Exemplo n.º 1
0
def analysis_tree_all_reweighed(graph, cuts, snodes, **kwargs):
    cutnodes = []
    for cut_name, cut in cuts:
        lepton = cut_name.split("_")[0]

        cutnode = tree.CutNode(cut, graph, cut_name, snodes, [],
            filter_funcs=[
                lambda x,lepton=lepton: tree.is_samp(x, lepton)
        ])
        cutnodes.append(
            cutnode
        )

        #an extra QCD cleaning cut on top of the previous cut, which is only done in antiiso
        for syst in ["nominal", "up", "down"]:
            cn = tree.CutNode(
                Cuts.antiiso(lepton, syst) * Cuts.deltaR_QCD(),
                graph, "antiiso_%s" % syst, [cutnode], [],
                filter_funcs=[
                    lambda p: tree.is_samp(p, "antiiso")
                ]
            )
            cutnodes.append(
                cn
            )

    from histo_descs import create_plots
    create_plots(graph, cutnodes, **kwargs)
Exemplo n.º 2
0
def data_mc_plot(samples, plot_def, name, lepton_channel, lumi, weight, physics_processes, use_antiiso=False):

    logger.info('Plot in progress %s' % name)

    merge_cmds = PhysicsProcess.get_merge_dict(physics_processes) #The actual merge dictionary

    var = plot_def['var']

    #Id var is a list/tuple, assume
    if not isinstance(var, basestring):
        try:
            if lepton_channel == 'ele':
                var = var[0]
            elif lepton_channel == 'mu':
                var = var[1]
        except Exception as e:
            logger.error("Plot variable 'var' specification incorrect for multi-variable plot: %s" % str(var))
            raise e
    cut = None
    if lepton_channel == 'ele':
        cut = plot_def['elecut']
    elif lepton_channel == 'mu':
        cut = plot_def['mucut']

    cut_str = str(cut)

    plot_range = plot_def['range']

    do_norm = False
    if 'normalize' in plot_def.keys() and plot_def['normalize']:
        do_norm = True
    hists_mc = dict()
    hists_data = dict()
    for name, sample in samples.items():
        logger.debug("Starting to plot %s" % name)
        if sample.isMC:
            hist = sample.drawHistogram(var, cut_str, weight=str(weight), plot_range=plot_range)
            hist.Scale(sample.lumiScaleFactor(lumi))
            hists_mc[sample.name] = hist
            if do_norm:
                Styling.mc_style_nostack(hists_mc[sample.name], sample.name)
            else:
                Styling.mc_style(hists_mc[sample.name], sample.name)

            if "fitpars" in plot_def.keys():
                rescale_to_fit(sample.name, hist, plot_def["fitpars"][lepton_channel])
        elif "antiiso" in name and plot_def['estQcd'] and not use_antiiso:

            # Make loose template
            #Y U NO LOOP :) -JP
            region = '2j1t'
            if '2j0t' in plot_def['estQcd']: region='2j0t'
            if '3j0t' in plot_def['estQcd']: region='3j0t'
            if '3j1t' in plot_def['estQcd']: region='3j1t'
            if '3j2t' in plot_def['estQcd']: region='3j2t'

            qcd_extra_cut = Cuts.deltaR(0.3)*Cuts.antiiso(lepton_channel)

            #Take the loose template with a good shape from the N-jet, M-tag, post lepton selection region with high statistics
            qcd_loose_cut = cutlist[region]*cutlist['presel_'+lepton_channel]*qcd_extra_cut

            #Take the template which can be correctly normalized from the actual region with inverted isolation cuts
            qcd_cut = cut*qcd_extra_cut

            hist_qcd_loose = sample.drawHistogram(var, str(qcd_loose_cut), weight="1.0", plot_range=plot_range)
            hist_qcd = sample.drawHistogram(var, str(qcd_cut), weight="1.0", plot_range=plot_range)
            logger.debug("Using the QCD scale factor %s: %.2f" % (plot_def['estQcd'], qcdScale[lepton_channel][plot_def['estQcd']]))
            

            hist_qcd.Scale(qcdScale[lepton_channel][plot_def['estQcd']])
            hist_qcd_loose.Scale(hist_qcd.Integral()/hist_qcd_loose.Integral())
            if var=='cos_theta':
                hist_qcd=hist_qcd_loose
            sampn = "QCD"+sample.name

            #Rescale the QCD histogram to the eta_lj fit
            if "fitpars" in plot_def.keys():
                rescale_to_fit(sampn, hist_qcd, plot_def["fitpars"][lepton_channel])

            hists_mc[sampn] = hist_qcd
            hists_mc[sampn].SetTitle('QCD')
            if do_norm:
                Styling.mc_style_nostack(hists_mc[sampn], 'QCD')
            else:
                Styling.mc_style(hists_mc[sampn], 'QCD')

        #Real ordinary data in the isolated region
        elif not "antiiso" in name or use_antiiso:
            hist_data = sample.drawHistogram(var, cut_str, weight="1.0", plot_range=plot_range)
            hist_data.SetTitle('Data')
            Styling.data_style(hist_data)
            hists_data[name] = hist_data


    if len(hists_data.values())==0:
        raise Exception("Couldn't draw the data histogram")

