Exemplo n.º 1
0
def play(images, show=True):
    if len(images.shape) == 4:
        pass
    elif len(images.shape) == 3:
        images = images[..., np.newaxis]

    layout = __layout_noaxis__()

    frames = [
        go.Frame(data=go.Image(z=images[i]), name=str(i))
        for i in range(len(images))
    ]
    fig = go.Figure(data=go.Image(z=images[0]), frames=frames, layout=layout)

    updatemenus = [{
        "buttons": [__play__(50), __pause__()],
        "direction": "left",
        "pad": {
            "r": 10,
            "t": 70
        },
        "type": "buttons",
        "x": 0.1,
        "y": 0
    }]

    sliders = [{
        "pad": {
            "b": 10,
            "t": 60
        },
        "len":
        0.9,
        "x":
        0.1,
        "y":
        0,
        "steps": [{
            "args": [[f.name], __frame_args__(0)],
            "label": str(k),
            "method": "animate"
        } for k, f in enumerate(fig.frames)]
    }]

    fig.update_layout(updatemenus=updatemenus, sliders=sliders)

    if show:
        fig.show()
    return fig
Exemplo n.º 2
0
def plotly_images(file_path):
    files = os.listdir(file_path)
    numbers = np.random.randint(1, len(files), 5)
    fig = make_subplots(1, 5)
    steps = []
    for step in np.arange(1, 6, 1):
        img = io.imread(file_path + files[numbers[step - 1]])
        img = img[:, :, :3]
        fig.add_trace(go.Image(z=img), 1, step)
        fig.data[step - 1].visible = False
    fig.data[0].visible = True
    for i in range(len(fig.data)):
        step = dict(method="update",
                    args=[{
                        "visible": [False] * len(fig.data)
                    }])
        step["args"][0]["visible"][i] = True
        steps.append(step)
    sliders = [dict(active=0, pad={"t": 5}, steps=steps)]
    fig.update_layout(width=500,
                      height=250,
                      sliders=sliders,
                      template='plotly_dark',
                      title_text="Image Examples",
                      title_font=dict(size=12))
    fig.update_xaxes(showticklabels=False)\
    .update_yaxes(showticklabels=False)
    return fig


#fig.show()
Exemplo n.º 3
0
def get_plotly(net, env, s, title=None):
	s_img = env.render(mode='rgb_array')

	action_softmax, node_softmaxes, value = net([s], complete=True)

	action_probs = action_softmax.probs[0].cpu()
	# node_probs = node_softmaxes[0].reshape(*config.soko_size, 5).flip(0).cpu() # flip is because Heatmap flips the display :-(
	value = value[0].item()

	node_indices = s[4]
	node_probs = np.zeros((*config.soko_size, 5))
	node_probs[tuple(node_indices.T)] = node_softmaxes[0].cpu()
	node_probs = np.flip(node_probs, 0)

	fig = make_subplots(rows=2, cols=4, subplot_titles=["State", "MOVE_TO", "PUSH_UP", "State value", "Action probs", "PUSH_LEFT", "PUSH_DOWN", "PUSH_RIGHT"])

	fig.add_trace(go.Image(z=s_img), 1, 1)
	fig.add_trace(go.Bar(x=["MOVE_TO", "PUSH_UP", "PUSH_DOWN", "PUSH_LEFT", "PUSH_RIGHT"], y=action_probs), 2, 1)
	fig.add_trace(go.Bar(x=["value"], y=[value], text=[f'{value:.2f}'], textposition='auto', width=[0.2]), 1, 4)
	fig.update_yaxes(range=config.q_range, row=1, col=4)

	fig.add_trace(go.Heatmap(z=node_probs[:, :, 0], zmin=0., zmax=1., colorscale='Greys', showscale=False), 1, 2)	# MOVE_TO
	fig.add_trace(go.Heatmap(z=node_probs[:, :, 1], zmin=0., zmax=1., colorscale='Greys', showscale=False), 1, 3)	# PUSH_UP
	fig.add_trace(go.Heatmap(z=node_probs[:, :, 2], zmin=0., zmax=1., colorscale='Greys', showscale=False), 2, 3) # PUSH_DOWN
	fig.add_trace(go.Heatmap(z=node_probs[:, :, 3], zmin=0., zmax=1., colorscale='Greys', showscale=False), 2, 2) # PUSH_LEFT
	fig.add_trace(go.Heatmap(z=node_probs[:, :, 4], zmin=0., zmax=1., colorscale='Greys', showscale=True),  2, 4) # PUSH_RIGHT

	fig.update_layout(showlegend=False, title=title, title_x=0.5)

	return fig, value, action_probs
Exemplo n.º 4
0
def scroll_images(images, show=True):
    if len(images.shape) == 4:
        pass
    elif len(images.shape) == 3:
        images = images[..., np.newaxis]

