Exemplo n.º 1
0
def go():
    df1 = pd.read_csv(
        'https://raw.githubusercontent.com/plotly/datasets/718417069ead87650b90472464c7565dc8c2cb1c/sunburst-coffee-flavors-complete.csv'
    )
    df2 = pd.read_csv(
        'https://raw.githubusercontent.com/plotly/datasets/718417069ead87650b90472464c7565dc8c2cb1c/coffee-flavors.csv'
    )

    fig = make_subplots(rows=1,
                        cols=2,
                        column_widths=[0.4, 0.4],
                        specs=[[{
                            'type': 'treemap',
                            'rowspan': 1
                        }, {
                            'type': 'treemap'
                        }]])

    fig.add_trace(go.Treemap(ids=df1.ids,
                             labels=df1.labels,
                             parents=df1.parents),
                  col=1,
                  row=1)

    fig.add_trace(go.Treemap(ids=df2.ids,
                             labels=df2.labels,
                             parents=df2.parents,
                             maxdepth=3),
                  col=2,
                  row=1)

    fig.update_layout(margin={'t': 0, 'l': 0, 'r': 0, 'b': 0})

    fig.show()
Exemplo n.º 2
0
def covid_26():
    global fig3
    fig3 = go.Figure()
    fig3.add_trace(
        go.Treemap(ids=df["Confirmed"],
                   labels=df["States"],
                   parents=df["Active"],
                   values=df["Active_Value"],
                   textinfo='label+value',
                   domain=dict(column=0)))

    fig3.add_trace(
        go.Treemap(
            ids=df["Confirmed"],
            labels=df["States"],
            parents=df["Deaths"],
            values=df["Deaths_Value"],
            textinfo='label+value',
            domain=dict(column=1),
        ))

    fig3.update_layout(
        grid=dict(columns=2, rows=1),
        margin=dict(t=0, l=0, r=0, b=0),
    )
    fig3.write_html("templates/choro22.html")
    return render_template("choro22.html")
Exemplo n.º 3
0
def test_pie_like_px():
    # Pie
    labels = ["Oxygen", "Hydrogen", "Carbon_Dioxide", "Nitrogen"]
    values = [4500, 2500, 1053, 500]

    fig = px.pie(names=labels, values=values)
    trace = go.Pie(labels=labels, values=values)
    _compare_figures(trace, fig)

    labels = [
        "Eve", "Cain", "Seth", "Enos", "Noam", "Abel", "Awan", "Enoch", "Azura"
    ]
    parents = ["", "Eve", "Eve", "Seth", "Seth", "Eve", "Eve", "Awan", "Eve"]
    values = [10, 14, 12, 10, 2, 6, 6, 4, 4]
    # Sunburst
    fig = px.sunburst(names=labels, parents=parents, values=values)
    trace = go.Sunburst(labels=labels, parents=parents, values=values)
    _compare_figures(trace, fig)
    # Treemap
    fig = px.treemap(names=labels, parents=parents, values=values)
    trace = go.Treemap(labels=labels, parents=parents, values=values)
    _compare_figures(trace, fig)

    # Funnel
    x = ["A", "B", "C"]
    y = [3, 2, 1]
    fig = px.funnel(y=y, x=x)
    trace = go.Funnel(y=y, x=x)
    _compare_figures(trace, fig)
    # Funnelarea
    fig = px.funnel_area(values=y, names=x)
    trace = go.Funnelarea(values=y, labels=x)
    _compare_figures(trace, fig)
Exemplo n.º 4
0
def plot_treemap_district(pallete="curl", df=df, template=sport_template):
    fig = px.treemap(df,
                     path=["All", 'Stadsdeel', "Sport_en"],
                     color="sport_count_in_district",
                     color_continuous_scale=pallete,
                     range_color=[1, 22],
                     hover_name="Sport_en",
                     color_continuous_midpoint=np.average(
                         df["sport_count_in_district"]),
                     maxdepth=3)

    fig.update_traces(
        go.Treemap(
            hovertemplate="%{label}",
            texttemplate=
            "%{label}<br><br>Percentage: %{percentParent:.1%} <br>Count: %{value}<br>",
            outsidetextfont={"size": 20}))

    fig.update_layout(
        title=dict(
            text="Sports Distribution in City Districts<br>(Click to Expand)",
        ),
        coloraxis_colorbar=dict(title="Counts", ),
        margin=dict(l=20, t=100),
        template=template,
    )

    return fig
Exemplo n.º 5
0
def plot_feature_importance(feature_importance):
    """Created a treemap plot based on feature importance and weights.

