Exemplo n.º 1
0
                                    m=m,
                                    n=n)
    print(eigenfaceModel)

    y_predict = zeros(len(y_test))
    for i, X_i in enumerate(X_test):
        y_predict[i] = eigenfaceModel.noFitTest(X_i, 1)

    from sklearn.metrics import classification_report

    print(
        classification_report(y_test,
                              y_predict,
                              target_names=faces95_own_classes))
    if doPlot:
        plotConfusionMatrix(y_test, y_predict, labels=faces95_own_classes)

    # ---------------------- OTHER ALGORITHMS -----------------------------
    from sklearn.neural_network import MLPClassifier
    X_train_pca = eigenfaceModel.exportTrainPca()

    X_test_pca = []

    for X_i in X_test:
        X_test_pca.append(eigenfaceModel.projectOntoFacespace(X_i))

    X_test_pca = array(X_test_pca)
    # train a neural network
    print("Fitting the classifier to the training set")
    clf = MLPClassifier(hidden_layer_sizes=(
        1024,
Exemplo n.º 2
0
    w_predict = zeros(len(y_test))  # Array to fill with predictions
    epsilons = zeros(len(y_test))

    for i, X_i in enumerate(X_test):
        y_pred_i, min_err_i = eigenfaceModel._noFitTest(X_i)
        epsilons[i] = min_err_i

    # Method 1: Fixed threshold = 2000 (number deducted from the plots in EDA submodule)
    w_predict[epsilons <= 250] = 1

    print(
        classification_report(w_true,
                              w_predict,
                              target_names=['Known', 'Unknown']))

    plotConfusionMatrix(w_true, w_predict, labels=['Known', 'Unknown'])

    # Method 2: Threshold calculated as mean + 2sd from the test1 split taken from the known dataset
    sub_eps = epsilons[:len(y_test1)]
    threshold = np.mean(sub_eps) + 2 * np.std(
        sub_eps, ddof=1, dtype=np.float64)
    w_predict2 = zeros(len(y_test))
    w_predict2[epsilons <= threshold] = 1
    print(
        classification_report(w_true,
                              w_predict2,
                              target_names=['Known', 'Unknown']))
    plotConfusionMatrix(w_true, w_predict2, labels=['Known', 'Unknown'])

    # Method 3: Threshold calculated as mean + 3*sd from the test1 split taken from the known dataset
    sub_eps = epsilons[:len(y_test1)]
        #X_test  = X_test[y_test < output100_all_classes.index('io')]
        #y_test  = y_test[y_test < output100_all_classes.index('io')]

        eigenfaceModel = EigenfaceModel(X_train, y_train, nmin=2, nmax=150)
        print(eigenfaceModel)

        y_predict2 = zeros(len(y_test))
        for i, X_i in enumerate(X_test):
            y_predict2[i] = eigenfaceModel.noFitTest(X_i, 1)

        from sklearn.metrics import classification_report
        import matplotlib.pyplot as plt

        print(classification_report(y_test, y_predict2, target_names=labels))

        plotConfusionMatrix(y_test, y_predict2, labels=labels)

        # ---------------------- ANGLE ----------------------------------------

        y_predict = zeros(len(y_test))
        for i, X_i in enumerate(X_test):
            y_predict[i] = eigenfaceModel.angleTest(X_i, 1)

        from sklearn.metrics import classification_report
        import matplotlib.pyplot as plt

        print(classification_report(y_test, y_predict, target_names=labels))

        plotConfusionMatrix(y_test, y_predict, labels=labels)

        # ---------------------- OTHER ALGORITHMS -----------------------------
        eigenfaceModel = EigenfaceModel(X_train, y_train, nmin=2, nmax=150)
        print(eigenfaceModel)

        y_predict = zeros(len(y_test))
        for i, X_i in enumerate(X_test):
            y_predict[i] = eigenfaceModel.noFitTest(X_i, 1)

        from sklearn.metrics import classification_report
        import matplotlib.pyplot as plt

        print(
            classification_report(y_test,
                                  y_predict,
                                  target_names=output100strict_classes))

        plotConfusionMatrix(y_test, y_predict, labels=output100strict_classes)

        # ---------------------- ANGLE ----------------------------------------

        y_predict = zeros(len(y_test))
        for i, X_i in enumerate(X_test):
            y_predict[i] = eigenfaceModel.angleTest(X_i, 1)

        from sklearn.metrics import classification_report
        import matplotlib.pyplot as plt

        print(
            classification_report(y_test,
                                  y_predict,
                                  target_names=output100strict_classes))