                            refdata['yield-unc'],
                            refdata['yield+unc'],
                            alpha=0.5,
                            color='k',
                            lw=0.5)

    ax1.ticklabel_format(style='sci', axis='y', scilimits=(0, 0))
    ax1.autoscale(axis='x', tight=True)

    # #PG falloff line parodi
    spectcutoff = [1, 8]
    if ax == 'E':
        ax1.set_xlim(spectcutoff)

    plot.texax(ax1)
Exemplo n.º 8
0
def get_effhist_oud(ax1,image,name=None):
    colors = plot.colors
    get_effhist.color_index+=1  
    data = image.imdata[~np.isnan(image.imdata)].flatten()
    # data=data/np.nanmax(data)
    # with np.errstate(divide='ignore', invalid='ignore'):
    #     data = np.true_divide(data,np.nanmax(data))
    #data = np.nonzero(data)]
    #print image.nprim,np.nanmin(data),np.nanmax(data)
    if np.nanmin(data) == 0:
        label=plot.sn_mag(image.nprim)+" primaries\nMin: "+str(0)+"\nMax: "+plot.sn(np.nanmax(data))
        y, x, _=ax1.hist(data, bins = np.logspace(1,np.log10(np.nanmax(data))) ,label=label,color=colors[get_effhist.color_index],histtype='step', lw=1)
    else:
        label=plot.sn_mag(image.nprim)+" primaries\nMin: "+plot.sn(np.nanmin(data))+"\nMax: "+plot.sn(np.nanmax(data))
        y, x, _=ax1.hist(data, bins = np.logspace(np.log10(np.nanmin(data)),np.log10(np.nanmax(data))) ,label=label,color=colors[get_effhist.color_index],histtype='step', lw=1)
    print y.max()
    # label=str(image.nprim)+" primaries\nMin: "+str(np.nanmin(data))+"\nMax: "+str(np.nanmax(data))
    # ax1.hist(data, bins = np.linspace(np.nanmin(data),np.nanmax(data)) ,label=label,color=colors[get_effhist.color_index],histtype='step', lw=1)
    ax1.semilogx()

    plot.texax(ax1)
    # print 'Median of efficiency:',np.median(data)
    # print 'Mean of efficiency:',np.mean(data)
    return [np.nanmin(data),np.median(data),np.nanmax(data),np.mean(data)]
Exemplo n.º 9
0
def get_relunc(ax1, dataset, refdata, ax, typ='parodi'):
    colors = plot.colors
    color_index = 0

    #asume voxels are 2mm
    if 'Z' in ax and 'parodi' in typ:
        x_axis = np.linspace(0, 222, 111)
    if 'Y' in ax and 'head' in typ:
        x_axis = np.linspace(0, 170, 85)
    if 'E' in ax:
        x_axis = np.linspace(0, 10, 250)

    for key, valuee in iter(sorted(dataset.iteritems())):
        value = valuee[ax]
        try:
            ax1.step(x_axis, [x * 100. for x in value['relunc']],
                     label=plot.sn_mag(key) + ' primaries',
                     color=colors[color_index])
        except TypeError:
            ax1.step(x_axis, [x * 100. for x in value['relunc']],
                     label=key,
                     color=colors[color_index])

        color_index += 1

    if refdata is not None:
        refdata = refdata[ax]
        ax1.step(x_axis, [x * 100. for x in refdata['relunc']],
                 label='Reference',
                 color='k')

    ax1.semilogy()
    ax1.autoscale(axis='x', tight=True)
    #ax1.yaxis.set_major_formatter(mpl.ticker.FormatStrFormatter('%.0f%%'))

    #PG falloff line
    spectcutoff = [1, 8]
    if ax == 'E':
        ax1.set_xlim(spectcutoff)
    # if ax == 'E':
    #     ax1.axvline(spectcutoff[0], color='#999999', ls='--')
    #     ax1.axvline(spectcutoff[1], color='#999999', ls='--')

    plot.texax(ax1)
Exemplo n.º 10
0
def get_reldiff(ax1, dataset, ax, typ='parodi'):
    colors = plot.colors
    color_index = 0

