Exemplo n.º 1
0
Arquivo: eff.py Projeto: yiiyama/MonoX
    canvas.lumi = sum(sample.lumi for sample in allsamples.getmany(snames))

    for tname, (_, _, title, variables) in confs[oname].items():
        if len(omname) > 2 and tname != omname[2]:
            continue

        print ' ', tname

        trigDir = source.GetDirectory(tname)

        for vname, (vtitle, _, _, binning) in variables.items():
            print '   ', vname

            eff = trigDir.Get(vname + '_eff')

            canvas.Clear()
            canvas.SetGrid()

            canvas.legend.Clear()
            if title:
                canvas.legend.add('eff',
                                  title=title,
                                  opt='LP',
                                  color=ROOT.kBlack,
                                  mstyle=8)
                canvas.legend.apply('eff', eff)
            else:
                eff.SetMarkerColor(ROOT.kBlack)
                eff.SetMarkerStyle(8)

            canvas.addHistogram(eff, drawOpt='EP', clone=False)
Exemplo n.º 2
0
    if name == 'ht':
        monophHt = monophDist

    # znng efficiency
    monophEff = eff.Clone('monoph_' + eff.GetName())
    effCanvas.legend.apply('monoph', monophEff)
    mcMonoph.Draw(
        'electrons.size == 0 && muons.size == 0:' + expr + '>>' +
        monophEff.GetName(), weight, 'prof goff')

    # print plots
    distCanvas.addHistogram(dataDist, drawOpt='HIST')
    distCanvas.addHistogram(mumugDist, drawOpt='HIST')
    distCanvas.addHistogram(monophDist, drawOpt='HIST')
    distCanvas.printWeb('veto_eff', 'dist_' + name)
    distCanvas.Clear()

    effCanvas.addHistogram(dataEff, drawOpt='EP')
    effCanvas.addHistogram(mumugEff, drawOpt='EP')
    if name == 'incl':
        effCanvas.addHistogram(datajetEff, drawOpt='EP')
        effCanvas.addHistogram(mumugjetEff, drawOpt='EP')
    effCanvas.addHistogram(monophEff, drawOpt='EP')
    effCanvas.addHistogram(sf, drawOpt='P')
    effCanvas.printWeb('veto_eff', 'eff_' + name, logy=False)
    effCanvas.Clear()
    effCanvas.SetGrid(True)

    # save histograms
    outputFile.cd()
Exemplo n.º 3
0
        for iX in range(hnominal.GetNbinsX() + 2):
            if ROOT.TMath.IsNaN(hnominal.GetBinContent(iX)) or ROOT.TMath.IsNaN(hnominal.GetBinError(iX)):
                print hnominal.GetName(), 'cannot be plotted because it contains NaN'
                plot = False
                break

            if huncert and (ROOT.TMath.IsNaN(huncert.GetBinContent(iX)) or ROOT.TMath.IsNaN(huncert.GetBinError(iX))):
                print huncert.GetName(), 'cannot be plotted because it contains NaN'
                plot = False
                break

        if not plot:
            continue
    
        canvas1.legend.apply('stat', hnominal)
    
        if huncert:
            canvas1.Clear()
            canvas1.legend.apply('total', huncert)
   
            canvas1.addHistogram(huncert, drawOpt = 'E2')
            canvas1.addHistogram(hnominal, drawOpt = 'EP')
            canvas1.printWeb(plotDir, hnominal.GetName(), logy = not proc.startswith('tf_'))
        else:
            canvas2.Clear()
            canvas2.addHistogram(hnominal, drawOpt = 'EP')
            canvas2.printWeb(plotDir, hnominal.GetName(), logy = not proc.startswith('tf_'))

rcanvas = RatioCanvas(name = 'datamc', lumi = 36400)
rcanvas.legend.setPosition(0.7, 0.7, 0.9, 0.9)
Exemplo n.º 4
0
                logy=False)

for iBin, (bin, _) in enumerate(fitBins):
    if dataType == 'mc':
        print '%15s [%.3f +- %.3f (stat.) +- %.3f (syst.)] x 10^{-2} (mc %.3f)' % (
            bin, result.GetBinContent(iBin + 1) * 100., staterrs[iBin] * 100.,
            systerrs[iBin] * 100., trueResult.GetBinContent(iBin + 1) * 100.)
    else:
        print '%15s [%.3f +- %.3f (stat.) +- %.3f (syst.)] x 10^{-2}' % (
            bin, result.GetBinContent(iBin + 1) * 100., staterrs[iBin] * 100.,
            systerrs[iBin] * 100.)

if uncSource:
    for conf in meas:
        for bin, _ in fitBins:
            canvas.Clear(full=True)
            canvas.ylimits = (0., 0.1)
            canvas.xtitle = '(N_{Z}^{toy}-N_{Z}^{orig})/N_{Z}^{orig}'

            canvas.legend.setPosition(0.7, 0.7, 0.9, 0.9)
            canvas.legend.add('toys',
                              title='Toys',
                              opt='LF',
                              color=ROOT.kBlue - 7,
                              lwidth=2,
                              fstyle=3003)

            for ip in range(nomparams.numEntries()):
                nompset = nomparams.get(ip)
                if nompset.find('tpconf').getLabel() == conf and nompset.find(
                        'binName').getLabel() == bin:
Exemplo n.º 5
0
    dataHist.GetXaxis().SetTitle('#Delta#phi(#gamma, E_{T}^{miss})')
    dataHist.GetYaxis().SetTitle(
        '(E_{55}^{#gamma} - E_{T}^{#gamma}) / E_{T}^{miss}')
    dataHist.Sumw2()
    dataTree.Draw(
        yString + ":" + xString + ">>" + sample,
        '(photons.pt[0] > 175. && t1Met.minJetDPhi > 0.5 && t1Met.met > 170.)',
        'goff')

    ColorGrad()
    canvas.addHistogram(dataHist, drawOpt='COLZ TEXT')
    canvas.printWeb('monophoton/phoMet',
                    'DiffVsPhi' + '_' + sample,
                    logy=False)

    canvas.Clear(xmax=0.90)

dataTree = ROOT.TChain('events')
dataTree.Add('/scratch5/ballen/hist/monophoton/skim/sph-d*_monoph.root')

xString = "photons.eta[0]"
yString = "photons.phi[0]"

dataHist = ROOT.TH2D("lego", "", 30, -1.5, 1.5, 30, -math.pi, math.pi)
dataHist.GetXaxis().SetTitle('#eta')
dataHist.GetYaxis().SetTitle('#phi')
dataHist.Sumw2()
dataTree.Draw(
    yString + ":" + xString + ">>lego",
    'photons.pt[0] > 175. && t1Met.minJetDPhi > 0.5 && t1Met.met > 170. && t1Met.photonDPhi < 2.',
    'goff')