    #build each trace
    data = [go.Image(z=image, visible=False) for image in images]
    data[0]['visible'] = True
    steps = [
        dict(method='update',
             args=[{
                 'visible': [t == i for t in range(len(data))]
             }]) for i in range(len(images))
    ]

    fig = go.Figure(data=data, layout=__layout_noaxis__())

    fig = go.FigureWidget(fig)
    fig.layout.sliders = [
        dict(active=0,
             currentvalue={"prefix": "image : "},
             pad={"t": 20},
             steps=steps)
    ]

    if show:
        fig.show()

    return fig
Exemplo n.º 5
0
    def overlap(self, images, **kwargs):
        """ Plot several images on one canvas using plotly: render the first one in greyscale
        and the rest ones in opaque 'rgb' channels, one channel for each image.
        Supports up to four images in total.

        Parameters
        ----------
        images : list/tuple
            sequence of 2d-arrays for plotting. Can store up to four images.
        kwargs : dict
            max_size : int
                maximum size of a rendered image.
            title : str
                title of rendered image.
            opacity : float
                opacity of 'rgb' channels.
            xaxis : dict
                controls the properties of xaxis-labels; uses plotly-format.
            yaxis : dict
                controls the properties of yaxis-labels; uses plotly-format.
            slice : tuple
                sequence of slice-objects for slicing the image to a lesser one.
            order_axes : tuple
                tuple of ints; defines the order of axes for transposition operation
                applied to the image.
            other
        """
        # update defaults to make total dict of kwargs
        defaults = {'coloraxis_colorbar': {'title': 'amplitude'},
                    'opacity' : 1.0,
                    'title': 'Seismic inline',
                    'max_size' : 600,
                    'order_axes': (1, 0),
                    'slice': (slice(None, None), slice(None, None))}
        updated = {**defaults, **kwargs}

        # form different groups of kwargs
        render_kwargs = filter_kwargs(updated, ['zmin', 'zmax'])
        label_kwargs = filter_kwargs(updated, ['xaxis', 'yaxis', 'coloraxis_colorbar', 'title'])
        slc = updated['slice']

        # calculate canvas sizes
        width, height = images[0].shape[1], images[0].shape[0]
        coeff = updated['max_size'] / max(width, height)
        width = coeff * width
        height = coeff * height

        # manually combine first image in greyscale and the rest ones colored differently
        combined = channelize_image(255 * np.transpose(images[0], axes=updated['order_axes']),
                                    total_channels=4, greyscale=True)
        for img, n_channel in zip(images[1:], (0, 1, 2)):
            combined += channelize_image(255 * np.transpose(img, axes=updated['order_axes']),
                                         total_channels=4, n_channel=n_channel, opacity=updated['opacity'])
        plot_data = go.Image(z=combined[slc], **render_kwargs) # plot manually combined image

        # plot the figure
        fig = go.Figure(data=plot_data)
        fig.update_layout(width=width, height=height, **label_kwargs)

        self.save_and_show(fig, **updated)
Exemplo n.º 6
0
def format_results(img, preds):
    colors = {
        "Healthy": px.colors.qualitative.Plotly[0],
        "Scab": px.colors.qualitative.Plotly[0],
        "Rust": px.colors.qualitative.Plotly[0],
        "Multiple diseases": px.colors.qualitative.Plotly[0]
    }
    print(colors)
    if list.index(preds.tolist(), max(preds)) == 0:
        pred = "Healthy"
    if list.index(preds.tolist(), max(preds)) == 1:
        pred = "Multiple diseases"
    if list.index(preds.tolist(), max(preds)) == 2:
        pred = "Rust"
    if list.index(preds.tolist(), max(preds)) == 3:
        pred = "Scab"

    colors[pred] = px.colors.qualitative.Plotly[2]
    print(colors)
    colors = [colors[key] for key in colors.keys()]
    fig = make_subplots(rows=1, cols=2)
    fig.add_trace(go.Image(z=cv2.resize(img, (205, 150))), row=1, col=1)
    fig.add_trace(go.Bar(x=["Healthy", "Multiple diseases", "Rust", "Scab"],
                         y=preds,
                         marker=dict(color=colors)),
                  row=1,
                  col=2)
    fig.update_layout(height=400,
                      width=800,
                      title_text="DenseNet Model Predictions",
                      showlegend=False)
    fig.update_layout(template="plotly_white")
    st.plotly_chart(fig)
Exemplo n.º 7
0
def numpy_to_plotly_image(img,
                          name=None,
                          is_depth=False,
                          scale=None,
                          quality=95):
    r"""Converts a numpy array img to a `plotly.graph_objects.Image` object.

