Exemplo n.º 1
0
			hc.save(".")

	colls = dict()
	for wn, w in weights:
		hc = HistCollection.load("./bweight_%s.root" % wn)
		colls[wn] = hc


	for proc in merge_cmds.keys():
		hists = OrderedDict([(wn, colls[wn].hists[proc]) for wn, w in weights])
		for hn, h in hists.items():
			h.SetTitle(pretty_names_weights[hn])
		hists_normed = copy.deepcopy(hists)

		for hn, h in hists_normed.items():
			norm(h, setName=False)
			if hn!="unw":
				h.Divide(hists_normed["unw"])

		hists_normed["unw"].Divide(hists_normed["unw"])
		#hists_normed.pop("unw")

		c1 = plot_hists_dict(hists, False, **plot_args)
		c1.Update()
		c1.SaveAs("weighted_%s.pdf" % proc)


		c2 = plot_hists_dict(hists_normed, setNames=False, draw_cmd="HIST",
			min_bin=0.990, max_bin=1.01, legend_pos="top-left",
		**plot_args)
		c2.Update()
Exemplo n.º 2
0
 def normalize(hn, h):
     norm(h)
     return h
Exemplo n.º 3
0
def plot_ratios(cut_name, cut, samples, out_dir, recreate, flavour_scenario=flavour_scenarios[0]):
    out_dir += "/" + cut_name
    mkdir_p(out_dir)

    colls = dict()

    samples_WJets = filter(lambda x: sample_types.is_wjets(x.name), samples)

    for sc in flavour_scenario:
        logger.info("Drawing ratio with cut %s" % sc)
        cut_ = cut*getattr(Cuts, sc)
        colls[sc] = data_mc(costheta["var"], cut_name + "__" + sc, cut_, Weights.total()*Weights.mu, samples_WJets, out_dir, recreate, LUMI_TOTAL, plot_range=costheta["range"])

    logger.debug(colls[flavour_scenario[0]].hists["weight__nominal/cut__all/WJets_sherpa_nominal"].Integral())
    logger.debug(colls[flavour_scenario[1]].hists["weight__nominal/cut__all/WJets_sherpa_nominal"].Integral())
    coll = dict()
    for k, c in colls.items():
        for hn, h in c.hists.items():
            coll[hn + "/" + k] = h

    for k, h in coll.items():
        logger.debug("%s = %s" % (k, str([y for y in h.y()])))

    logger.debug(coll)
    #coll = HistCollection(coll, name=cut_name)

    merges = {}
    for sc in flavour_scenario:
        merges["madgraph/%s" % sc] = ["weight__nominal/cut__all/W[1-4]Jets_exclusive/%s" % sc]
        merges["sherpa/unweighted/%s" % sc] = ["weight__nominal/cut__all/WJets_sherpa_nominal/%s" % sc]
        merges["sherpa/weighted/%s" % sc] = ["weight__sherpa_flavour/cut__all/WJets_sherpa_nominal/%s" % sc]

    merged = merge_hists(coll, merges)
    for k, h in merged.items():
        logger.debug("%s = %s" % (k, str([y for y in h.y()])))
    hists_flavour = dict()
    hists_flavour["madgraph"] = ROOT.TH1F("madgraph", "madgraph", len(flavour_scenario), 0, len(flavour_scenario)-1)
    hists_flavour["sherpa/unweighted"] = ROOT.TH1F("sherpa_unw", "sherpa unweighted", len(flavour_scenario), 0, len(flavour_scenario)-1)
    hists_flavour["sherpa/weighted"] = ROOT.TH1F("sherpa_rew", "sherpa weighted", len(flavour_scenario), 0, len(flavour_scenario)-1)

    for i, sc in zip(range(1,len(flavour_scenario)+1), flavour_scenario):
        sh1_int, sh1_err = calc_int_err(merged["sherpa/unweighted/%s" % sc])
        sh2_int, sh2_err = calc_int_err(merged["sherpa/weighted/%s" % sc])
        mg_int, mg_err = calc_int_err(merged["madgraph/%s" % sc])
        logger.debug("%.2f %.2f" % (sh1_int, sh1_err))
        logger.debug("%.2f %.2f" % (sh2_int, sh2_err))
        logger.debug("%.2f %.2f" % (mg_int, mg_err))
        hists_flavour["madgraph"].SetBinContent(i, mg_int)
        hists_flavour["madgraph"].SetBinError(i, mg_err)
        hists_flavour["sherpa/unweighted"].SetBinContent(i, sh1_int)
        hists_flavour["sherpa/unweighted"].SetBinError(i, sh1_err)
        hists_flavour["sherpa/weighted"].SetBinContent(i, sh2_int)
        hists_flavour["sherpa/weighted"].SetBinError(i, sh2_err)

        hists_flavour["madgraph"].GetXaxis().SetBinLabel(i, sc)
        hists_flavour["sherpa/unweighted"].GetXaxis().SetBinLabel(i, sc)
        hists_flavour["sherpa/weighted"].GetXaxis().SetBinLabel(i, sc)

    hists_flavour["sherpa/weighted"].Sumw2()
    hists_flavour["sherpa/unweighted"].Sumw2()
    hists_flavour["madgraph"].Sumw2()

    hists_flavour["ratio/unweighted"] = hists_flavour["madgraph"].Clone("ratio_unw")
    hists_flavour["ratio/unweighted"].Divide(hists_flavour["sherpa/unweighted"])
    hists_flavour["ratio/weighted"] = hists_flavour["madgraph"].Clone("ratio_rew")
    hists_flavour["ratio/weighted"].Divide(hists_flavour["sherpa/weighted"])

    for i, sc in zip(range(1,len(flavour_scenario)+1), flavour_scenario):
        logger.info("weights[%s] = %.6f; //error=%.6f [%d]" % (sc, hists_flavour["ratio/unweighted"].GetBinContent(i), hists_flavour["ratio/unweighted"].GetBinError(i), i))

    flavour_ratio_coll = HistCollection(hists_flavour, name="hists__flavour_ratios")
    flavour_ratio_coll.save(out_dir)

    for sc in flavour_scenario:
        hists = [merged["madgraph/%s" % sc], merged["sherpa/unweighted/%s" % sc], merged["sherpa/weighted/%s" % sc]]
        for hist in hists:
            norm(hist)
            #hist.SetName(sc)
            #hist.SetTitle(sc)
        ColorStyleGen.style_hists(hists)
        canv = plot_hists(hists, x_label=costheta["varname"])
        leg = legend(hists, styles=["f", "f"], nudge_x=-0.2)
        chi2 = hists[0].Chi2Test(hists[1], "WW CHI2/NDF")
        hists[0].SetTitle("madgraph to sherpa comparison #chi^{2}/ndf=%.2f" % chi2)
        canv.Update()
        canv.SaveAs(out_dir + "/flavours__%s.png" % (sc))

    md_merged = dict()
    for sc in flavour_scenario:
        logger.info("Calculating ratio for %s" % sc)
        hi = merged["sherpa/unweighted/%s" % sc].Clone("ratio__%s" % sc)
        hi.Divide(merged["madgraph/%s" % sc])
        merged[hi.GetName()] = hi

    hc_merged = HistCollection(merged, md_merged, "hists__costheta_flavours_merged")
    hc_merged.save(out_dir)
    logger.info("Saved merged histogram collection")