Exemplo n.º 1
0
def pdf_logPt2_incoh():

    #PDF fit to log_10(pT^2)

    #tree_in = tree_incoh
    tree_in = tree

    #ptbin = 0.04
    ptbin = 0.12
    ptmin = -5.
    ptmax = 1.

    mmin = 2.8
    mmax = 3.2

    #fitran = [-5., 1.]
    fitran = [-0.9, 0.1]

    binned = False

    #gamma-gamma 131 evt for pT<0.18

    #output log file
    out = open("out.txt", "w")
    ut.log_results(
        out, "in " + infile + " in_coh " + infile_coh + " in_gg " + infile_gg)
    loglist = [(x, eval(x)) for x in
               ["ptbin", "ptmin", "ptmax", "mmin", "mmax", "fitran", "binned"]]
    strlog = ut.make_log_string(loglist)
    ut.log_results(out, strlog + "\n")

    #input data
    pT = RooRealVar("jRecPt", "pT", 0, 10)
    m = RooRealVar("jRecM", "mass", 0, 10)
    dataIN = RooDataSet("data", "data", tree_in, RooArgSet(pT, m))
    strsel = "jRecM>{0:.3f} && jRecM<{1:.3f}".format(mmin, mmax)
    data = dataIN.reduce(strsel)
    #x is RooRealVar for log(Pt2)
    draw = "TMath::Log10(jRecPt*jRecPt)"
    draw_func = RooFormulaVar("x", "log_{10}( #it{p}_{T}^{2} ) (GeV^{2})",
                              draw, RooArgList(pT))
    x = data.addColumn(draw_func)
    x.setRange("fitran", fitran[0], fitran[1])

    #binned data
    nbins, ptmax = ut.get_nbins(ptbin, ptmin, ptmax)
    hPt = TH1D("hPt", "hPt", nbins, ptmin, ptmax)
    tree_in.Draw(draw + " >> hPt", strsel)
    dataH = RooDataHist("dataH", "dataH", RooArgList(x), hPt)

    #range for plot
    x.setMin(ptmin)
    x.setMax(ptmax)
    x.setRange("plotran", ptmin, ptmax)

    #create the pdf
    b = RooRealVar("b", "b", 5., 0., 10.)
    pdf_func = "log(10.)*pow(10.,x)*exp(-b*pow(10.,x))"
    pdf_logPt2 = RooGenericPdf("pdf_logPt2", pdf_func, RooArgList(x, b))

    #make the fit
    if binned == True:
        r1 = pdf_logPt2.fitTo(dataH, rf.Range("fitran"), rf.Save())
    else:
        r1 = pdf_logPt2.fitTo(data, rf.Range("fitran"), rf.Save())

    ut.log_results(out, ut.log_fit_result(r1))

    #calculate norm to number of events
    xset = RooArgSet(x)
    ipdf = pdf_logPt2.createIntegral(xset, rf.NormSet(xset),
                                     rf.Range("fitran"))
    print "PDF integral:", ipdf.getVal()
    if binned == True:
        nevt = tree_incoh.Draw(
            "", strsel + " && " + draw + ">{0:.3f}".format(fitran[0]) +
            " && " + draw + "<{1:.3f}".format(fitran[0], fitran[1]))
    else:
        nevt = data.sumEntries("x", "fitran")

    print "nevt:", nevt
    pdf_logPt2.setNormRange("fitran")
    print "PDF norm:", pdf_logPt2.getNorm(RooArgSet(x))

    #a = nevt/ipdf.getVal()
    a = nevt / pdf_logPt2.getNorm(RooArgSet(x))
    ut.log_results(out, "log_10(pT^2) parametrization:")
    ut.log_results(out, "A = {0:.2f}".format(a))
    ut.log_results(out, ut.log_fit_parameters(r1, 0, 2))
    print "a =", a

    #Coherent contribution
    hPtCoh = ut.prepare_TH1D("hPtCoh", ptbin, ptmin, ptmax)
    hPtCoh.Sumw2()
    #tree_coh.Draw(draw + " >> hPtCoh", strsel)
    tree_coh.Draw("TMath::Log10(jGenPt*jGenPt) >> hPtCoh", strsel)
    ut.norm_to_data(hPtCoh, hPt, rt.kBlue, -5., -2.2)  # norm for coh
    #ut.norm_to_data(hPtCoh, hPt, rt.kBlue, -5, -2.1)
    #ut.norm_to_num(hPtCoh, 405, rt.kBlue)
    print "Coherent integral:", hPtCoh.Integral()

