Exemplo n.º 1
0
for slicedir in enumerate('x'):
    if slicedir[1] == 'y':
        print(slicedir[1])
        x_axis = slicedir[1]  # direction of p1p2 profil
        SI = 1.5
        p1 = [0, (easting[0])]
        p2 = [20e3, (easting[0])]
    else:
        p1 = [(northing[0]), 0]
        p2 = [(northing[0]), 20e3]
        x_axis = slicedir[1]  # direction of p1p2 profil
        SI = 2

    pEXP.plot_line(xp, yp, gravity, p1, p2, interp=True, Xaxis=x_axis)
    pEXP.plot_field(xp, yp, gravity, shape_grid)

    #%%
    # Upward continuation of the field data with discretisation in altitude controlled by the number of layers (nlay) and the maximum elevation desired (max_elevation)
    mesh, label_prop = dEXP.upwc(xp,
                                 yp,
                                 zp,
                                 gravity,
                                 shape_grid,
                                 zmin=0,
                                 zmax=max_elevation,
                                 nlayers=nlay,
                                 qorder=qorder)

    plt, cmap = pEXP.plot_xy(mesh,
                             label=label_prop,
Exemplo n.º 2
0
        x_axis = slicedir[1]  # direction of p1p2 profil
        SI = 1.5
    else:
        p1 = [min(xp), (y1 + y2) / 2]
        p2 = [max(xp), (y1 + y2) / 2]
        x_axis = slicedir[1]  # direction of p1p2 profil
        SI = 2

    #%%
    # Plot field data over a 2d line crossing the anomalies
    # pEXP.plot_line(xp, yp, U,p1,p2, interp=False, Xaxis='x')

    pEXP.plot_line(xp, yp, U, p1, p2, interp=True, Xaxis=x_axis)
    square([x1, x2, y1, y2])

    pEXP.plot_field(xp, yp, U, shape)
    square([x1, x2, y1, y2])

    # Gaussian function to derivate
    #%% ------------------------------- Plot the derivatives
    # http://campar.in.tum.de/Chair/HaukeHeibelGaussianDerivatives

    xderiv = transform.derivx(xp, yp, U, shape, order=qorder)
    yderiv = transform.derivy(xp, yp, U, shape, order=qorder)
    zderiv = transform.derivz(xp, yp, U, shape, order=qorder)

    # # plt.plot(xderiv)
    # # plt.plot(yderiv)

    # # interp = True
    pEXP.plot_line(xp,
Exemplo n.º 3
0
UF = U_int_scipyf
# UF = dEXP.smooth2d(XFs, YFs, UF, sigma=2)
# plt.savefig('smooth2d' + str(file) + '.png', dpi=450)

#%%

plt.figure()
plt.scatter(XFs, YFs, c=UF, cmap='viridis')
plt.colorbar()
plt.axis('square')
plt.show()

offset = 255  #260
p1_s = np.array([p1f_r[0] - min(xp_r) + offset, p2f_r[0] - min(xp_r) + offset])
p2_s = np.array([p1f_r[1] - min(yp_r), p2f_r[1] - min(yp_r)])
ax, plt = pEXP.plot_field(XFs, YFs, UF, shape, Vminmax=[0, 0.02])
ax.plot(coords_liner_s[2:5, 0], coords_liner_s[2:5, 1], 'k')
ax.plot(p1_s, p2_s, 'r')

x_axis = 'x'
# xx, yy, distance, profile, ax, plt = pEXP.plot_line(Xs, Ys, U ,p1_s,p2_s,
#                                                     interp=True, smooth=True,
#                                                     xaxis = x_axis)
p1_s = np.array([p1f_r[0] - min(xp_r) + offset, p1f_r[1] - min(yp_r)])
p2_s = np.array([
    p2f_r[0] - min(xp_r) + offset, p2f_r[1] - min(yp_r) +
    abs(p1f_r[1] - min(yp_r) - (yA_r[0] + yA_r[1]) / 2) -
    abs(p2f_r[1] - min(yp_r) - (yA_r[0] + yA_r[1]) / 2)
])
# p1_s = np.array([p1[0] -min(xp_r)+260,0])
# p2_s = np.array([p2[0] -min(xp_r)+260,800])
Exemplo n.º 4
0
                                    extrapolate=True)

    Xs, Ys = xint_scipy, yint_scipy
    U = U_int_scipy

    #%%
    # ax, plt = pEXP.plot_field(xp,yp,U, shape,
    #                 Vminmax=[0,0.35])
    # ax.plot(coords_liner[2:5,0],coords_liner[2:5,1],'k')
    # p1_s = np.array([p1[0] -min(xp_r),p2[0] -min(xp_r) ])
    # p2_s = np.array([p1[1] -min(yp_r),p2[1] -min(yp_r) ])

    offset = 255  #255 #260
    p1_s = np.array([p1[0] - min(xp_r) + offset, p2[0] - min(xp_r) + offset])
    p2_s = np.array([p1[1] - min(yp_r), p2[1] - min(yp_r)])
    ax, plt = pEXP.plot_field(Xs, Ys, U, shape, Vminmax=[0, 0.35])
    ax.plot(coords_liner_s[2:5, 0], coords_liner_s[2:5, 1], 'k')
    ax.plot(p1_s, p2_s, 'r')

    x_axis = 'x'
    # xx, yy, distance, profile, ax, plt = pEXP.plot_line(Xs, Ys, U ,p1_s,p2_s,
    #                                                     interp=True, smooth=True,
    #                                                     xaxis = x_axis)
    p1_s = np.array([p1[0] - min(xp_r) + offset, p1[1] - min(yp_r)])
    p2_s = np.array([
        p2[0] - min(xp_r) + offset,
        p2[1] - min(yp_r) + abs(p1[1] - min(yp_r) - (yA_r[0] + yA_r[1]) / 2) -
        abs(p2[1] - min(yp_r) - (yA_r[0] + yA_r[1]) / 2)
    ])
    # p1_s = np.array([p1[0] -min(xp_r)+260,0])
    # p2_s = np.array([p2[0] -min(xp_r)+260,800])
Exemplo n.º 5
0
                                extrapolate=False)
InterpData = np.array([xint_scipy, yint_scipy, U_int_scipy]).T
where_are_NaNs = np.isnan(InterpData)
InterpData[where_are_NaNs] = 0.0074
xint_scipy, yint_scipy, U_int_scipy = InterpData.T

plt.scatter(xint_scipy, yint_scipy)
plt.scatter(xp, yp)

#%% Solution 2
# Extrapolate = True
# U_int_scipy = gridder.interp_at(xp,yp,U, xint_scipy, yint_scipy, algorithm='cubic', extrapolate=True)

# %%
# len(U)
pEXP.plot_field(xint_scipy, yint_scipy, U_int_scipy, shape)

# pEXP.plot_field(xp_int,yp_int,U_int, shape)
# xx, yy, distance, profile = pEXP.plot_line(xp_int,yp_int,U_int,p1,p2,
#                                             interp=True, smooth=False, Xaxis=x_axis)

# %%

plt.figure()
plt.subplot(1, 2, 1)
plt.scatter(xint_scipy, yint_scipy, c=U_int_scipy, label='U_int')
plt.grid()
plt.legend()
p12x = [p1[0], p2[0]]
p12y = [p1[1], p2[1]]
plt.plot(p12x, p12y, c='red')