    Args
        img (np.ndarray): RGB image array
        name (str): Name for the returned `plotly.graph_objects.Image` object
        is_depth (bool): Bool indicating whether input `img` is depth image. Default: False
        scale (int or None): Scale factor to display on hover. If None, will not display `scale: ...`. Default: None
        quality (int): Image quality from 0 to 100 (the higher is the better). Default: 95

    Returns:
        `plotly.graph_objects.Image`
    """
    img_str = img_to_b64str(img, quality)
    hovertemplate = "x: %%{x}<br>y: %%{y}<br>%s: %s"
    if not is_depth:
        hover_name = "[%{z[0]}, %{z[1]}, %{z[2]}]"
        hovertemplate = hovertemplate % ("color", hover_name)
    else:
        hover_name = "%{z[0]}"
        hovertemplate = hovertemplate % ("depth", hover_name)
    if scale is not None:
        scale = int(scale) if int(scale) == scale else scale
        hovertemplate += f"<br>scale: x{scale}<br>"
    hovertemplate += "<extra></extra>"

    return go.Image(source=img_str, hovertemplate=hovertemplate, name=name)
Exemplo n.º 8
0
def visualize(symbols, glyphs, title, get_fig=False, use_titles=True):
    """Visualize a square of samples and their symbol labels

    Args:
        symbols: a list of strings that correspond to each glyph
        glyphs: a tensor or list of glyphs. These should be normalized from
            0 to 1 by a sigmoid activation function
        title: title of the plot
        get_fig: if true, return the Plotly figure object instead of visualizing immediately
    """
    dim = len(glyphs)**(1 / 2)
    assert dim == int(dim), "Number of glyphs should be square"
    dim = int(dim)
    glyphs = np.array(glyphs * 255.).astype('uint8')  # make visual
    fig = make_subplots(dim,
                        dim,
                        subplot_titles=symbols if use_titles else None,
                        horizontal_spacing=0.01,
                        vertical_spacing=0.01)
    row_num = 1
    col_num = 1
    for glyph in glyphs:
        if glyph.shape[2] == 1:
            glyph = tf.broadcast_to(glyph, (glyph.shape[0], glyph.shape[1], 3))
        fig.add_trace(go.Image(z=glyph), row=row_num, col=col_num)
        if col_num == dim:
            row_num += 1
            col_num = 1
        else:
            col_num += 1
    fig.update_layout(title_text=title)
    if get_fig:
        return fig
    else:
        fig.show()
def display_images(image_index, results):
    num_results = len(results)
    titles = [
        'Noisy Image', 'Denoised Image', 'Adversarial<br>Noisy Image',
        'Denoised<br>Adversarial Image'
    ] + [''] * ((num_results - 1) * 4)

    fig = make_subplots(rows=num_results,
                        cols=4,
                        horizontal_spacing=0.005,
                        vertical_spacing=0.005,
                        subplot_titles=titles)

    annotation_interval_y = [0.95, 0.8, 0.65, 0.5, 0.35, 0.2, 0.05]
    annotation_interval_x = [
        -0.065, -0.065, -0.11, -0.11, -0.11, -0.065, -0.065
    ]
    for i, r in enumerate(results):
        noise_title, orig_np, noisy_np, denoised_np, adv_image_np, adv_denoised_np = r

        row = i + 1

        plots = [noisy_np, denoised_np, adv_image_np, adv_denoised_np]

        for col, p in enumerate(plots):
            fig.add_trace(go.Image(z=p,
                                   colormodel='rgb',
                                   zmax=[1, 1, 1, 1],
                                   zmin=[0, 0, 0, 0]),
                          row=row,
                          col=col + 1)
            fig.update_xaxes(showgrid=False,
                             showticklabels=False,
                             zeroline=False,
                             row=row,
                             col=col + 1)
            fig.update_yaxes(showgrid=False,
                             showticklabels=False,
                             zeroline=False,
                             row=row,
                             col=col + 1)

        fig.add_annotation(x=annotation_interval_x[i],
                           y=annotation_interval_y[i],
                           text=noise_title,
                           textangle=0)

    fig.update_annotations(xref='paper', yref='paper', showarrow=False)