    #TMath::Log10(jRecPt*jRecPt)

    #Sartre generated coherent shape
    sartre = TFile.Open(
        "/home/jaroslav/sim/sartre_tx/sartre_AuAu_200GeV_Jpsi_coh_2p7Mevt.root"
    )
    sartre_tree = sartre.Get("sartre_tree")
    hSartre = ut.prepare_TH1D("hSartre", ptbin, ptmin, ptmax)
    sartre_tree.Draw("TMath::Log10(pT*pT) >> hSartre",
                     "rapidity>-1 && rapidity<1")
    ut.norm_to_data(hSartre, hPt, rt.kViolet, -5, -2)  # norm for Sartre

    #gamma-gamma contribution
    hPtGG = ut.prepare_TH1D("hPtGG", ptbin, ptmin, ptmax)
    tree_gg.Draw(draw + " >> hPtGG", strsel)
    #ut.norm_to_data(hPtGG, hPt, rt.kGreen, -5., -2.9)
    ut.norm_to_num(hPtGG, 131., rt.kGreen)

    print "Int GG:", hPtGG.Integral()

    #psi' contribution
    psiP = TFile.Open(basedir_mc + "/ana_slight14e4x1_s6_sel5z.root")
    psiP_tree = psiP.Get("jRecTree")
    hPtPsiP = ut.prepare_TH1D("hPtPsiP", ptbin, ptmin, ptmax)
    psiP_tree.Draw(draw + " >> hPtPsiP", strsel)
    ut.norm_to_num(hPtPsiP, 12, rt.kViolet)

    #sum of all contributions
    hSum = ut.prepare_TH1D("hSum", ptbin, ptmin, ptmax)
    hSum.SetLineWidth(3)
    #add ggel to the sum
    hSum.Add(hPtGG)
    #add incoherent contribution
    func_logPt2 = TF1("pdf_logPt2",
                      "[0]*log(10.)*pow(10.,x)*exp(-[1]*pow(10.,x))", -10.,
                      10.)
    func_logPt2.SetParameters(a, b.getVal())
    hInc = ut.prepare_TH1D("hInc", ptbin, ptmin, ptmax)
    ut.fill_h1_tf(hInc, func_logPt2)
    hSum.Add(hInc)
    #add coherent contribution
    hSum.Add(hPtCoh)
    #add psi(2S) contribution
    #hSum.Add(hPtPsiP)
    #set to draw as a lines
    ut.line_h1(hSum, rt.kBlack)

    #create canvas frame
    can = ut.box_canvas()
    ut.set_margin_lbtr(gPad, 0.11, 0.09, 0.01, 0.01)

    frame = x.frame(rf.Bins(nbins), rf.Title(""))
    frame.SetTitle("")
    frame.SetMaximum(75)

    frame.SetYTitle("Events / ({0:.3f}".format(ptbin) + " GeV^{2})")

    print "Int data:", hPt.Integral()

    #plot the data
    if binned == True:
        dataH.plotOn(frame, rf.Name("data"))
    else:
        data.plotOn(frame, rf.Name("data"))

    pdf_logPt2.plotOn(frame, rf.Range("fitran"), rf.LineColor(rt.kRed),
                      rf.Name("pdf_logPt2"))
    pdf_logPt2.plotOn(frame, rf.Range("plotran"), rf.LineColor(rt.kRed),
                      rf.Name("pdf_logPt2_full"), rf.LineStyle(rt.kDashed))

    frame.Draw()

    amin = TMath.Power(10, ptmin)
    amax = TMath.Power(10, ptmax) - 1
    print amin, amax
    pt2func = TF1("f1", "TMath::Power(10, x)", amin,
                  amax)  #TMath::Power(x, 10)
    aPt2 = TGaxis(-5, 75, 1, 75, "f1", 510, "-")
    ut.set_axis(aPt2)
    aPt2.SetTitle("pt2")
    #aPt2.Draw();