    #Combine the subsamples to physical processes
    hist_data = sum(hists_data.values())
    merge_cmds['QCD']=["QCD"+merge_cmds['data'][0]]
    order=['QCD']+PhysicsProcess.desired_plot_order
    if plot_def['log']:
        order = PhysicsProcess.desired_plot_order_log+['QCD']
    merged_hists = merge_hists(hists_mc, merge_cmds, order=order)

    if hist_data.Integral()<=0:
        logger.error(hists_data)
        logger.error("hist_data.entries = %d" % hist_data.GetEntries())
        logger.error("hist_data.integral = %d" % hist_data.Integral())
        raise Exception("Histogram for data was empty. Something went wrong, please check.")

    if do_norm:
        for k,v in merged_hists.items():
            v.Scale(1./v.Integral())
        hist_data.Scale(1./hist_data.Integral())

    htot = sum(merged_hists.values())

    chi2 = hist_data.Chi2Test(htot, "UW CHI2/NDF")
    if chi2>20:#FIXME: uglyness
        logger.error("The chi2 between data and MC is large (%s, chi2=%.2f). You may have errors with your samples!" %
            (name, chi2)
        )
        logger.info("MC  : %s" % " ".join(map(lambda x: "%.1f" % x, list(htot.y()))))
        logger.info("DATA: %s" % " ".join(map(lambda x: "%.1f" % x, list(hist_data.y()))))
        logger.info("diff: %s" % str(
            " ".join(map(lambda x: "%.1f" % x, numpy.abs(numpy.array(list(htot.y())) - numpy.array(list(hist_data.y())))))
        ))

    merged_hists_l = merged_hists.values()

    PhysicsProcess.name_histograms(physics_processes, merged_hists)

    leg_style = ['p','f']
    if do_norm:
        leg_style=['p','l']
    leg = legend([hist_data] + list(reversed(merged_hists_l)), legend_pos=plot_def['labloc'], styles=leg_style)

    canv = ROOT.TCanvas()

    #Make the stacks
    stacks_d = OrderedDict()
    stacks_d["mc"] = merged_hists_l
    stacks_d["data"] = [hist_data]

    #label
    xlab = plot_def['xlab']
    if not isinstance(xlab, basestring):
        if lepton_channel == 'ele':
            xlab = xlab[0]
        else:
            xlab = xlab[1]
    ylab = 'N / '+str((1.*(plot_range[2]-plot_range[1])/plot_range[0]))
    if plot_def['gev']:
        ylab+=' GeV'
    fact = 1.5
    if plot_def['log']:
        fact = 10

    plow=0.3
    if do_norm:
        plow=0

    #Make a separate pad for the stack plot
    p1 = ROOT.TPad("p1", "p1", 0, plow, 1, 1)
    p1.Draw()
    p1.SetTicks(1, 1);
    p1.SetGrid();
    p1.SetFillStyle(0);
    p1.cd()

    stacks = plot_hists_stacked(p1, stacks_d, x_label=xlab, y_label=ylab, max_bin_mult = fact, do_log_y = plot_def['log'], stack = (not do_norm))

    #Put the the lumi box where the legend is not
    boxloc = 'top-right'
    if plot_def['labloc'] == 'top-right':
        boxloc = 'top-left'
    chan = 'Electron'
    if lepton_channel == "mu":
        chan = 'Muon'

    additional_comments = ""
    if 'cutname' in plot_def.keys():
        additional_comments += ", " + plot_def['cutname'][lepton_channel]
    lbox = lumi_textbox(lumi,
        boxloc,
        'preliminary',
        chan + ' channel' + additional_comments
    )

    #Draw everything
    lbox.Draw()
    leg.Draw()
    canv.Draw()

    #Keep the handles just in case
    canv.PAD1 = p1
    canv.STACKS = stacks
    canv.LEGEND = legend
    canv.LUMIBOX = lbox

    return canv, merged_hists, htot, hist_data
Exemplo n.º 3
0
        isos[lep] = dict()
        isos[lep]['iso'] = CutNode(
            Cut("1.0"), #At present no special cuts have to be applied on the ISO region
            graph, lep + "__iso", par, [],
            filter_funcs=[lambda x: "/iso/" in x[0].name]
        )
        isol.append(isos[lep]['iso'])

        #Antiiso with variations in the isolation cut
        for aiso_syst in ["nominal", "up", "down"]:
            #dR with variations
            for dr_syst in ["nominal", "up", "down"]:
                cn = 'antiiso_' + aiso_syst + '_dR_' + dr_syst
                isos[lep][cn] = CutNode(
                    #Apply any additional anti-iso cuts (like dR) along with antiiso variations.
                    Cuts.antiiso(lep, aiso_syst) * Cuts.deltaR_QCD(dr_syst),
                    graph, lep + "__" + cn, par, [],
                    filter_funcs=[
                        lambda x: is_samp(x, "antiiso") and is_samp(x, "data")
                    ]
                )
                isol.append(isos[lep][cn])

    # [iso, antiiso] --> jet --> [jets2-3]
    jet = Node(graph, "jet", isol, [])
    jets = dict()
    for i in [2,3]:
        jets[i] = CutNode(Cuts.n_jets(i), graph, "%dj"%i, [jet], [])

    tag = Node(graph, "tag", jet.children(), [])
    tags = dict()