    ## Create save directory name
    full_directory = 'images//final_adv_examples'

    # Create directory if required
    if not os.path.exists(full_directory):
        os.mkdir(full_directory)

    # Save figure
    filename = '{}//images_{}.html'.format(full_directory, image_index)
    plt_offline.plot(fig, filename=filename, auto_open=False)
Exemplo n.º 10
0
def update_image(alpha):
    fig = make_subplots(1, 3)
    fig.add_trace(go.Image(z=image), 1, 1)

    iso_smooth = np.zeros_like(image)
    for i in range(3):
        iso_smooth[:, :, i] = apply_isotropic_smoothing(image[:, :, i],
                                                        alpha=alpha)

    fig.add_trace(go.Image(z=iso_smooth), 1, 2)

    aniso_smooth = dtensor.smooth(image, alpha=alpha)
    fig.add_trace(go.Image(z=aniso_smooth), 1, 3)

    fig.update_layout(transition_duration=500)

    return fig
Exemplo n.º 11
0
    def separate(cls, images, **kwargs):
        """ Plot several images on a row of canvases using plotly.
        TODO: add grid support.

        Parameters
        ----------
        images : list/tuple
            sequence of 2d-arrays for plotting.
        kwargs : dict
            max_size : int
                maximum size of a rendered image.
            title : str
                title of rendered image.
            xaxis : dict
                controls the properties of xaxis-labels; uses plotly-format.
            yaxis : dict
                controls the properties of yaxis-labels; uses plotly-format.
            slice : tuple
                sequence of slice-objects for slicing the image to a lesser one.
            order_axes : tuple
                tuple of ints; defines the order of axes for transposition operation
                applied to the image.
            other
        """
        kwargs = cls.convert_kwargs('separate', kwargs)
        # defaults
        defaults = {
            'max_size': 600,
            'order_axes': (1, 0),
            'slice': (slice(None, None), slice(None, None))
        }
        grid = (1, len(images))
        updated = {**defaults, **kwargs}

        # form different groups of kwargs
        render_kwargs = filter_kwargs(updated, [])
        label_kwargs = filter_kwargs(updated, ['title'])
        xaxis_kwargs = filter_kwargs(updated, ['xaxis'])
        yaxis_kwargs = filter_kwargs(updated, ['yaxis'])
        slc = updated['slice']

        # make sure that the images are greyscale and put them each on separate canvas
        fig = make_subplots(rows=grid[0], cols=grid[1])
        for i in range(grid[1]):
            img = channelize_image(
                255 * np.transpose(images[i], axes=updated['order_axes']),
                total_channels=4,
                greyscale=True,
                opacity=1)
            fig.add_trace(go.Image(z=img[slc], **render_kwargs),
                          row=1,
                          col=i + 1)
            fig.update_xaxes(row=1, col=i + 1, **xaxis_kwargs['xaxis'])
            fig.update_yaxes(row=1, col=i + 1, **yaxis_kwargs['yaxis'])
        fig.update_layout(**label_kwargs)

        cls.save_and_show(fig, **updated)
Exemplo n.º 12
0
 def plot_heatmap(self):
     fig = go.Figure()
     fig.add_trace(go.Image(z=self.image))
     fig.add_trace(
         go.Heatmap(z=self.heatmap,
                    type='heatmap',
                    colorscale='jet',
                    opacity=0.7))
     return fig
Exemplo n.º 13
0
    def rgb(cls, image, **kwargs):
        """ Plot one image in 'rgb' using plotly.

        Parameters
        ----------
        image : np.ndarray
            3d-array containing channeled rgb-image.
        kwargs : dict
            max_size : int
                maximum size of a rendered image.
            title : str
                title of the rendered image.
            xaxis : dict
                controls the properties of xaxis-labels; uses plotly-format.
            yaxis : dict
                controls the properties of yaxis-labels; uses plotly-format.
            slice : tuple
                sequence of slice-objects for slicing the image to a lesser one.
            order_axes : tuple
                tuple of ints; defines the order of axes for transposition operation
                applied to the image.
            other
        """
        kwargs = cls.convert_kwargs('rgb', kwargs)
        # update defaults to make total dict of kwargs
        defaults = {
            'coloraxis_colorbar': {
                'title': 'depth'
            },
            'max_size': 600,
            'order_axes': (1, 0, 2),
            'slice': (slice(None, None), slice(None, None))
        }
        updated = {**defaults, **kwargs}

        # form different groups of kwargs
        render_kwargs = filter_kwargs(updated, [])
        label_kwargs = filter_kwargs(
            updated, ['xaxis', 'yaxis', 'coloraxis_colorbar', 'title'])
        slc = updated['slice']