    leg = ut.prepare_leg(0.57, 0.78, 0.14, 0.19, 0.03)
    ut.add_leg_mass(leg, mmin, mmax)
    hx = ut.prepare_TH1D("hx", 1, 0, 1)
    hx.Draw("same")
    ln = ut.col_lin(rt.kRed)
    leg.AddEntry(hx, "Data")
    leg.AddEntry(hPtCoh, "Sartre MC", "l")
    leg.AddEntry(hPtGG, "#gamma#gamma#rightarrow e^{+}e^{-} MC", "l")
    #leg.AddEntry(ln, "ln(10)*#it{A}*10^{log_{10}#it{p}_{T}^{2}}exp(-#it{b}10^{log_{10}#it{p}_{T}^{2}})", "l")
    #leg.AddEntry(ln, "Incoherent fit", "l")
    leg.Draw("same")

    l0 = ut.cut_line(fitran[0], 0.9, frame)
    l1 = ut.cut_line(fitran[1], 0.9, frame)
    #l0.Draw()
    #l1.Draw()

    desc = pdesc(frame, 0.14, 0.8, 0.054)
    desc.set_text_size(0.03)
    desc.itemD("#chi^{2}/ndf", frame.chiSquare("pdf_logPt2", "data", 2), -1,
               rt.kRed)
    desc.itemD("#it{A}", a, -1, rt.kRed)
    desc.itemR("#it{b}", b, rt.kRed)
    desc.draw()

    #put the sum
    #hSum.Draw("same")

    #gPad.SetLogy()

    frame.Draw("same")

    #put gamma-gamma
    hPtGG.Draw("same")
    #put coherent J/psi
    hPtCoh.Draw("same")

    #put Sartre generated coherent shape
    #hSartre.Draw("same")

    #put psi(2S) contribution
    #hPtPsiP.Draw("same")

    leg2 = ut.prepare_leg(0.14, 0.9, 0.14, 0.08, 0.03)
    leg2.AddEntry(
        ln,
        "ln(10)*#it{A}*10^{log_{10}#it{p}_{T}^{2}}exp(-#it{b}10^{log_{10}#it{p}_{T}^{2}})",
        "l")
    #leg2.AddEntry(hPtCoh, "Sartre MC reconstructed", "l")
    #leg2.AddEntry(hSartre, "Sartre MC generated", "l")
    leg2.Draw("same")

    ut.invert_col(rt.gPad)
    can.SaveAs("01fig.pdf")
Exemplo n.º 2
0
    #-- end of config --

    #get input
    gROOT.SetBatch()
    inp = TFile.Open(basedir + "/" + infile)
    tree = inp.Get("jRecTree")

    #output log file
    out = open("out.txt", "w")
    #log fit parameters
    loglist1 = [(x, eval(x)) for x in ["infile", "mbin", "mmin", "mmax"]]
    loglist2 = [
        (x, eval(x))
        for x in ["ymin", "ymax", "ptmax", "binned", "fitran[0]", "fitran[1]"]
    ]
    strlog = ut.make_log_string(loglist1, loglist2)
    ut.log_results(out, strlog + "\n")

    #unbinned and binned input data
    nbins, mmax = ut.get_nbins(mbin, mmin, mmax)
    strsel = "jRecY>{0:.3f} && jRecY<{1:.3f} && jRecPt<{2:.3f}".format(
        ymin, ymax, ptmax)
    #unbinned data
    m.setMin(mmin)
    m.setMax(mmax)
    m.setRange("fitran", fitran[0], fitran[1])
    dataIN = RooDataSet("data", "data", tree, RooArgSet(m, y, pT))
    data = dataIN.reduce(strsel)
    #binned data
    hMass = TH1D("hMass", "hMass", nbins, mmin, mmax)
    tree.Draw("jRecM >> hMass", strsel)
Exemplo n.º 3
0
def plot_rec_gen_track_pt():