    #asume voxels are 2mm
    if 'Z' in ax and 'parodi' in typ:
        x_axis = np.linspace(0, 222, 111)
    if 'Y' in ax and 'head' in typ:
        x_axis = np.linspace(0, 170, 85)
    if 'E' in ax:
        x_axis = np.linspace(0, 10, 250)

    for key, valuee in iter(sorted(dataset.iteritems())):
        value = valuee[ax]

        ax1.step(x_axis, [x * 100. for x in value['reldiff']],
                 label=plot.sn_mag(key) + ' primaries',
                 color=colors[color_index],
                 lw=0.5)

        print key, __withinsigma(value)

        plot.fill_between_steps(ax1,
                                x_axis,
                                [x * 100. for x in value['reldiff-2sigma']],
                                [x * 100. for x in value['reldiff+2sigma']],
                                alpha=0.25,
                                color=colors[color_index],
                                lw=0.01)

        color_index += 1

    ax1.autoscale(axis='x', tight=True)
    #ax1.set_ylim([-4,4])

    # #PG falloff line parodi
    spectcutoff = [1, 8]
    if ax == 'E':
        ax1.set_xlim(spectcutoff)
    # if ax == 'E':
    #     ax1.axvline(spectcutoff[0], color='#999999', ls='--')
    #     ax1.axvline(spectcutoff[1], color='#999999', ls='--')

    plot.texax(ax1)
Exemplo n.º 11
0
def plot1d(ax1,dataset):
	colors = plot.colors
	color_index=0

	#asume voxels are 2mm
	x_axis = np.linspace(0,10,250)

	key = 1e4
	ax1.step(x_axis,[x*100. for x in dataset], label=plot.sn_mag(key)+' primaries', color=colors[color_index])
	color_index+=1

	ax1.semilogy()
	ax1.autoscale(axis='x',tight=True)
	#ax1.yaxis.set_major_formatter(mpl.ticker.FormatStrFormatter('%.0f%%'))

	#PG falloff line
	spectcutoff = [1,8]
	ax1.set_xlim(spectcutoff)

	plot.texax(ax1)
Exemplo n.º 12
0
def plot_single_range(ax1,ct):
    for i in range(len(ct['ct']['data'])):
        x,y,fo=ct['ct']['x'],ct['ct']['data'][i],ct['ct']['falloff'][i]
        ax1.step(x, y, label=ct['name']+'ct', color='steelblue', lw=1, where='mid',clip_on=False, alpha=0.5)
        ax1.axvline(fo, color='steelblue', ls='-',lw=1, alpha=0.5)
        break

    ax1.set_xlabel('Depth [mm]', fontsize=FONTSIZE)
    ax1.set_ylabel('PG detected [counts]', fontsize=FONTSIZE)
    ax1.set_title(plot.sn(ct['nprim'],0)+' primaries', fontsize=FONTSIZE)
    plot.texax(ax1)

    for i in range(len(ct['rpct']['data'])):
        x,y,fo=ct['rpct']['x'],ct['rpct']['data'][i],ct['rpct']['falloff'][i]
        ax1.step(x, y, label=ct['name']+'ct', color='indianred', lw=1, where='mid',clip_on=False, alpha=0.5)
        ax1.axvline(fo, color='indianred', ls='-',lw=1, alpha=0.5)
        break

    ax1.set_title('PG detection for '+plot.sn_mag(ct['nprim'])+'primaries', fontsize=FONTSIZE)
    ax1.set_ylim(bottom=0)
    plot.texax(ax1)
Exemplo n.º 13
0
def get_reldiff(ax1,dataset,ax,typ='parodi'):
    colors = plot.colors
    color_index=0
    
    #asume voxels are 2mm
    if 'Z' in ax and 'parodi' in typ:
        x_axis = np.linspace(0,222,111)
    if 'Y' in ax and 'head' in typ:
        x_axis = np.linspace(0,170,85)
    if 'E' in ax:
        x_axis = np.linspace(0,10,250)

    for key, valuee in iter(sorted(dataset.iteritems())):
        value = valuee[ax]

        ax1.step(x_axis,
            [x*100. for x in value['reldiff']],
            label=plot.sn_mag(key) +' primaries', color=colors[color_index], lw=0.5)
        
        print key, __withinsigma(value)
        
        plot.fill_between_steps(ax1, x_axis,
                    [x*100. for x in value['reldiff-2sigma']],
                    [x*100. for x in value['reldiff+2sigma']],
                    alpha=0.25, color=colors[color_index], lw=0.01)
            
        color_index+=1
    
    ax1.autoscale(axis='x',tight=True)
    #ax1.set_ylim([-4,4])
    
    # #PG falloff line parodi
    spectcutoff = [1,8]
    if ax == 'E':
        ax1.set_xlim(spectcutoff)
    # if ax == 'E':
    #     ax1.axvline(spectcutoff[0], color='#999999', ls='--')
    #     ax1.axvline(spectcutoff[1], color='#999999', ls='--')
    
    plot.texax(ax1)
Exemplo n.º 14
0
def plot1d(ax1, dataset):
    colors = plot.colors
    color_index = 0