        # calculate canvas sizes
        width, height = image.shape[1], image.shape[0]
        coeff = updated['max_size'] / max(width, height)
        width = coeff * width
        height = coeff * height

        # plot the image and set titles
        plot_data = go.Image(z=np.transpose(image,
                                            axes=updated['order_axes'])[slc],
                             **render_kwargs)
        fig = go.Figure(data=plot_data)
        fig.update_layout(width=width, height=height, **label_kwargs)

        cls.save_and_show(fig, **updated)
Exemplo n.º 14
0
def smooth_user_image(contents, alpha):

    image = load_image(contents)
    user_dtensor = DiffusionTensor2D.fromimage(image)

    fig = make_subplots(1, 3)
    fig.add_trace(go.Image(z=image), 1, 1)

    iso_smooth = np.zeros_like(image)
    for i in range(3):
        iso_smooth[:, :, i] = apply_isotropic_smoothing(image[:, :, i],
                                                        alpha=alpha)

    fig.add_trace(go.Image(z=iso_smooth), 1, 2)

    aniso_smooth = user_dtensor.smooth(image, alpha=alpha)
    fig.add_trace(go.Image(z=aniso_smooth), 1, 3)

    fig.update_layout(transition_duration=500)

    return fig
Exemplo n.º 15
0
 def draw_image(self, **props):
     """Write base64 encoded images into plotly figure"""
     imdata = props['imdata']
     base64_decoded = base64.b64decode(imdata)
     image = Image.open(io.BytesIO(base64_decoded))
     image_np = np.array(image)
     self.plotly_fig.add_trace(
         go.Image(
             z=image_np,
             xaxis='x{0}'.format(self.axis_ct),
             yaxis='y{0}'.format(self.axis_ct),
         ), )
Exemplo n.º 16
0
def add_bbox_frame(fig, image_str, bbox):
    fig.add_trace(go.Image(source=image_str), row=1, col=1)
    fig.update_xaxes(range=[0, 100],
                     constrain='domain',
                     scaleanchor='y',
                     scaleratio=1,
                     row=1,
                     col=1)
    fig.update_yaxes(range=[100, 0],
                     constrain='domain',
                     scaleanchor='x',
                     scaleratio=1,
                     row=1,
                     col=1)
Exemplo n.º 17
0
def draw_figure(base64_img_string, summary_data, ann_type, visual_type):
    data_descript = get_data_descript(ann_type, visual_type)

    fig = go.Figure(go.Image(source=base64_img_string))
    fig.update_traces(hoverinfo="skip", hovertemplate=None)

    for ann in summary_data:

        hover = ''

        if visual_type == 'SEGM':
            x_list = ann['mask_contour'][0]
            y_list = ann['mask_contour'][1]
        elif visual_type == 'BBOX':
            x_list = ann['bbox'][0]
            y_list = ann['bbox'][1]
        else:
            x_list = None
            y_list = None

        for dx in data_descript:
            hover = hover + f'<b>{data_descript[dx]["name"]}:</b> {ann[dx]}<br>'

        fig.add_trace(
            go.Scatter(
                x=x_list,
                y=y_list,
                fill='toself',
                mode='lines',
                fillcolor=DATA_CFG[ann['classe']]['color_tr'],
                line_color=DATA_CFG[ann['classe']]['color'],
                text=hover,
                name='',
                hoveron='fills'
            )
        )

    config = dict({
        'paper_bgcolor': 'rgba(0,0,0,0)',
        'plot_bgcolor': 'rgba(0,0,0,0)',
        'showlegend': False
    })

    fig.update_layout(height=300, margin=dict(l=10, r=10, b=10, t=10), template="simple_white")
    fig.update_xaxes(visible=False, range=[0, 256]).update_yaxes(visible=False, range=[256, 0])

    fig.update_layout(config)

    return fig
Exemplo n.º 18
0
def _apply_mask_contour(figure, image, mask, slider_opacity):
    colorscale = [[0, 'gold'], [0.5, 'gold'], [1, 'gold']]
    image = 255 * image
    figure.add_trace(go.Image(z=image))
    figure.update_layout(margin={"r": 60, "t": 0, "l": 0, "b": 0})
    figure.add_trace(
        go.Contour(z=mask,
                   contours_coloring='lines',
                   line_width=3,
                   opacity=slider_opacity,
                   showlegend=False,
                   showscale=False,
                   colorscale=colorscale,
                   colorbar=dict(showticklabels=False)))

