Exemplo n.º 1
0
def checkMin(row, col_name, arg, *args):
    """
    row[col_name] must be greater than or equal to arg.
    else, return error message.
    """
    cell_value = row[col_name]
    if not cell_value:
        return None
    elif isinstance(cell_value, float):
        if np.isnan(cell_value):
            return None
    try:
        arg_val = float(arg)
    except ValueError:
        if arg in row.index:
            arg_val = row[arg]
        else:
            return None
    if cb.is_null(arg_val):
        return None
    try:
        if float(cell_value) >= float(arg_val):
            return None
        else:
            return "{} ({}) must be >= {} ({})".format(str(cell_value), col_name, arg_val, str(arg))
    # this happens when the value isn't a float (an error which will be caught elsewhere)
    except ValueError:
        return None
Exemplo n.º 2
0
def checkMin(row, col_name, arg, *args):
    """
    row[col_name] must be greater than or equal to arg.
    else, return error message.
    """
    cell_value = row[col_name]
    if not cell_value:
        return None
    elif isinstance(cell_value, float):
        if np.isnan(cell_value):
            return None
    try:
        arg_val = float(arg)
    except ValueError:
        if arg in row.index:
            arg_val = row[arg]
        else:
            return None
    if cb.is_null(arg_val):
        return None
    try:
        if float(cell_value) >= float(arg_val):
            return None
        else:
            return "{} ({}) must be >= {} ({})".format(str(cell_value),
                                                       col_name, arg_val,
                                                       str(arg))
    # this happens when the value isn't a float (an error which will be caught elsewhere)
    except ValueError:
        return None
Exemplo n.º 3
0
def main():
    """
    NAME
        make_magic_plots.py

    DESCRIPTION
    inspects magic directory for available plots.

    SYNTAX
        make_magic_plots.py [command line options]

    INPUT
        magic files

    OPTIONS
        -h prints help message and quits
        -f FILE specifies input file name
        -fmt [png,eps,svg,jpg,pdf] specify format, default is png
    """
    if '-h' in sys.argv:
        print(main.__doc__)
        sys.exit()
    # reset log files
    for fname in ['log.txt', 'errors.txt']:
        f = os.path.join(os.getcwd(), fname)
        if os.path.exists(f):
            os.remove(f)
    dirlist = ['./']
    dir_path = os.getcwd()
    #
    if '-fmt' in sys.argv:
        ind = sys.argv.index("-fmt")
        fmt = sys.argv[ind + 1]
    else:
        fmt = 'png'
    if '-f' in sys.argv:
        ind = sys.argv.index("-f")
        filelist = [sys.argv[ind + 1]]
    else:
        filelist = os.listdir(dir_path)
    ## initialize some variables
    samp_file = 'samples.txt'
    azimuth_key = 'azimuth'
    meas_file = 'measurements.txt'
    loc_key = 'location'
    loc_file = 'locations.txt'
    method_key = 'method_codes'
    dec_key = 'dir_dec'
    inc_key = 'dir_inc'
    tilt_corr_key = "dir_tilt_correction"
    aniso_tilt_corr_key = "aniso_tilt_correction"
    hyst_bcr_key = "hyst_bcr"
    hyst_mr_key = "hyst_mr_moment"
    hyst_ms_key = "hyst_ms_moment"
    hyst_bc_key = "hyst_bc"
    Mkeys = ['magnitude', 'magn_moment', 'magn_volume', 'magn_mass']
    results_file = 'sites.txt'
    hyst_file = 'specimens.txt'
    aniso_file = 'specimens.txt'
    # create contribution and propagate data throughout
    con = cb.Contribution()
    con.propagate_location_to_measurements()
    con.propagate_location_to_specimens()
    con.propagate_location_to_samples()
    if not con.tables:
        print('-E- No MagIC tables could be found in this directory')
        error_log("No MagIC tables found")
        return
    # check to see if propagation worked, otherwise you can't plot by location
    lowest_table = None
    for table in con.ancestry:
        if table in con.tables:
            lowest_table = table
            break

    do_full_directory = False
    # check that locations propagated down to the lowest table in the contribution
    if 'location' in con.tables[lowest_table].df.columns:
        # are there any locations in the lowest table?
        if not all(con.tables[lowest_table].df['location'].isnull()):
            locs = con.tables['locations'].df.index.unique()
            lowest_locs = con.tables[lowest_table].df['location'].unique()
            incorrect_locs = set(lowest_locs).difference(set(locs))
            # are they actual locations?
            if not incorrect_locs:
                info_log(
                    'location names propagated to {}'.format(lowest_table))
            else:
                do_full_directory = True
                error_log('location names did not propagate fully to {} table'.
                          format(lowest_table))
        else:
            do_full_directory = True
            error_log(
                'could not propagate location names down to {} table'.format(
                    lowest_table))
    else:
        do_full_directory = True
        error_log('could not propagate location names down to {} table'.format(
            lowest_table))