    Args:
        feature_importance (pandas.DataFrame): A DataFrame describing the
            feature importances and weights of the trained model.

    Returns:
        plotly.graph_objects.Figure: A treemap of the features.

    """
    feature_importance["parent"] = "Feature importance"

    return go.Figure(
        go.Treemap(
            labels=feature_importance.index,
            parents=feature_importance["parent"],
            values=feature_importance["gain"],
            customdata=feature_importance["weight"],
            marker=dict(colors=feature_importance["weight"],
                        colorscale="greens"),
            hovertemplate=("<b>%{label}</b><br>importance: %{value:.1%}"
                           "<br>weight: %{customdata:.1%}<extra></extra>"),
        ),
        layout={"margin": {
            "t": 0,
            "r": 0,
            "b": 0,
            "l": 0,
        }},
    )
Exemplo n.º 6
0
def plot_treemap_all(pallete="curl", df=df, template=sport_template):
    fig = px.treemap(df,
                     path=["All", "Sport_en"],
                     color="Sport_count",
                     color_continuous_scale=pallete,
                     range_color=[1, 75],
                     hover_name="Sport_en",
                     color_continuous_midpoint=np.average(df["Sport_count"]),
                     maxdepth=3)

    fig.update_traces(
        go.Treemap(
            textinfo="label",
            texttemplate=
            "%{label}<br><br>Percentage: %{percentParent:.1%} <br>Count: %{value}<br>",
            hovertemplate="  %{label}  ",
            outsidetextfont={"size": 20},
        ))

    fig.update_layout(title=dict(
        text="Sports Distribution in Amsterdam by Type<br> (Click to Expand)"),
                      coloraxis_colorbar=dict(title="Counts",
                                              tickvals=[10, 30, 50, 70]),
                      template=template)

    return fig
Exemplo n.º 7
0
    def plot_treemap(self, port):
        levels = ['ASSET', 'TYPE']  # levels used for the hierarchical chart
        color_column = 'CHG'
        aux_color_column = 'CURRENT_TOTAL'
        value_column = 'TOTAL'
        df_all_trees = self.__build_hierarchical_dataframe(
            self.port, levels, value_column, color_column, aux_color_column)
        trace = go.Treemap(
            textinfo="label+percent root",
            labels=df_all_trees['id'],
            parents=df_all_trees['parent'],
            values=df_all_trees['value'],
            branchvalues='total',
            marker=dict(colors=df_all_trees['color'],
                        colorscale='RdBu',
                        cmid=0),
            hovertemplate=
            '<b>%{label} </b> <br> Total: R$%{value:,.2f}<br> Chg: %{color:.2%}',
            name='')

        layout = go.Layout(autosize=False,
                           width=1000,
                           height=500,
                           margin=go.layout.Margin(l=10,
                                                   r=10,
                                                   b=10,
                                                   t=10,
                                                   pad=4))

        fig = go.Figure(data=[trace], layout=layout)
        fig.show()
Exemplo n.º 8
0
def plot(nlocs, files, parents, ccns):

    fig = go.Figure(
        go.Treemap(
            labels=files,
            values=nlocs,
            parents=parents,
            marker=dict(colors=ccns,
                        colorscale='blues',
                        cmid=statistics.mean(ccns)),
        ))

    fig.show()
Exemplo n.º 9
0
 def createTreeMap(self,labels=[],parents=[],values=[]):       
     fig = go.Figure(go.Treemap(
         labels = labels,
         parents = parents,
         values = values
         ))
     fig.update_layout(margin=dict(l=10, r=10, t=10, b=10),autosize=True)
     fig.update_yaxes(automargin=True)
     presult = plotly.offline.plot(fig, config={"displayModeBar": False}, 
                                       show_link=False,
                                       include_plotlyjs=False,
                                       output_type='div')
     return presult
Exemplo n.º 10
0
def build_pkd_treemap(voivodeship=[]):
    df = __df

    if voivodeship is not None and voivodeship != []:
        df = df.loc[np.isin(df.MainAddressVoivodeship, voivodeship), :].reset_index(drop=False)

    pkd_names = __pkd_names

    levels = ['PKDMainSection',
              'PKDMainDivision']  # levels used for the hierarchical chart
    color_columns = ['DurationOfExistenceInMonths']
    value_column = 'Count'