    return figure
Exemplo n.º 19
0
 def update_2d_plot_data_by_axis(img_state, slider_control, face_control, view_mode, axis):
     if view_mode is None or view_mode["view"] == "3d":
         raise PreventUpdate
     layout = go.Layout(
         autosize=True,
         plot_bgcolor="#1D1D1D",
         paper_bgcolor="#1D1D1D",
         margin=dict(
             l=0,
             r=0,
             t=0,
             b=0,
             pad=0,
         ),
         xaxis=dict(
             autorange=True,
             showgrid=False,
             zeroline=False,
             showline=False,
             ticks='',
             showticklabels=False
         ),
         yaxis=dict(
             autorange=True,
             showgrid=False,
             zeroline=False,
             showline=False,
             ticks='',
             showticklabels=False
         )
     )
     if img_state is None or slider_control is None:
         res = {
             "data": [],
             'layout': layout
         }
     else:
         stateIns = StateSingleton()
         state = stateIns.get_state()
         if axis == "i":
             z = cv2.cvtColor(np.expand_dims(state['data'][slider_control], axis=-1), cv2.COLOR_GRAY2RGB)
         if axis == "j":
             z = cv2.cvtColor(np.expand_dims(state['data'][:, slider_control], axis=-1), cv2.COLOR_GRAY2RGB)
         if axis == "k":
             z = cv2.cvtColor(np.expand_dims(state['data'][:, :, slider_control].T, axis=-1), cv2.COLOR_GRAY2RGB)
         res = go.Figure(data=go.Image(z=z), layout=layout)
     return res
Exemplo n.º 20
0
def make_figure(filename_uri, mode="layout", dragmode="drawrect", show_axes=True):
    if mode == "layout":
        fig = go.Figure()

        # Add trace
        fig.add_trace(go.Scatter(x=[], y=[]))
        filename = os.path.join("assets", os.path.basename(filename_uri))
        im = Image.open(filename)
        width, height = im.size
        # Add images
        fig.add_layout_image(
            dict(
                source=filename_uri,
                xref="x",
                yref="y",
                x=0,
                y=0,
                sizex=width,
                sizey=height,
                sizing="contain",
                layer="below",
            )
        )
        fig.update_layout(template=None)
        fig.update_xaxes(
            showgrid=False, range=(0, width), showticklabels=False, zeroline=False
        )
        fig.update_yaxes(
            showgrid=False,
            scaleanchor="x",
            range=(height, 0),
            showticklabels=False,
            zeroline=False,
        )
    else:
        im = io.imread(filename_uri[1:])
        fig = go.Figure(go.Image(z=im))
    fig.update_layout(
        margin=dict(t=0, b=0), dragmode=dragmode,
    )
    if not show_axes:
        fig.update_xaxes(showgrid=False)
        fig.update_yaxes(showgrid=False)
    return fig
Exemplo n.º 21
0
def dash_plot_wc(selected_df, label, d_dict, pos_dict, neg_dict):
    '''
    Signature:   plot_wc(selected_df=None, label=None, d_dict=None)
    Doctring:    Return plotly figure
    Parameter:   selected_df: string, dataframe variable name
                 label: interger, 0 or 1
                 d_dict: dictionary
                 pos_dict: dictionary
                 neg_dict: dictionary
    '''
    df = d_dict.get(selected_df)
    fig = go.Figure()
    if label == 0:
        wc_df = neg_dict.get(selected_df)
        # create WordCoud object
        wc = WordCloud(background_color="white")
        # generate word cloud
        wc.generate_from_frequencies(dict(wc_df))
        title = 'Top 50 Words from Negative Reviews'
    else:
        wc_df = pos_dict.get(selected_df)
        # create WordCoud object
        wc = WordCloud(background_color="white")
        # generate word cloud
        wc.generate_from_frequencies(dict(wc_df))
        title = 'Top 50 Words from Positive Reviews'

    fig.add_trace(go.Image(z=wc))

    fig.update_layout(title={
        'text': title,
        'x': 0.5,
        'xanchor': 'center'
    },
                      width=495,
                      height=350,
                      hovermode=False,
                      autosize=False,
                      margin=dict(l=0, r=0, b=1, t=50, pad=4))
    fig.update_xaxes(showticklabels=False)
    fig.update_yaxes(showticklabels=False)

    return fig
Exemplo n.º 22
0
def show_wc(selected_df, label):
    df = df_dict.get(selected_df)
    fig = go.Figure()
    if label == 0:
        wc_df = neg_wc_dict.get(selected_df)
        # create WordCoud object
        wc = WordCloud(background_color="white")
        # generate word cloud
        wc.generate_from_frequencies(dict(wc_df))
        title = '<b>Top 50 Words from Negative Reviews'
    else:
        wc_df = pos_wc_dict.get(selected_df)
        # create WordCoud object
        wc = WordCloud(background_color="white")
        # generate word cloud
        wc.generate_from_frequencies(dict(wc_df))
        title = '<b>Top 50 Words from Positive Reviews</b>'