    all_data = {}
    all_data['measurements'] = con.tables.get('measurements', None)
    all_data['specimens'] = con.tables.get('specimens', None)
    all_data['samples'] = con.tables.get('samples', None)
    all_data['sites'] = con.tables.get('sites', None)
    all_data['locations'] = con.tables.get('locations', None)
    locations = con.tables['locations'].df.index.unique()
    dirlist = [loc for loc in locations if cb.not_null(loc) and loc != 'nan']
    if not dirlist:
        dirlist = ["./"]
    if do_full_directory:
        dirlist = ["./"]

    # plot the whole contribution as one location
    if dirlist == ["./"]:
        error_log('plotting the entire contribution as one location')
        for fname in os.listdir("."):
            if fname.endswith(".txt"):
                shutil.copy(fname, "tmp_" + fname)

    # if possible, go through all data by location
    # use tmp_*.txt files to separate out by location

    for loc in dirlist:
        print('\nworking on: ', loc)

        def get_data(dtype, loc_name):
            """
            Extract data of type dtype for location loc_name.
            Write tmp_dtype.txt files if possible.
            """
            if cb.not_null(all_data[dtype]):
                data_container = all_data[dtype]
                data_df = data_container.df[data_container.df['location'] ==
                                            loc_name]
                data = data_container.convert_to_pmag_data_list(df=data_df)
                res = data_container.write_magic_file(
                    'tmp_{}.txt'.format(dtype), df=data_df)
                if not res:
                    return []
                return data

        meas_data = get_data('measurements', loc)
        spec_data = get_data('specimens', loc)
        samp_data = get_data('samples', loc)
        site_data = get_data('sites', loc)
        location_data = get_data('locations', loc)

        if loc == "./":  # if you can't sort by location, do everything together
            try:
                meas_data = con.tables[
                    'measurements'].convert_to_pmag_data_list()
            except KeyError:
                meas_data = None
            try:
                spec_data = con.tables['specimens'].convert_to_pmag_data_list()
            except KeyError:
                spec_data = None
            try:
                samp_data = con.tables['samples'].convert_to_pmag_data_list()
            except KeyError:
                samp_data = None
            try:
                site_data = con.tables['sites'].convert_to_pmag_data_list()
            except KeyError:
                site_data = None

        crd = 's'
        if samp_file in filelist:  # find coordinate systems
            samps = samp_data
            file_type = "samples"
            # get all non blank sample orientations
            Srecs = pmag.get_dictitem(samps, azimuth_key, '', 'F')
            if len(Srecs) > 0:
                crd = 'g'
                print('using geographic coordinates')
            else:
                print('using specimen coordinates')
        else:
            if VERBOSE:
                print('-I- No sample data found')
        if meas_file in filelist:  # start with measurement data
            print('working on measurements data')
            data = meas_data
            file_type = 'measurements'
            # looking for  zeq_magic possibilities
            # get all non blank method codes
            AFZrecs = pmag.get_dictitem(data, method_key, 'LT-AF-Z', 'has')
            # get all non blank method codes
            TZrecs = pmag.get_dictitem(data, method_key, 'LT-T-Z', 'has')
            # get all non blank method codes
            MZrecs = pmag.get_dictitem(data, method_key, 'LT-M-Z', 'has')
            # get all dec measurements
            Drecs = pmag.get_dictitem(data, dec_key, '', 'F')
            # get all inc measurements
            Irecs = pmag.get_dictitem(data, inc_key, '', 'F')
            for key in Mkeys:
                Mrecs = pmag.get_dictitem(data, key, '',
                                          'F')  # get intensity data
                if len(Mrecs) > 0:
                    break
            # potential for stepwise demag curves
            if len(AFZrecs) > 0 or len(TZrecs) > 0 or len(MZrecs) > 0 and len(
                    Drecs) > 0 and len(Irecs) > 0 and len(Mrecs) > 0:
                CMD = 'zeq_magic.py -f tmp_measurements.txt -fsp tmp_specimens.txt -fsa tmp_samples.txt -fsi tmp_sites.txt -sav -fmt ' + fmt + ' -crd ' + crd
                print(CMD)
                info_log(CMD, loc)
                os.system(CMD)
            # looking for  thellier_magic possibilities
            if len(pmag.get_dictitem(data, method_key, 'LP-PI-TRM',
                                     'has')) > 0:
                CMD = 'thellier_magic.py -f tmp_measurements.txt -fsp tmp_specimens.txt -sav -fmt ' + fmt
                print(CMD)
                info_log(CMD, loc)
                os.system(CMD)
            # looking for hysteresis possibilities
            if len(pmag.get_dictitem(data, method_key, 'LP-HYS',
                                     'has')) > 0:  # find hyst experiments
                # check for reqd columns
                missing = check_for_reqd_cols(data, ['treat_temp'])
                if missing:
                    error_log(
                        'LP-HYS method code present, but required column(s) [{}] missing'
                        .format(", ".join(missing)), loc, "quick_hyst.py")
                else:
                    CMD = 'quick_hyst.py -f tmp_measurements.txt -sav -fmt ' + fmt
                    print(CMD)
                    info_log(CMD, loc)
                    os.system(CMD)
            # equal area plots of directional data
            # at measurment level (by specimen)
            if data:
                missing = check_for_reqd_cols(data, ['dir_dec', 'dir_inc'])
                if not missing:
                    CMD = "eqarea_magic.py -f tmp_measurements.txt -obj spc -sav -no-tilt -fmt " + fmt
                    print(CMD)
                    os.system(CMD)
                    info_log(CMD, loc, "eqarea_magic.py")