    #asume voxels are 2mm
    x_axis = np.linspace(0, 10, 250)

    key = 1e4
    ax1.step(x_axis, [x * 100. for x in dataset],
             label=plot.sn_mag(key) + ' primaries',
             color=colors[color_index])
    color_index += 1

    ax1.semilogy()
    ax1.autoscale(axis='x', tight=True)
    #ax1.yaxis.set_major_formatter(mpl.ticker.FormatStrFormatter('%.0f%%'))

    #PG falloff line
    spectcutoff = [1, 8]
    ax1.set_xlim(spectcutoff)

    plot.texax(ax1)
Exemplo n.º 15
0
### Make efficiency histo
tleeff = copy.deepcopy(tle3d)
aneff = copy.deepcopy(an3d)
tle.seteff(tleeff)
tle.seteff(aneff)

tle.seteffratio(tleeff,aneff[max(aneff.keys())]['var'])

f, ((tl,tr),(bl,br)) = plt.subplots(nrows=2, ncols=2, sharex=True, sharey=True)
lab1=tle.get_effhist(tl,tleeff[1e3]['var'])
lab2=tle.get_effhist(tr,tleeff[1e4]['var'])
lab3=tle.get_effhist(bl,tleeff[1e5]['var'])
lab4=tle.get_effhist(br,tleeff[1e6]['var'])

tl.set_title("TLE "+plot.sn_mag(1e3)).set_fontsize(8)
tl.text(0.05, 0.9,"Min: "+plot.sn(lab1[0])+"\nMedian: "+plot.sn(lab1[1])+"\nMax: "+plot.sn(lab1[2]), ha='left', va='center', transform=tl.transAxes, fontsize=6)
tr.set_title("TLE "+plot.sn_mag(1e4)).set_fontsize(8)
tr.text(0.05, 0.9,"Min: "+plot.sn(lab2[0])+"\nMedian: "+plot.sn(lab2[1])+"\nMax: "+plot.sn(lab2[2]), ha='left', va='center', transform=tr.transAxes, fontsize=6)
bl.set_title("TLE "+plot.sn_mag(1e5)).set_fontsize(8)
bl.text(0.05, 0.9,"Min: "+plot.sn(lab3[0])+"\nMedian: "+plot.sn(lab3[1])+"\nMax: "+plot.sn(lab3[2]), ha='left', va='center', transform=bl.transAxes, fontsize=6)
br.set_title("TLE "+plot.sn_mag(1e6)).set_fontsize(8)
br.text(0.05, 0.9,"Min: "+plot.sn(lab4[0])+"\nMedian: "+plot.sn(lab4[1])+"\nMax: "+plot.sn(lab4[2]), ha='left', va='center', transform=br.transAxes, fontsize=6)
tl.set_ylabel('Number of voxels (scaled)')
tl.yaxis.set_label_coords(-0.2, 0.)
bl.set_xlabel('Gain factor w.r.t. Reference')
bl.xaxis.set_label_coords(1.1,-0.2)

#f.savefig('eff-histo.pdf', bbox_inches='tight')
plt.close('all')
Exemplo n.º 16
0
aneff = copy.deepcopy(an3d)
tle.seteff(tleeff)
tle.seteff(aneff)

tle.seteffratio(tleeff, aneff[max(aneff.keys())]['var'])

f, ((tl, tr), (bl, br)) = plt.subplots(nrows=2,
                                       ncols=2,
                                       sharex=True,
                                       sharey=True)
lab1 = tle.get_effhist(tl, tleeff[1e3]['var'])
lab2 = tle.get_effhist(tr, tleeff[1e4]['var'])
lab3 = tle.get_effhist(bl, tleeff[1e5]['var'])
lab4 = tle.get_effhist(br, tleeff[1e6]['var'])

tl.set_title("TLE " + plot.sn_mag(1e3)).set_fontsize(8)
tl.text(0.05,
        0.9,
        "Min: " + plot.sn(lab1[0]) + "\nMedian: " + plot.sn(lab1[1]) +
        "\nMax: " + plot.sn(lab1[2]),
        ha='left',
        va='center',
        transform=tl.transAxes,
        fontsize=6)
tr.set_title("TLE " + plot.sn_mag(1e4)).set_fontsize(8)
tr.text(0.05,
        0.9,
        "Min: " + plot.sn(lab2[0]) + "\nMedian: " + plot.sn(lab2[1]) +
        "\nMax: " + plot.sn(lab2[2]),
        ha='left',
        va='center',