    #track pT resolution as ( pT_track_rec - pT_track_gen )/pT_track_gen

    ptbin = 0.001
    ptmin = -0.3
    ptmax = 0.1

    #generated dielectron pT selection to input data
    ptlo = 0.2
    pthi = 1

    fitran = [-0.15, 0.018]

    mmin = 2.8
    mmax = 3.2

    ccb = rt.kBlue

    #output log file
    out = open("out.txt", "w")
    #log fit parameters
    loglist1 = [(x, eval(x)) for x in ["infile_mc", "ptbin", "ptmin", "ptmax"]]
    loglist2 = [(x, eval(x))
                for x in ["ptlo", "pthi", "fitran", "mmin", "mmax"]]
    strlog = ut.make_log_string(loglist1, loglist2)
    ut.log_results(out, strlog + "\n")

    strsel = "jRecM>{0:.3f} && jRecM<{1:.3f}".format(mmin, mmax)
    strsel += " && jGenPt>{0:.3f}".format(ptlo)
    strsel += " && jGenPt<{0:.3f}".format(pthi)
    #strsel = ""

    nbins, ptmax = ut.get_nbins(ptbin, ptmin, ptmax)
    hPtTrackRel = ut.prepare_TH1D_n("hPtTrackRel", nbins, ptmin, ptmax)

    ytit = "Events / ({0:.3f})".format(ptbin)
    xtit = "(#it{p}_{T, rec}^{track} - #it{p}_{T, gen}^{track})/#it{p}_{T, gen}^{track}"

    mctree.Draw("(jT0pT-jGenP0pT)/jGenP0pT >> hPtTrackRel",
                strsel)  # positive charge
    mctree.Draw("(jT1pT-jGenP1pT)/jGenP1pT >>+hPtTrackRel",
                strsel)  # add negative charge

    x = RooRealVar("x", "x", ptmin, ptmax)
    x.setRange("fitran", fitran[0], fitran[1])
    rfPtTrackRel = RooDataHist("rfPtTrackRel", "rfPtTrackRel", RooArgList(x),
                               hPtTrackRel)

    #standard Crystal Ball
    mean = RooRealVar("mean", "mean", -0.003, -0.1, 0.1)
    sigma = RooRealVar("sigma", "sigma", 0.01, 0., 0.9)
    alpha = RooRealVar("alpha", "alpha", 1.2, 0., 10.)
    n = RooRealVar("n", "n", 1.3, 0., 20.)
    cbpdf = RooCBShape("cbpdf", "cbpdf", x, mean, sigma, alpha, n)

    res = cbpdf.fitTo(rfPtTrackRel, rf.Range("fitran"), rf.Save())

    #log fit results
    ut.log_results(out, ut.log_fit_result(res))

    #generate new distribution according to the fit
    gROOT.LoadMacro("cb_gen.h")
    #Crystal Ball generator, min, max, mean, sigma, alpha, n
    #cbgen = rt.cb_gen(-0.18, 0.05, -0.00226, 0.00908, 1.40165, 1.114)  #  -0.18, 0.05  ptmin, ptmax
    cbgen = rt.cb_gen(-0.5, 0.05, -0.00226, 0.00908, 0.2,
                      2.)  #  -0.18, 0.05  ptmin, ptmax
    hRelGen = ut.prepare_TH1D_n("hRelGen", nbins, ptmin, ptmax)
    ut.set_H1D_col(hRelGen, rt.kBlue)
    #rt.cb_generate_n(cbgen, hRelGen, int(hPtTrackRel.GetEntries()))
    rfRelGen = RooDataHist("rfRelGen", "rfRelGen", RooArgList(x), hRelGen)

    #generate distribution with additional smearing applied
    hRelSmear = ut.prepare_TH1D_n("hRelSmear", nbins, ptmin, ptmax)
    ut.set_H1D_col(hRelSmear, rt.kOrange)
    #tcopy = mctree.CopyTree(strsel)
    #rt.cb_apply_smear(cbgen, mctree, hRelSmear)

    can = ut.box_canvas()
    ut.set_margin_lbtr(gPad, 0.12, 0.1, 0.05, 0.03)

    frame = x.frame(rf.Bins(nbins), rf.Title(""))
    ut.put_frame_yx_tit(frame, ytit, xtit)

    rfPtTrackRel.plotOn(frame, rf.Name("data"))

    #rfRelGen.plotOn(frame, rf.Name("data"))

    cbpdf.plotOn(frame, rf.Precision(1e-6), rf.Name("cbpdf"),
                 rf.LineColor(ccb))

    frame.Draw()

