Exemplo n.º 1
0
def n_queens_sa(nq_problem,
                initial_state,
                max_iters=np.inf,
                num_runs=20,
                verbose=False):
    hp_name = 'schedule'
    hp_values = [mlrose.ArithDecay(), mlrose.GeomDecay(), mlrose.ExpDecay()]
    hp_values_strings = [
        val.get_info__()['schedule_type'] for val in hp_values
    ]

    # run for each hp value and append results to list

    fitness_dfs = []
    runs = np.arange(num_runs)

    for hp_value, hp_value_string in zip(hp_values, hp_values_strings):
        schedule = hp_value  # set varied HP at beginning of loop

        run_times = np.zeros(num_runs)
        fitness_data = pd.DataFrame()

        for run in runs:
            run_t0 = time()
            best_state, best_fitness, fitness_curve = mlrose.simulated_annealing(
                problem=nq_problem,
                schedule=schedule,
                max_attempts=10,
                max_iters=max_iters,
                curve=True,
            )
            run_time = time() - run_t0
            run_times[run] = run_time

            fitness_data = pd.concat(
                [fitness_data, pd.DataFrame(fitness_curve)],
                axis=1,
                sort=False)

        fitness_data.columns = runs
        fitness_data = fitness_data.fillna(method='ffill')
        fitness_dfs.append(fitness_data)

        # calculate and print avg time per run
        avg_run_time = np.average(run_times)
        print("N-Queens - SA avg run time,", hp_value_string, hp_name, ":",
              avg_run_time)

    # generate plots
    plot_title = "N-Queens SA: fitness vs. iterations"
    plotting.plot_fitness_curves(
        fitness_dfs=fitness_dfs,
        hp_values=hp_values_strings,
        hp_name=hp_name,
        title=plot_title,
    )
    plt.savefig('graphs/n_queens_sa_fitness.png')
    plt.clf()

    return fitness_dfs
Exemplo n.º 2
0
def n_queens_mimic(nq_problem, max_iters=np.inf, num_runs=20, verbose=False):
    # HP to vary
    hp_name = 'keep_pct'
    hp_values = [0.2, 0.4, 0.6]

    # other hyperparameters for genetic algorithm
    population_size = 200

    # run for each hp value and append results to list

    fitness_dfs = []
    runs = np.arange(num_runs)

    for hp_value in hp_values:
        keep_pct = hp_value  # set varied HP at beginning of loop

        run_times = np.zeros(num_runs)
        fitness_data = pd.DataFrame()

        for run in runs:
            run_t0 = time()
            best_state, best_fitness, fitness_curve = mlrose.mimic(
                problem=nq_problem,
                pop_size=population_size,
                keep_pct=keep_pct,
                max_attempts=10,
                max_iters=max_iters,
                curve=True,
            )
            run_time = time() - run_t0
            run_times[run] = run_time

            fitness_data = pd.concat(
                [fitness_data, pd.DataFrame(fitness_curve)],
                axis=1,
                sort=False)

        fitness_data.columns = runs
        fitness_data = fitness_data.fillna(method='ffill')
        fitness_dfs.append(fitness_data)

        # calculate and print avg time per run
        avg_run_time = np.average(run_times)
        print("N-Queens - MIMIC avg run time,", hp_value, hp_name, ":",
              avg_run_time)

    # generate plots
    plot_title = "N-Queens MIMIC - " \
        + str(population_size) + " pop, " \
        + ": fit vs iter"
    plotting.plot_fitness_curves(
        fitness_dfs=fitness_dfs,
        hp_values=hp_values,
        hp_name=hp_name,
        title=plot_title,
    )
    plt.savefig('graphs/n_queens_mimic_fitness.png')
    plt.clf()

    return fitness_dfs
Exemplo n.º 3
0
def n_queens_rhc(nq_problem,
                 initial_state,
                 max_iters=np.inf,
                 num_runs=20,
                 verbose=False):
    hp_name = 'restarts'
    hp_values = [10, 20, 30]

    # run for each hp value and append results to list

    fitness_dfs = []
    runs = np.arange(num_runs)

    for hp_value in hp_values:
        restarts = hp_value  # set varied HP at beginning of loop

        run_times = np.zeros(num_runs)
        fitness_data = pd.DataFrame()

        for run in runs:
            run_t0 = time()
            best_state, best_fitness, fitness_curve = mlrose.random_hill_climb(
                problem=nq_problem,
                restarts=restarts,
                max_attempts=10,
                max_iters=max_iters,
                init_state=initial_state,
                curve=True,
            )
            run_time = time() - run_t0
            run_times[run] = run_time

            fitness_data = pd.concat(
                [fitness_data, pd.DataFrame(fitness_curve)],
                axis=1,
                sort=False)

        fitness_data.columns = runs
        fitness_data = fitness_data.fillna(method='ffill')
        fitness_dfs.append(fitness_data)

        # calculate and print avg time per run
        avg_run_time = np.average(run_times)
        print("N-Queens - RHC avg run time,", hp_value, hp_name, ":",
              avg_run_time)

    # generate plots
    plot_title = "N-Queens RHC: fitness vs. iterations"
    plotting.plot_fitness_curves(
        fitness_dfs=fitness_dfs,
        hp_values=hp_values,
        hp_name=hp_name,
        title=plot_title,
    )
    plt.savefig('graphs/n_queens_rhc_fitness.png')
    plt.clf()

    return fitness_dfs
Exemplo n.º 4
0
def flip_flop_ga(ff_problem, max_iters=np.inf, num_runs=20, verbose=False):
    # HP to vary
    hp_name = 'pop_mate_pct'
    hp_values = [0.25, 0.50, 0.75]

    # other hyperparameters for genetic algorithm
    population_size = 200
    elite_dreg_ratio = 0.95
    mutation_prob = 0.1

    # run for each hp value and append results to list

    fitness_dfs = []
    runs = np.arange(num_runs)

    for hp_value in hp_values:
        pop_mate_pct = hp_value  # set varied HP at beginning of loop

        run_times = np.zeros(num_runs)
        fitness_data = pd.DataFrame()

        for run in runs:
            run_t0 = time()
            best_state, best_fitness, fitness_curve = mlrose.genetic_alg(
                problem=ff_problem,
                pop_size=population_size,
                pop_breed_percent=pop_mate_pct,
                elite_dreg_ratio=elite_dreg_ratio,
                mutation_prob=mutation_prob,
                max_attempts=10,
                max_iters=max_iters,
                curve=True,
            )
            run_time = time() - run_t0
            run_times[run] = run_time

            fitness_data = pd.concat(
                [fitness_data, pd.DataFrame(fitness_curve)],
                axis=1,
                sort=False)

        fitness_data.columns = runs
        fitness_data = fitness_data.fillna(method='ffill')
        fitness_dfs.append(fitness_data)

        # calculate and print avg time per run
        avg_run_time = np.average(run_times)
        print("Flip Flop - GA avg run time,", hp_value, hp_name, ":",
              avg_run_time)

    # generate plots
    plot_title = "Flip Flop GA - " \
        + str(population_size) + " pop, " \
        + str(mutation_prob) + " mut prob, " \
        + ": fit vs iter"
    plotting.plot_fitness_curves(
        fitness_dfs=fitness_dfs,
        hp_values=hp_values,
        hp_name=hp_name,
        title=plot_title,
    )
    plt.savefig('graphs/flip_flop_ga_fitness.png')
    plt.clf()

    return fitness_dfs