        else:
            if VERBOSE:
                print('-I- No measurement data found')

        # site data
        if results_file in filelist:
            print('-I- result file found', results_file)
            data = site_data
            file_type = 'sites'
            print('-I- working on site directions')
            print('number of datapoints: ', len(data), loc)
            dec_key = 'dir_dec'
            inc_key = 'dir_inc'
            int_key = 'int_abs'
            SiteDIs = pmag.get_dictitem(data, dec_key, "", 'F')  # find decs
            SiteDIs = pmag.get_dictitem(SiteDIs, inc_key, "",
                                        'F')  # find decs and incs
            dir_data_found = len(SiteDIs)
            print('{} Dec/inc pairs found'.format(dir_data_found))
            # only individual results - not poles
            # get only individual results (if result_type col is available)
            if SiteDIs:
                if 'result_type' in SiteDIs[0]:
                    SiteDIs = pmag.get_dictitem(SiteDIs, 'result_type', 'i',
                                                'has')
                # then convert tilt_corr_key to correct format
                old_SiteDIs = SiteDIs
                SiteDIs = []
                for rec in old_SiteDIs:
                    if tilt_corr_key not in rec:
                        error_log(
                            "Directional data found, but missing {}, can't plot directions"
                            .format(tilt_corr_key), loc, "eqarea_magic.py")
                        break
                    if cb.is_null(
                            rec[tilt_corr_key]) and rec[tilt_corr_key] != 0:
                        rec[tilt_corr_key] = ""
                    else:
                        try:
                            rec[tilt_corr_key] = str(
                                int(float(rec[tilt_corr_key])))
                        except ValueError:
                            rec[tilt_corr_key] = ""
                    SiteDIs.append(rec)

                print('number of individual directions: ', len(SiteDIs))
                # tilt corrected coordinates
                SiteDIs_t = pmag.get_dictitem(SiteDIs,
                                              tilt_corr_key,
                                              '100',
                                              'T',
                                              float_to_int=True)
                print('number of tilt corrected directions: ', len(SiteDIs_t))
                SiteDIs_g = pmag.get_dictitem(
                    SiteDIs, tilt_corr_key, '0', 'T',
                    float_to_int=True)  # geographic coordinates
                print('number of geographic  directions: ', len(SiteDIs_g))
                SiteDIs_s = pmag.get_dictitem(
                    SiteDIs, tilt_corr_key, '-1', 'T',
                    float_to_int=True)  # sample coordinates
                print('number of sample  directions: ', len(SiteDIs_s))
                SiteDIs_x = pmag.get_dictitem(SiteDIs, tilt_corr_key, '',
                                              'T')  # no coordinates
                print('number of no coordinates  directions: ', len(SiteDIs_x))
                if len(SiteDIs_t) > 0 or len(SiteDIs_g) > 0 or len(
                        SiteDIs_s) > 0 or len(SiteDIs_x) > 0:
                    CRD = ""
                    if len(SiteDIs_t) > 0:
                        CRD = ' -crd t'
                    elif len(SiteDIs_g) > 0:
                        CRD = ' -crd g'
                    elif len(SiteDIs_s) > 0:
                        CRD = ' -crd s'
                    CMD = 'eqarea_magic.py -f tmp_sites.txt -fsp tmp_specimens.txt -fsa tmp_samples.txt -flo tmp_locations.txt -sav -fmt ' + fmt + CRD
                    print(CMD)
                    info_log(CMD, loc)
                    os.system(CMD)
                else:
                    if dir_data_found:
                        error_log(
                            '{} dec/inc pairs found, but no equal area plots were made'
                            .format(dir_data_found), loc, "equarea_magic.py")
            #
            print('-I- working on VGP map')
            VGPs = pmag.get_dictitem(SiteDIs, 'vgp_lat', "",
                                     'F')  # are there any VGPs?
            if len(VGPs) > 0:  # YES!
                CMD = 'vgpmap_magic.py -f tmp_sites.txt -prj moll -res c -sym ro 5 -sav -fmt png'
                print(CMD)
                info_log(CMD, loc, 'vgpmap_magic.py')
                os.system(CMD)
            else:
                print('-I- No vgps found')