    df_all_trees = __build_hierarchical_dataframe(df, pkd_names, levels, value_column, color_columns)

    df_all_trees = __format_strings(df_all_trees)

    median_duration = df_all_trees['color'].median()
    max_duration = df_all_trees['color'].max()

    pkd_fig = go.Figure(go.Treemap(
        labels=df_all_trees['id'],
        parents=df_all_trees['parent'],
        values=df_all_trees['value'],
        branchvalues='total',
        marker=dict(
            colors=df_all_trees['color'],
            colorscale='balance',
            cmax=max_duration,
            cmid=median_duration,
            colorbar=dict(thickness=20, title='Przetrwane miesiące', titleside='right')),
        maxdepth=2,
        # texttemplate = "%{label}<br>%<b>%{customdata[2]}<\b><br>",
        customdata=df_all_trees[['years', 'months', 'nazwa']],
        hovertemplate='<b>%{label} </b> <br>%{customdata[2]} <br> - Liczba firm: %{value}<br> - Czas życia przeciętnej firmy: <b>%{customdata[0]}%{customdata[1]}</b>',
        name=''
    ))

    pkd_fig.update_layout(
        title={
            'text': "Czas życia przeciętnej firmy",
            'y': 0.9,
            'x': 0.5,
            'xanchor': 'center',
            'yanchor': 'top'
        },
        margin=dict(l=20, r=20, t=70, b=20),
    )

    return pkd_fig
Exemplo n.º 11
0
def draw_treemap(data):
    fig = go.Figure(
        go.Treemap(
            ids=data['id'],
            parents=data['parent'],
            labels=data['state'],
            customdata=data['value'],
            name='Zones',
            pathbar={"visible": True},
            hovertemplate=
            '<b> Region: %{label}</b> <br> Zone: %{customdata}<extra></extra>',
            marker=dict(colors=get_color(data['value']))))
    fig.update_layout(title="Zones",
                      height=900,
                      margin=dict(t=30, b=10, r=0, l=0))
    return fig
Exemplo n.º 12
0
def get_fig():

    unique_versions = list(df['version'].unique())
    unique_versions.sort()

    unique_simple_versions = list(
        [infer_node_version(v) for v in unique_versions])

    unique_simple_versions_parents = list(
        ["All versions" for _ in dict.fromkeys(unique_simple_versions)])

    projects_names = list(df['name'])
    versions = list(df['version'])

    labels = list(dict.fromkeys(unique_simple_versions)) + \
        unique_versions + projects_names
    parents = unique_simple_versions_parents + unique_simple_versions + versions

    layout = dict(
        title=go.layout.Title(
            text='NodeJS versions in use<br>(Generated on {})'.format(
                creation_time),
            font=graph_title_font),
        paper_bgcolor=WHITE,
        plot_bgcolor=TRANSPARENT,
        treemapcolorway=colorway['GovUkColours'],
        height=600,
    )

    return {
        'data': [
            go.Treemap(
                labels=labels,
                parents=parents,
                textposition="middle center",
                tiling=dict(packing="slice", ),
                marker=dict(line=dict(width=0), ),
                maxdepth=2,
            )
        ],
        'layout':
        layout
    }
Exemplo n.º 13
0
 def milestones_graph(value):
     tags = list(milestones.keys())
     labels = list(milestones.keys())
     parents = [''] * len(tags)
     # fixme: add colors?
     color = []
     counter = 0
     stories_color = []
     for index, milestone in enumerate(milestones.values()):
         color = set_milestones_color(milestones, milestone, tags,
                                      index, color)
         for idx, title in enumerate(milestone['title']):
             if milestone['label'][idx] == 'Bug':
                 stories_color.append('red')
             elif milestone['label'][idx] == 'Test':
                 stories_color.append('purple')
             elif milestone['label'][idx] == 'New Feature' or \
                     milestone['label'][idx] == 'Improvement':
                 stories_color.append('green')
             else:
                 stories_color.append('gray')
             parents.append(tags[index])
             # When title is present in tags, set new id
             labels.append(title)
             if title in tags:
                 # Add issue to treemap but change it's identifier
                 tags.append(title + '_' + str(counter))
                 counter += 1
             else:
                 # Add issue to treemap
                 tags.append(title)
     # Chain colors for the titles
     color += stories_color
     fig = go.Figure(go.Treemap(
             marker_colors=color,
             labels=labels,
             parents=parents,
             ids=tags
     ))
     return fig
Exemplo n.º 14
0
def generate_treemap(filtered_df, geo_select):
    
