Exemplo n.º 1
0
def apply_token_replay(log, net, initial_marking, final_marking, parameters=None):
    """
    Calculates all metrics based on token-based replay and returns a unified dictionary

    Parameters
    -----------
    log
        Trace log
    net
        Petri net
    initial_marking
        Initial marking
    final_marking
        Final marking
    parameters
        Parameters

    Returns
    -----------
    dictionary
        Dictionary containing fitness, precision, generalization and simplicity; along with the average weight of
        these metrics
    """
    if parameters is None:
        parameters = {}
    activity_key = parameters[
        PARAM_ACTIVITY_KEY] if PARAM_ACTIVITY_KEY in parameters else log_lib.util.xes.DEFAULT_NAME_KEY
    fitness_weight = parameters[PARAM_FITNESS_WEIGHT] if PARAM_FITNESS_WEIGHT in parameters else 0.25
    precision_weight = parameters[PARAM_PRECISION_WEIGHT] if PARAM_PRECISION_WEIGHT in parameters else 0.25
    simplicity_weight = parameters[PARAM_SIMPLICITY_WEIGHT] if PARAM_SIMPLICITY_WEIGHT in parameters else 0.25
    generalization_weight = parameters[
        PARAM_GENERALIZATION_WEIGHT] if PARAM_GENERALIZATION_WEIGHT in parameters else 0.25

    sum_of_weights = (fitness_weight + precision_weight + simplicity_weight + generalization_weight)
    fitness_weight = fitness_weight / sum_of_weights
    precision_weight = precision_weight / sum_of_weights
    simplicity_weight = simplicity_weight / sum_of_weights
    generalization_weight = generalization_weight / sum_of_weights

    parameters_tr = {pmutil.constants.PARAMETER_CONSTANT_ACTIVITY_KEY: activity_key}

    aligned_traces = token_replay.apply(log, net, initial_marking, final_marking, parameters=parameters_tr)

    parameters = {
        "activity_key": activity_key
    }

    fitness = fitness_token_based.evaluate(aligned_traces)
    precision = precision_token_based.apply(log, net, initial_marking, final_marking, parameters=parameters)
    generalization = generalization_token_based.get_generalization(net, aligned_traces)
    simplicity = simplicity_arc_degree.apply(net)

    metrics_average_weight = fitness_weight * fitness["averageFitness"] + precision_weight * precision \
                             + generalization_weight * generalization + simplicity_weight * simplicity
    dictionary = {
        "fitness": fitness,
        "precision": precision,
        "generalization": generalization,
        "simplicity": simplicity,
        "metricsAverageWeight": metrics_average_weight
    }

    return dictionary
Exemplo n.º 2
0
def apply(log, net, initial_marking, final_marking, parameters=None):
    """
    Calculates all metrics based on token-based replay and returns a unified dictionary

    Parameters
    -----------
    log
        Log
    net
        Petri net
    initial_marking
        Initial marking
    final_marking
        Final marking
    parameters
        Parameters

    Returns
    -----------
    dictionary
        Dictionary containing fitness, precision, generalization and simplicity; along with the average weight of
        these metrics
    """
    if parameters is None:
        parameters = {}
    log = log_conversion.apply(log, parameters, log_conversion.TO_EVENT_LOG)

    activity_key = exec_utils.get_param_value(
        Parameters.ACTIVITY_KEY, parameters, log_lib.util.xes.DEFAULT_NAME_KEY)
    fitness_weight = exec_utils.get_param_value(
        Parameters.PARAM_FITNESS_WEIGHT, parameters, 0.25)
    precision_weight = exec_utils.get_param_value(
        Parameters.PARAM_PRECISION_WEIGHT, parameters, 0.25)
    simplicity_weight = exec_utils.get_param_value(
        Parameters.PARAM_SIMPLICITY_WEIGHT, parameters, 0.25)
    generalization_weight = exec_utils.get_param_value(
        Parameters.PARAM_GENERALIZATION_WEIGHT, parameters, 0.25)

    sum_of_weights = (fitness_weight + precision_weight + simplicity_weight +
                      generalization_weight)
    fitness_weight = fitness_weight / sum_of_weights
    precision_weight = precision_weight / sum_of_weights
    simplicity_weight = simplicity_weight / sum_of_weights
    generalization_weight = generalization_weight / sum_of_weights

    parameters_tr = {token_replay.Parameters.ACTIVITY_KEY: activity_key}

    aligned_traces = token_replay.apply(log,
                                        net,
                                        initial_marking,
                                        final_marking,
                                        parameters=parameters_tr)

    parameters = {token_replay.Parameters.ACTIVITY_KEY: activity_key}

    fitness = fitness_token_based.evaluate(aligned_traces)
    precision = precision_token_based.apply(log,
                                            net,
                                            initial_marking,
                                            final_marking,
                                            parameters=parameters)
    generalization = generalization_token_based.get_generalization(
        net, aligned_traces)
    simplicity = simplicity_arc_degree.apply(net)

    metrics_average_weight = fitness_weight * fitness["log_fitness"] + precision_weight * precision \
                             + generalization_weight * generalization + simplicity_weight * simplicity

    fscore = 0.0
    if (fitness['log_fitness'] + precision) > 0:
        fscore = (2 * fitness['log_fitness'] *
                  precision) / (fitness['log_fitness'] + precision)
    dictionary = {
        "fitness": fitness,
        "precision": precision,
        "generalization": generalization,
        "simplicity": simplicity,
        "metricsAverageWeight": metrics_average_weight,
        "fscore": fscore
    }

    return dictionary