Exemplo n.º 1
0
    def plate_detection(self):
        label_image = measure.label(self.binary_car_image)
        image_height, image_width = label_image.shape
        plate_dim = (0.05 * image_height, 0.2 * image_height,
                     0.15 * image_width, 0.6 * image_width)

        plotting.plot_car_image(self.car_image, self.fig, self.axis)

        self.lp_cands = []
        self.lp_cand_dimension = []
        for region in measure.regionprops(label_image):
            minRow, minCol, maxRow, maxCol = region.bbox
            (region_height, region_width) = (maxRow - minRow, maxCol - minCol)

            if (region.area < 50 or region_height < 0.2 * region_width):
                continue
            candidate = np.invert(self.binary_car_image[minRow:maxRow,
                                                        minCol:maxCol])
            if (region_height >= plate_dim[0] and region_height <= plate_dim[1]
                    and region_width >= plate_dim[2]
                    and region_width <= plate_dim[3]):

                if self.elimininate_candidate(candidate):
                    continue

                rectBorder = patches.Rectangle((minCol, minRow),
                                               maxCol - minCol,
                                               maxRow - minRow,
                                               edgecolor="red",
                                               linewidth=2,
                                               fill=False)
                self.lp_cands.append(candidate)
                self.lp_cand_dimension.append(
                    ((minRow, minCol), (maxRow - minRow, maxCol - minCol)))
                plotting.add_borders(rectBorder, self.fig, self.axis)
Exemplo n.º 2
0
    def character_segmentation(self):
        segmented_characters = []
        idx = 0
        for idx in range(len(self.lp_cands)):
            cand = self.lp_cands[idx]
            plotting.plot_car_image(cand, self.fig, self.axis1)
            char_dim = (0.30 * cand.shape[0], 0.90 * cand.shape[0],
                        0.02 * cand.shape[1], 0.1 * cand.shape[1])

            labelled_cand = measure.label(cand)
            cnt = 0
            border = []
            temp_chars = []
            for region in measure.regionprops(labelled_cand):
                minRow, minCol, maxRow, maxCol = region.bbox
                (region_height, region_width) = (maxRow - minRow,
                                                 maxCol - minCol)
                if (maxRow == self.lp_cand_dimension[idx][1][0]):
                    continue
                #print(region_height,region_width)
                if (region_height >= char_dim[0]
                        and region_height <= char_dim[1]
                        and region_width >= char_dim[2]
                        and region_width <= char_dim[3]):
                    rectBorder = patches.Rectangle((minCol, minRow),
                                                   maxCol - minCol,
                                                   maxRow - minRow,
                                                   edgecolor="red",
                                                   linewidth=2,
                                                   fill=False)
                    border.append(rectBorder)
                    temp_chars.append((minRow, maxRow, minCol, maxCol))
                    plotting.add_borders(rectBorder, self.fig, self.axis1)

            if (len(border) == 10):
                for borders in border:
                    plotting.add_borders(borders, self.fig, self.axis1)
                dim = self.lp_cand_dimension[idx]

                for val in temp_chars:
                    r1 = dim[0][0] + val[0]
                    r2 = dim[0][0] + val[1]
                    c1 = dim[0][1] + val[2]
                    c2 = dim[0][1] + val[3]
                    segmented_characters.append(
                        (val[2],
                         resize(np.invert(self.binary_car_image[r1:r2, c1:c2]),
                                (20, 20))))
        return segmented_characters