    if geo_select is None:
        hashtag_list = filtered_df['hashtags'].tolist()
    else:
        hashtag_list = [point["customdata"] for point in geo_select["points"]]
    k = 20
    hashtags = [hashtag for sublist in hashtag_list for hashtag in sublist]
    freq_df = pd.DataFrame(list(FreqDist(hashtags).items()),columns=["hashtag","count"]) 
    freq_df = freq_df.sort_values('count',ascending=False)
    
    fig = go.Figure(go.Treemap(
                        labels=freq_df['hashtag'][:k].tolist(),
                        values=freq_df['count'][:k].tolist(),
                        parents=['']*k,
                        marker_colorscale=px.colors.sequential.Teal,
                        hovertemplate='<b>%{label} </b> <br>Count: %{value}<extra></extra>'))
    fig.update_layout(margin=dict(l=0, r=0, t=0, b=10), 
                      height=250,
                      plot_bgcolor="#171b26",
                      paper_bgcolor="#171b26") 
    return fig
Exemplo n.º 15
0
def treemap_capacity():
    levels = ['Country', 'Region', 'Continent']
    color_columns = ['capacity_mw', 'quantity']
    value_column = 'capacity_mw'
    df = total_capacity_per_country()
    df_all_trees = build_hierarchical_dataframe(df, levels, value_column,
                                                color_columns)
    fig = go.Figure()
    fig.add_trace(go.Treemap(**fig_treemap(df_all_trees)))
    fig.update_layout(
        title={
            'text':
            "Conutries Capacity (MW) Proportional to Numbers of Power Plant <br>(Hoover for more information)",
            'x': 0.5,
            'xanchor': 'center',
            'yanchor': 'top'
        },
        treemapcolorway=[continent_color(c) for c in get_continents()],
    )
    # fig.write_html('tmp3.html', auto_open=True)
    return plotly.offline.plot(figure_or_data=fig,
                               include_plotlyjs=False,
                               output_type='div')
Exemplo n.º 16
0
import plotly.graph_objects as go
from plotly.subplots import make_subplots

import pandas as pd

df2 = pd.read_csv('coffee-flavors.csv')

fig = make_subplots(rows=1,
                    cols=2,
                    column_widths=[0.4, 0.4],
                    specs=[[{
                        'type': 'treemap',
                        'rowspan': 1
                    }, {
                        'type': 'treemap'
                    }]])

fig.add_trace(go.Treemap(ids=df2.ids,
                         labels=df2.labels,
                         parents=df2.parents,
                         maxdepth=3),
              col=1,
              row=1)

fig.update_layout(margin={'t': 0, 'l': 0, 'r': 0, 'b': 0})

fig.show()
Exemplo n.º 17
0
#%%
import plotly.graph_objects as go

labels = ["A1", "A2", "A3", "A4", "A5", "B1", "B2"]
parents = ["", "A1", "A2", "A3", "A4", "", "B1"]

fig = go.Figure(
    go.Treemap(labels=labels,
               parents=parents,
               marker_colors=[
                   "pink", "royalblue", "lightgray", "purple", "cyan",
                   "lightgray", "lightblue"
               ]))

fig.show()
Exemplo n.º 18
0
            np_dfBooks[:, 0] == x[4], 1]:
        parentList.update({x[1]: np_dfBooks[np_dfBooks[:, 0] == x[4], 1]})
    else:
        parentList.update({x[1]: ''})
        print(count)
        print(x[1])
    if count == 3827:
        print(x[1])
        print(np_dfBooks[np_dfBooks[:, 0] == x[4], 1])
        break
    count = count + 1
print(parentList.keys())
print(parentList.values())

fig = go.Figure()
fig.add_trace(
    go.Sunburst(labels=list(parentList.keys()),
                parents=list(parentList.values()),
                domain=dict(column=0)))
fig.update_layout(margin=dict(t=0, l=0, r=0, b=0))
fig.show()