    #hRelGen.Draw("e1same")
    #hRelSmear.Draw("e1same")

    desc = pdesc(frame, 0.2, 0.8, 0.057)
    #x, y, sep
    desc.set_text_size(0.03)

    desc.itemD("#chi^{2}/ndf", frame.chiSquare("cbpdf", "data", 4), -1, ccb)
    desc.prec = 5
    desc.itemR("mean", mean, ccb)
    desc.itemR("#sigma", sigma, ccb)
    desc.itemR("#alpha", alpha, ccb)
    desc.prec = 3
    desc.itemR("#it{n}", n, ccb)
    desc.draw()

    leg = ut.prepare_leg(0.2, 0.82, 0.21, 0.12, 0.03)  # x, y, dx, dy, tsiz
    leg.SetMargin(0.05)
    leg.AddEntry(0, "#bf{%.1f < #it{p}_{T}^{pair} < %.1f GeV}" % (ptlo, pthi),
                 "")
    leg.Draw("same")

    #ut.invert_col(rt.gPad)
    can.SaveAs("01fig.pdf")
Exemplo n.º 4
0
def plot_rec_gen_pt_relative():

    # relative dielectron pT resolution as ( pT_rec - pT_gen )/pT_gen

    ptbin = 0.01
    ptmin = -1.2
    ptmax = 4

    #generated pT selection to input data
    ptlo = 0.2
    pthi = 1.

    fitran = [-0.1, 3]

    mmin = 2.8
    mmax = 3.2

    #output log file
    out = open("out.txt", "w")
    #log fit parameters
    loglist1 = [(x, eval(x)) for x in ["infile_mc", "ptbin", "ptmin", "ptmax"]]
    loglist2 = [(x, eval(x))
                for x in ["ptlo", "pthi", "fitran", "mmin", "mmax"]]
    strlog = ut.make_log_string(loglist1, loglist2)
    ut.log_results(out, strlog + "\n")

    strsel = "jRecM>{0:.3f} && jRecM<{1:.3f}".format(mmin, mmax)
    strsel += " && jGenPt>{0:.3f}".format(ptlo)
    strsel += " && jGenPt<{0:.3f}".format(pthi)

    nbins, ptmax = ut.get_nbins(ptbin, ptmin, ptmax)
    hPtRel = ut.prepare_TH1D("hPtRel", ptbin, ptmin, ptmax)

    ytit = "Events / ({0:.3f})".format(ptbin)
    xtit = "(#it{p}_{T, rec} - #it{p}_{T, gen})/#it{p}_{T, gen}"

    mctree.Draw("(jRecPt-jGenPt)/jGenPt >> hPtRel", strsel)

    x = RooRealVar("x", "x", ptmin, ptmax)
    x.setRange("fitran", fitran[0], fitran[1])
    rfPtRel = RooDataHist("rfPtRel", "rfPtRel", RooArgList(x), hPtRel)

    #reversed Crystal Ball
    mean = RooRealVar("mean", "mean", 0., -0.1, 0.1)
    sigma = RooRealVar("sigma", "sigma", 0.2, 0., 0.9)
    alpha = RooRealVar("alpha", "alpha", -1.2, -10., 0.)
    n = RooRealVar("n", "n", 1.3, 0., 20.)
    cbpdf = RooCBShape("cbpdf", "cbpdf", x, mean, sigma, alpha, n)

    res = cbpdf.fitTo(rfPtRel, rf.Range("fitran"), rf.Save())

    #log fit results
    ut.log_results(out, ut.log_fit_result(res))

    can = ut.box_canvas()
    ut.set_margin_lbtr(gPad, 0.12, 0.1, 0.05, 0.03)

    frame = x.frame(rf.Bins(nbins), rf.Title(""))
    ut.put_frame_yx_tit(frame, ytit, xtit)

    rfPtRel.plotOn(frame, rf.Name("data"))

    cbpdf.plotOn(frame, rf.Precision(1e-6), rf.Name("cbpdf"))

    frame.Draw()

    desc = pdesc(frame, 0.65, 0.8, 0.057)
    #x, y, sep
    desc.set_text_size(0.03)

    desc.itemD("#chi^{2}/ndf", frame.chiSquare("cbpdf", "data", 4), -1,
               rt.kBlue)
    desc.prec = 5
    desc.itemR("mean", mean, rt.kBlue)
    desc.prec = 4
    desc.itemR("#sigma", sigma, rt.kBlue)
    desc.itemR("#alpha", alpha, rt.kBlue)
    desc.prec = 3
    desc.itemR("#it{n}", n, rt.kBlue)
    desc.draw()

    leg = ut.prepare_leg(0.6, 0.82, 0.21, 0.12, 0.03)  # x, y, dx, dy, tsiz
    leg.SetMargin(0.05)
    leg.AddEntry(0, "#bf{%.1f < #it{p}_{T}^{pair} < %.1f GeV}" % (ptlo, pthi),
                 "")
    leg.Draw("same")