    fig.add_trace(go.Image(z=wc))

    fig.update_layout(title={
        'text': title,
        'x': 0.5,
        'y': 0.85,
        'xanchor': 'center'
    },
                      hovermode=False,
                      autosize=True,
                      margin=dict(l=5, r=5, b=0, t=0),
                      font=dict(size=15, color='#c5a654'))
    fig.update_xaxes(showticklabels=False,
                     showline=True,
                     linewidth=1,
                     linecolor='#88bccb',
                     mirror=True)
    fig.update_yaxes(showticklabels=False,
                     showline=True,
                     linewidth=1,
                     linecolor='#e4c02e',
                     mirror=True)

    return fig
Exemplo n.º 23
0
def plot_wcloud(lst, spt1, spt2, word_type):
    '''
    Signature:  plot_wcloud(lst=None, spt1=None, spt2=None, word_type)
    Docstring:  Return a plotly express figure of word cloud image.
    Parameters: lst: list of tuple of word and count. 
                spt1: string, subplot one title.
                spt2: string, subplot two title.
                word_type: string, subplots title word
    '''
    # create figure with 2 subplot
    fig = make_subplots(
        rows=2,
        cols=1,
        vertical_spacing=0.1,
        subplot_titles=(f'<i><b>{spt1}</b></i> Review Top 50 {word_type}',
                        f'<i><b>{spt2}</b></i> Review Top 50 {word_type}'))

    for i, j in enumerate(lst):
        # create WordCoud object
        wc = WordCloud(background_color="white")
        # generate word cloud
        wc.generate_from_frequencies(dict(j))

        fig.add_trace(go.Image(z=wc), row=i + 1, col=1)

    # set subplot title font size
    for annotation in fig['layout']['annotations']:
        annotation['font'] = {'size': 24}

    fig.update_layout(width=550, height=700, hovermode=False, autosize=False)
    fig.update_xaxes(showticklabels=False,
                     showline=True,
                     linewidth=1,
                     linecolor='grey',
                     mirror=True)
    fig.update_yaxes(showticklabels=False,
                     showline=True,
                     linewidth=1,
                     linecolor='grey',
                     mirror=True)

    fig.show(scale=10)
Exemplo n.º 24
0
def matrice():
    dg = [21, 67, 96]
    lg = [41, 128, 185]
    w = [253, 254, 254]
    x = [
        'CYBERIA', 'WAVENET', 'OGERONET-TRIPOLI', 'IncoNet Data Management',
        'OGERONET-Jounieh', 'USJ', 'BROADBAND PLUS', 'FARAHNET', 'AUBNET'
    ]

    data = [[w, lg, lg, lg, lg, lg, lg, dg, lg],
            [lg, w, lg, lg, lg, lg, lg, lg, lg],
            [w, lg, w, lg, lg, lg, lg, lg, lg],
            [lg, lg, lg, w, lg, lg, lg, dg, lg],
            [w, lg, lg, lg, w, lg, lg, lg, lg],
            [lg, lg, lg, lg, lg, w, lg, dg, lg],
            [lg, lg, lg, lg, lg, lg, w, lg, lg],
            [w, lg, lg, dg, lg, lg, dg, w, dg],
            [lg, lg, lg, lg, lg, lg, lg, dg, w]]

    fig = go.Figure(go.Image(z=data))
    fig.show()
Exemplo n.º 25
0
def update_figure(selected_num):
    filtered_df = df[df['Number'] == selected_num]
    traces = []
    fig.add_trace(go.Image(z=img), 1, 1)

    for i in filtered_df['Location'].unique():
        df_location = filtered_df[filtered_df['Location'] == i]
        traces.append(
            dict(
                x=df_location['Lat'],
                y=df_location['Lon'],
                text=df_location['Location'],
                mode='markers',
                marker={
                    'size': df_location['Result'] * 5,
                    'color': df_location['Color']
                },
                name=i,
            )),

    return {'data': traces, 'layout': layout}
Exemplo n.º 26
0
def image_montage(image_dir, details, summary):
    patients = list(details.Patient.unique())
    max_image_counts = int(
        details.groupby('Patient').agg('nunique')['fn'].max())
    number_of_patients = len(patients)
    montage = make_subplots(number_of_patients,
                            max_image_counts,
                            vertical_spacing=0.05)