#treemap
fig1 = go.Figure(
    go.Treemap(
        labels=list(parentList.keys()),
        parents=list(parentList.values()),
    ))

fig1.show()
Exemplo n.º 19
0
for cat in categories:

    modules_onecat = modules_df[modules_df.id.str.startswith(cat)]

    fig_modules = go.Figure(
        go.Treemap(
            branchvalues="remainder",
            ids=modules_onecat["id"],
            labels="<b>" + modules_onecat["title"] + "</b> (" +
            modules_onecat["id"] + ")",
            parents=modules_onecat["parent"],
            values=modules_onecat["priority"],
            marker_colors=modules_onecat["assessment"],
            text=(modules_onecat["text"]).apply(
                lambda txt: '<br>'.join(textwrap.wrap(txt, width=100))),
            textinfo="label+text",
            hovertext=(
                modules_onecat["text"] + " (" + modules_onecat["id"] + ")"
                "<br>Priorität: " + (modules_onecat["priority"]).astype(str) +
                "<br>Potential: " + (modules_onecat["potential"]).astype(str)
            ).apply(lambda txt: '<br>'.join(textwrap.wrap(txt, width=100))),
            hoverinfo="text",
            pathbar={"visible": True},
            insidetextfont={"size": 75}))

    fig_modules.update_layout(margin=dict(r=10, l=10)
                              # ~ height = 750
                              )

    modules_plot_file.write(
Exemplo n.º 20
0
import plotly.graph_objects as go

labels = ["A1", "A2", "A3", "A4", "A5", "B1", "B2"]
parents = ["", "A1", "A2", "A3", "A4", "", "B1"]
marker_colors = [
    "pink", "royalblue", "lightgray", "purple", "cyan", "lightgreen",
    "lightblue"
]

fig = go.Figure(
    go.Treemap(labels=[
        "Eve", "Cain", "Seth", "Enos", "Noam", "Abel", "Awan", "Enoch", "Azura"
    ],
               parents=[
                   "", "Eve", "Eve", "Seth", "Seth", "Eve", "Eve", "Awan",
                   "Eve"
               ],
               marker_colors=marker_colors))

fig.show()
Exemplo n.º 21
0
import plotly.graph_objects as go
import pandas as pd

#create a dataframe from the Business Capability Model as defined.
df = pd.read_csv('data/bcmL1L2L3.csv')
print(df)

#build a visual treemap of the business capability model via CSV
fig = go.Figure(go.Treemap(
        ids = df.ids,
        labels = df.labels,
        parents = df.parents,
        marker_colorscale = 'Blues'))
        # marker_colors = ["pink", "royalblue", "lightgray", "purple", "cyan", "lightgray", "lightblue"]))

#fig.write_html("bcm.html")

fig.update_layout(margin = dict(t=50, l=25, r=25, b=25))

fig.show()
Exemplo n.º 22
0
# ~ TOOLTIPS = [
# ~ ("Jahr", "@year"),
# ~ ("CO2 (tausend Tonnen)", "@CO2{0.00}"),
# ~ ("Prozent von 1990", "@percentage{0.0%}"),
# ~ ("Typ", "@type"),
# ~ ]

# TODO visualise modules

fig_modules = go.Figure(
    go.Treemap(
        branchvalues="total",
        labels=[
            "Wärme", "Strom", "Verkehr", "W1", "W2", "S1", "S2", "V1", "V2"
        ],
        parents=[
            "", "", "", "Wärme", "Wärme", "Strom", "Strom", "Verkehr",
            "Verkehr"
        ],
        values=[780, 690, 484, 700, 80, 600, 90, 400, 84],
        marker_colors=[
            "green", "yellow", "red", "green", "green", "red", "green", "red",
            "red"
        ],
        textinfo="label+value+percent parent+percent entry+percent root",
    ))

# ~ fig_modules.write_html('hugo/layouts/shortcodes/modules_' + city + '.html', include_plotlyjs = False,
# ~ config={'displayModeBar': False}, full_html = False, auto_open=True)
Exemplo n.º 23
0
                                        text=top_labels[i],
                                        font=dict(family='Arial', size=14,
                                                  color='rgb(67, 67, 67)'),
                                        showarrow=False))
            space += xd[i]

fig.update_layout(
    title="Age ratio distribution by gender",
    annotations=annotations)

fig.show()
y = dist.Country.value_counts()

fig = go.Figure(go.Treemap(
    labels = y.index,
    parents = ['World'] * len(y),
    values = y
))