    #ut.invert_col(rt.gPad)
    can.SaveAs("01fig.pdf")
Exemplo n.º 5
0
def plot_rec_gen_track_phi():

    #track azimuthal angle phi resolution as ( phi_track_rec - phi_track_gen )/phi_track_gen

    phibin = 0.0001
    phimin = -0.02
    phimax = 0.02

    #ptlo = 0.
    #pthi = 0.9

    fitran = [-0.01, 0.01]

    mmin = 2.8
    mmax = 3.2

    cbw = rt.kBlue

    #output log file
    out = open("out.txt", "w")
    #log fit parameters
    loglist1 = [(x, eval(x))
                for x in ["infile_mc", "phibin", "phimin", "phimax"]]
    loglist2 = [(x, eval(x)) for x in ["fitran", "mmin", "mmax"]]
    strlog = ut.make_log_string(loglist1, loglist2)
    ut.log_results(out, strlog + "\n")

    strsel = "jRecM>{0:.3f} && jRecM<{1:.3f}".format(mmin, mmax)
    #strsel += " && jGenPt>{0:.3f}".format(ptlo)
    #strsel += " && jGenPt<{0:.3f}".format(pthi)

    nbins, phimax = ut.get_nbins(phibin, phimin, phimax)
    hPhiRel = ut.prepare_TH1D_n("hPhiRel", nbins, phimin, phimax)

    ytit = "Events / ({0:.4f})".format(phibin)
    xtit = "(#phi_{rec} - #phi_{gen})/#phi_{gen}"

    mctree.Draw("(jT0phi-jGenP0phi)/jGenP0phi >> hPhiRel",
                strsel)  # positive charge
    mctree.Draw("(jT1phi-jGenP1phi)/jGenP1phi >>+hPhiRel",
                strsel)  # add negative charge

    x = RooRealVar("x", "x", phimin, phimax)
    x.setRange("fitran", fitran[0], fitran[1])
    rfPhiRel = RooDataHist("rfPhiRel", "rfPhiRel", RooArgList(x), hPhiRel)

    #Breit-Wigner pdf
    mean = RooRealVar("mean", "mean", 0., -0.1, 0.1)
    sigma = RooRealVar("sigma", "sigma", 0.01, 0., 0.9)
    bwpdf = RooBreitWigner("bwpdf", "bwpdf", x, mean, sigma)

    res = bwpdf.fitTo(rfPhiRel, rf.Range("fitran"), rf.Save())

    #log fit results
    ut.log_results(out, ut.log_fit_result(res))

    can = ut.box_canvas()
    ut.set_margin_lbtr(gPad, 0.12, 0.1, 0.05, 0.03)

    frame = x.frame(rf.Bins(nbins), rf.Title(""))
    ut.put_frame_yx_tit(frame, ytit, xtit)

    rfPhiRel.plotOn(frame, rf.Name("data"))

    bwpdf.plotOn(frame, rf.Precision(1e-6), rf.Name("bwpdf"))

    frame.Draw()

    desc = pdesc(frame, 0.12, 0.93, 0.057)
    #x, y, sep
    desc.set_text_size(0.03)
    desc.itemD("#chi^{2}/ndf", frame.chiSquare("bwpdf", "data", 2), -1, cbw)
    desc.prec = 2
    desc.fmt = "e"
    desc.itemR("mean", mean, cbw)
    desc.itemR("#sigma", sigma, cbw)

    desc.draw()

    leg = ut.make_uo_leg(hPhiRel, 0.5, 0.8, 0.2, 0.2)
    #leg.Draw("same")

    #print "Entries: ", hPhiRel.GetEntries()

    #ut.invert_col(rt.gPad)
    can.SaveAs("01fig.pdf")