    summary = summary.set_index('Patient')
    for p_i, patient in enumerate(patients):
        patient_filter = (details.Patient == patient)
        patient_df = details.loc[patient_filter, ['fn', 'Predicted_label']]
        infection_rate = summary.loc[patient, '% Infected Cells']
        montage.add_annotation(
            text=f"Patient {patient}: {infection_rate} % infected",
            xref="paper",
            yref="paper",
            x=0,
            # include verticle spacing
            y=1.05 - p_i * (1 / number_of_patients + 0.05),
            showarrow=False)
        for i_i, row in patient_df.reset_index().iterrows():
            im_p = row['fn']
            pred = row['Predicted_label']
            img_i = Image.open(image_dir + im_p.split('/')[-1]).copy()
            img_i = img_i.convert('RGB')
            img_i = resize_image(img_i, 50)
            img_i = pad_image(img_i, 55, pred)
            img_i = np.array(img_i)
            montage.add_trace(go.Image(z=img_i), p_i + 1, i_i + 1)

    # hide subplot y-axis titles and x-axis titles
    for axis in montage.layout:
        if isinstance(montage.layout[axis], go.layout.YAxis):
            montage.layout[axis].tickfont = dict(color='rgba(0,0,0,0)')
        if isinstance(montage.layout[axis], go.layout.XAxis):
            montage.layout[axis].tickfont = dict(color='rgba(0,0,0,0)')
    return montage
Exemplo n.º 27
0
def plot_image(images, show=True):
    if len(images.shape) == 4:
        pass
    elif len(images.shape) == 3:
        images = images[np.newaxis, ...]
    elif len(images.shape) == 2:
        images = images[np.newaxis, :, :, np.newaxis]

    g = int(np.ceil(np.sqrt(images.shape[0])))
    fig = subplots.make_subplots(rows=g,
                                 cols=g,
                                 shared_xaxes=True,
                                 shared_yaxes=True,
                                 vertical_spacing=0.004,
                                 horizontal_spacing=0.004)
    fig.update_xaxes(**__layout_noaxis__()['xaxis'])
    fig.update_yaxes(**__layout_noaxis__()['yaxis'])

    for i, image in enumerate(images, 0):
        fig.add_trace(go.Image(z=image), (i % g) + 1, (i // g) + 1)

    if show:
        fig.show()
Exemplo n.º 28
0
        def render_figure(active_img_idx, patch, editable=True):
            active_img = loaded_data[active_img_idx].copy()
            img_width, img_height = active_img.size

            fig = go.Figure(go.Image(z=np.array(active_img)))
            fig.add_shape(
                editable=editable,
                xref="x",
                yref="y",
                layer="above",
                line={"color": "cyan"},
                opacity=0.7,
                fillcolor="cyan",
                type="rect",
                **patch,
            )
            fig.update_xaxes(showgrid=False, range=(0, img_width))
            fig.update_yaxes(showgrid=False,
                             scaleanchor="x",
                             range=(img_height, 0))
            fig.update_layout(autosize=False, width=800, height=800)

            return fig
Exemplo n.º 29
0
def plotly_image_slider(images, ticks, slider_prefix="Distance < "):
    """
    Plots all images with a slider named after ticks.
    """

    fig = go.Figure()

    for img in images:
        fig.add_trace(
            go.Image(z=img, visible=False)
            )

    fig.data[0].visible = True

    steps = []
    for i, t in enumerate(ticks):
        step = dict(
            method="restyle",
            args=["visible", [False] * len(fig.data)],
            label=t
        )
        step["args"][1][i] = True
        steps.append(step)

    sliders = [dict(
        active=0,
        currentvalue={"prefix": slider_prefix},
        pad={"t": 50},
        steps=steps
    )]

    fig.update_layout(
        template="none",
        sliders=sliders,
    )

    return fig
Exemplo n.º 30
0
import numpy as np
import img_transform
import plot_common
import skimage.io
import skimage.transform
import plotly.graph_objects as go

x = plot_common.path_to_img_ndarray('assets/Keymaker.jpg')
#x=x[:10,:10,:]
xrot = skimage.transform.rotate(x, 90)
print('x', x.shape)
print('xrot', xrot.shape)
print(np.sum(xrot != 0))
print(xrot.max())
print(xrot.min())
#fig=go.Figure(data=go.Image(z=xrot))
#x=np.transpose(x,(1,0,2))
img_trace = go.Image(z=xrot, zmax=[1, 1, 1, 1])
fig = go.Figure(data=img_trace)
fig.show()