fig.update_layout(title = '# of Survey Participants')
fig.show()
dist_ratio = dist.groupby('Country')['Gender'].value_counts().unstack().fillna(0)
dist_ratio['Female/Male'] = dist_ratio['Female'] / dist_ratio['Male']

print('Average female / male ratio')
print(sum(dist_ratio['Female']) / sum(dist_ratio['Male']))
dist_ratio['Country'] = dist_ratio.index
fig = px.choropleth(dist_ratio, locations='Country',
                    locationmode='country names',
                    color="Female/Male",
                    color_continuous_scale=[[0.0, "rgb(165,0,38)"],
Exemplo n.º 24
0
for i in fields:
    info['Summary'] = info['Summary'] + i + ': ' + info[i].astype(str) + '<br><br>'

args = dict(data_frame=info, values='Number of studies',
            color='Number of studies', hover_data='',
            path=['Focus', 'Tissue condition', 'Human/animal', 'Condition', 'Study'],
            color_continuous_scale='Viridis')
args = px._core.build_dataframe(args, go.Treemap)
treemap_df = px._core.process_dataframe_hierarchy(args)['data_frame']

fig2 = go.Figure(go.Treemap(
        ids=treemap_df['id'].tolist(),
        labels=treemap_df['labels'].tolist(),
        parents=treemap_df['parent'].tolist(),
        values=treemap_df['Number of studies'].tolist(),
        branchvalues='total',
        text=info['Summary'],
        hoverinfo='label',
        textfont=dict(
            size=15,
        )
    )
)

fig2 = fig2.update_layout(
    autosize=False,
    width=680,
    height=600,
    margin=dict(
        l=0,
        r=0,
        t=0,
Exemplo n.º 25
0
]

df = pd.DataFrame(
    dict(States=States, Confirmed=Confirm, Deaths_Value=Deaths_value))
df["States_in_US"] = "States_in_US"
df["Deaths"] = "Deaths"

df["Active_Value"] = df["Active"] = df["Confirmed"] - df["Deaths_Value"]
df["Active"] = "Active"
df.head(60)

fig3 = go.Figure()
fig3.add_trace(
    go.Treemap(ids=df["Confirmed"],
               labels=df["States"],
               parents=df["Active"],
               values=df["Active_Value"],
               textinfo='label+value',
               domain=dict(column=0)))

fig3.add_trace(
    go.Treemap(
        ids=df["Confirmed"],
        labels=df["States"],
        parents=df["Deaths"],
        values=df["Deaths_Value"],
        textinfo='label+value',
        domain=dict(column=1),
    ))

fig3.update_layout(
    grid=dict(columns=2, rows=1),
Exemplo n.º 26
0
    rgbPallete = []
    for counter in range(len(pallete)):
        r = pallete[counter][0]
        g = pallete[counter][1]
        b = pallete[counter][2]
        color = "rgb({},{},{})".format(r, g, b)
        rgbPallete.append(color)

    fig = go.Figure()
    fig.add_trace(
        go.Treemap(
            labels=df_all_trees['id'],
            parents=df_all_trees['parent'],
            values=df_all_trees['value'],
            branchvalues='total',
            name="",
            marker=dict(colors=df_all_trees['color'],
                        colorscale=rgbPallete,
                        cmid=average_score),
            hovertemplate=
            '<b>%{label} </b> <br> Número de drones: %{value}<br> Porcentagem do total: %{color:.2f}',
            maxdepth=2))

    fig.update_layout(margin=dict(t=15, b=15, r=15, l=15), autosize=True)

    plotly.io.write_html(
        fig,
        file="./../website/webviews/treemap-proprietarios.html",
        full_html=False,
        default_height="80%")
Exemplo n.º 27
0
            color='R^2',
            hover_data='',
            path=['Measure', 'Study'],
            color_continuous_scale='Viridis')
args = px._core.build_dataframe(args, go.Treemap)
treemap_df = px._core.process_dataframe_hierarchy(args)['data_frame']

fig4 = go.Figure(
    go.Treemap(ids=treemap_df['id'].tolist(),
               labels=treemap_df['labels'].tolist(),
               parents=treemap_df['parent'].tolist(),
               values=treemap_df['Sample points'].tolist(),
               branchvalues='total',
               text='R<sup>2</sup>: ' + filtered_df['R^2'].astype(str) +
               '<br>' + filtered_df['Details'],
               hovertext=filtered_df['Study'] + '<br>R<sup>2</sup>: ' +
               filtered_df['R^2'].astype(str) + '<br>Number of samples: ' +
               filtered_df['Sample points'].astype(str),
               hoverinfo='text',
               textfont=dict(size=15, ),
               marker=dict(colors=filtered_df['R^2'],
                           colorscale='Viridis',
                           colorbar=dict(title='R<sup>2</sup>'),
                           showscale=True)))

fig4 = fig4.update_layout(
    title=dict(text="Figure 4 - R<sup>2</sup> values across studies"),
    autosize=False,
    width=650,
    height=600,
    margin=dict(l=0))
Exemplo n.º 28
0
def get(token: str, file_id: int):
    def log(*args):
        print(f'[{token[:4]}]', *args)

    client = putiopy.Client(token)
    files: Dict[int, File] = {}
    processed = 0
    try:
        root = client.File.get(file_id)
    except putiopy.ClientError as e:
        if e.response.status_code == 401 and file_id == 0:
            raise ExpiredToken
        raise

    total_size = root.size
    log("total size of file(%d): %d gb" % (file_id, total_size // 2**30))

    def append_children_recursive(putio_file, total_sizes: Queue,
                                  level: int) -> None:
        nonlocal processed
        children = list_children(putio_file.id, client)
        threads = []
        children_sizes: Queue[int] = Queue()
        for child in children:
            if child.folder_type == 'SHARED_ROOT':
                continue

            if (level < MAX_LEVEL
                    and child.content_type == 'application/x-directory'):
                t = threading.Thread(target=append_children_recursive,
                                     args=(child, children_sizes, level + 1))
                t.start()
                threads.append(t)
            else:
                children_sizes.put(child.size)
                files[child.id] = File(child, child.size)
                processed += child.size
                log("processed %d of %d gb" %
                    (processed // 2**30, total_size // 2**30))

        for t in threads:
            t.join()

        children_size = 0
        while True:
            try:
                children_size += children_sizes.get_nowait()
            except Empty:
                break

        dir_size = putio_file.size
        if children_size > dir_size:
            dir_size = children_size

        total_sizes.put(dir_size)
        files[putio_file.id] = File(putio_file, dir_size)

    start = time.time()
    append_children_recursive(root, Queue(), level=1)
    end = time.time()
    log('file tree traversed in %s seconds' % (end - start))

    ids = []
    labels = []
    values = []
    parents = []

    for id, file in files.items():
        ids.append(file.id)
        labels.append(file.name)
        values.append(file.size)
        try:
            parents.append(files[file.parent_id].id)
        except KeyError:
            parents.append('')

    fig = go.Figure(
        go.Treemap(
            ids=ids,
            labels=labels,
            values=values,
            parents=parents,
            branchvalues='total',
            texttemplate='%{label}',
            hovertemplate='%{label}<br>%{value:.2s}<extra></extra>',
        ))
    return fig.to_html(include_plotlyjs='cdn')
Exemplo n.º 29
0
def visualize_plotly(acts, title=None, treemap=True, sunburst=True):
    # @warn this is not async, and it takes rather long to complete
    ##
    out_links = []
    out_files = []
    if timedelta_total_seconds(acts.total_duration) == 0:
        return out_links, out_files

    all_acts = get_acts(acts)
    acts_agg = all_acts[0]
    # print(acts_agg)

    ids = [act.name for act in all_acts]
    labels = [
        f"{act.shortname} {(timedelta_total_seconds(act.total_duration)*100/timedelta_total_seconds(acts_agg.total_duration)):.1f}%"
        for act in all_acts
    ]
    texts = [timedelta_str(act.total_duration) for act in all_acts]
    ##
    parents = [(act.parent and act.parent.name) or "" for act in all_acts]
    values = [(timedelta_total_seconds(act.total_duration) / (3600))
              for act in all_acts]
    # Do NOT round the values. Plotly expects them to sum correctly or something.

    ## Test out input values:
    # lim=19
    # labels = labels[:lim]
    # parents = parents[:lim]
    # values = values[:lim]

    # print(labels)
    # print(texts)
    # print(parents)
    # print(values)
    ##

    # https://plotly.com/python/treemaps/
    # https://plotly.com/python/reference/treemap/
    plot_opts = dict(
        branchvalues="total",
        ids=ids,
        labels=labels,
        parents=parents,
        values=values,
        text=texts,
        # %{value:.1f}
        texttemplate=
        "%{label}<br>%{text}<br>%{percentParent:.1%} of %{parent}<br>%{percentEntry:.1%} of %{entry}<br>%{percentRoot:.1%} of %{root}",
        # textinfo = "label+value+percent parent+percent entry+percent root",
        # %{currentPath}%{label}
        hovertemplate=
        "%{label}<br>%{text}<br>%{percentParent:.1%} of %{parent}<br>%{percentEntry:.1%} of %{entry}<br>%{percentRoot:.1%} of %{root}<extra>%{id}</extra>",
        # https://community.plotly.com/t/how-to-explicitly-set-colors-for-some-sectors-in-a-treemap/51162
        # color="day",
        # color_discrete_map={'(?)':'gold', 'Study':'green', 'wasted':'black'},
    )

    ## colors @unresolved https://community.plotly.com/t/how-to-explicitly-set-colors-for-some-sectors-in-a-treemap/51162
    def choose_color(i, act, parent_names=None, cmap=cmaps["alphabet"]):
        if parent_names == None:
            parent_names = act.name.split("_")

        longname = "_".join(parent_names)
        if longname in categories:
            return categories[longname]

        parent_names = parent_names[:-1]
        if len(parent_names) >= 1:
            return choose_color(i, act, parent_names)
        else:
            return cmap[abs(
                (hash(longname) % len(cmap))
            )]  # abs is redundant: Python modulo operator always return the remainder having the same sign as the divisor.

    cs = [choose_color(i, act) for i, act in enumerate(all_acts)]

    if treemap:
        fig = go.Figure(go.Treemap(**plot_opts))
        # fig.update_layout(margin = dict(t=0, l=0, r=0, b=0))
        fig.update_layout(margin=dict(t=30, l=0, r=30, b=30))
        # fig.update_layout(uniformtext=dict(minsize=6, mode='hide'))
        fig.update_traces(marker_colors=cs)
        fig.update_traces(marker_depthfade=True)
        if title:
            fig.update_layout(title_text=title)
            fig.update_layout(title_font_size=11)
            # fig.update_layout(title_x=0.1)

        is_local and fig.show()
        l, f = fig_export(fig,
                          "treemap",
                          width=400,
                          height=400,
                          svg_export=False,
                          pdf_export=False)
        out_links += l  # is list
        out_files += f

    ##
    if sunburst:
        # @unresolved https://community.plotly.com/t/show-the-current-path-bar-in-sunburst-plots-just-like-treemap-plots/51155
        plot_opts["labels"] = [act.shortname for act in all_acts]
        plot_opts["texttemplate"] = "%{label}<br>%{text}, %{percentRoot:%}"
        fig = go.Figure(go.Sunburst(**plot_opts))
        fig.update_layout(margin=dict(t=0, l=0, r=0, b=0))
        # fig.update_layout(uniformtext=dict(minsize=6, mode='hide'))

        fig.update_traces(marker_colors=cs)
        if title:
            fig.update_layout(title_text=title)
            fig.update_layout(title_font_size=11)
            fig.update_layout(title_y=0.99)

        is_local and fig.show()
        l, f = fig_export(fig,
                          "sunburst",
                          width=400,
                          height=400,
                          svg_export=False,
                          pdf_export=False)
        out_links += l  # is list
        out_files += f

    return out_links, out_files
Exemplo n.º 30
0
import plotly.graph_objects as go
import plotly.offline as py
#values = ["12", "12", "13", "14", "15", "20", "30"]parents = ["", "Lung cancer", "Colorectal cancer", "Non-melanoma skin cancer", "prostate cancer ", "breast cancer", "", "the leading cause of cancer deaths", "Second most common cause of Cancer deaths"]
import plotly.graph_objects as go
import plotly.io as pio

labels = ["Lung cancer", "Colorectal cancer", "Non-melanoma skin cancer", "Prostate cancer", "Breast cancer"]
parents = ["", "Lung cancer", "Colorectal cancer", "Non-melanoma skin cancer", "Prostate cancer", "Breast cancer"]
values = ["2749", "1900", "10000", "3665", "3100"]

fig = go.Figure(go.Treemap(
    labels = labels,
    parents = parents,
    values = values,
    marker_colors = ["beige", "royalblue", "black", "lightblue", "pink", "lightgray", "pink"]
))

fig.show()
py.iplot(fig)
py.plot(fig, filename='tre.html')
pio.write_html(fig, file= 'index.html', auto_open=True)