            print('-I- Look for intensities')
            # is there any intensity data?
            if site_data:
                if int_key in site_data[0].keys():
                    # old way, wasn't working right:
                    #CMD = 'magic_select.py  -key ' + int_key + ' 0. has -F tmp1.txt -f tmp_sites.txt'
                    Selection = pmag.get_dictkey(site_data, int_key, dtype="f")
                    with open('intensities.txt', 'w') as out:
                        for rec in Selection:
                            if rec != 0:
                                out.write(str(rec * 1e6) + "\n")

                    histfile = 'LO:_' + loc + \
                        '_TY:_intensities_histogram:_.' + fmt
                    # maybe run histplot.main here instead, so you can return an error message
                    CMD = "histplot.py -b 1 -xlab 'Intensity (uT)' -sav -f intensities.txt -F " + histfile
                    os.system(CMD)
                    info_log(CMD, loc)
                    print(CMD)
                else:
                    print('-I- No intensities found')
            else:
                print('-I- No intensities found')

        ##
        if hyst_file in filelist:
            print('working on hysteresis', hyst_file)
            data = spec_data
            file_type = 'specimens'
            hdata = pmag.get_dictitem(data, hyst_bcr_key, '', 'F')
            hdata = pmag.get_dictitem(hdata, hyst_mr_key, '', 'F')
            hdata = pmag.get_dictitem(hdata, hyst_ms_key, '', 'F')
            # there are data for a dayplot
            hdata = pmag.get_dictitem(hdata, hyst_bc_key, '', 'F')
            if len(hdata) > 0:
                CMD = 'dayplot_magic.py -f tmp_specimens.txt -sav -fmt ' + fmt
                info_log(CMD, loc)
                print(CMD)
            else:
                print('no hysteresis data found')
        if aniso_file in filelist:  # do anisotropy plots if possible
            print('working on anisotropy', aniso_file)
            data = spec_data
            file_type = 'specimens'

            # make sure there is some anisotropy data
            if not data:
                print('No anisotropy data found')
            elif 'aniso_s' not in data[0]:
                print('No anisotropy data found')
            else:
                # get specimen coordinates
                if aniso_tilt_corr_key not in data[0]:
                    sdata = data
                else:
                    sdata = pmag.get_dictitem(data,
                                              aniso_tilt_corr_key,
                                              '-1',
                                              'T',
                                              float_to_int=True)
                # get specimen coordinates
                gdata = pmag.get_dictitem(data,
                                          aniso_tilt_corr_key,
                                          '0',
                                          'T',
                                          float_to_int=True)
                # get specimen coordinates
                tdata = pmag.get_dictitem(data,
                                          aniso_tilt_corr_key,
                                          '100',
                                          'T',
                                          float_to_int=True)
                CRD = ""
                CMD = 'aniso_magic.py -x -B -sav -fmt ' + fmt
                if len(sdata) > 3:
                    CMD = CMD + ' -crd s'
                    print(CMD)
                    info_log(CMD, loc)
                    os.system(CMD)
                if len(gdata) > 3:
                    CMD = CMD + ' -crd g'
                    print(CMD)
                    info_log(CMD, loc)
                    os.system(CMD)
                if len(tdata) > 3:
                    CMD = CMD + ' -crd t'
                    print(CMD)
                    info_log(CMD, loc)
                    os.system(CMD)
        # remove temporary files
        for fname in glob.glob('tmp*.txt'):
            os.remove(fname)
        try:
            os.remove('intensities.txt')
        except FileNotFoundError:
            pass
    if loc_file in filelist:
        data, file_type = pmag.magic_read(loc_file)  # read in location data
        print('-I- working on pole map')
        poles = pmag.get_dictitem(data, 'pole_lat', "",
                                  'F')  # are there any poles?
        poles = pmag.get_dictitem(poles, 'pole_lon', "",
                                  'F')  # are there any poles?
        if len(poles) > 0:  # YES!
            CMD = 'polemap_magic.py -sav -fmt png'
            print(CMD)
            info_log(CMD, "all locations", "polemap_magic.py")
            os.system(CMD)
        else:
            print('-I- No poles found')
Exemplo n.º 4
0
def main():
    """
    NAME
        zeq_magic.py

    DESCRIPTION
        reads in magic_measurements formatted file, makes plots of remanence decay
        during demagnetization experiments.  Reads in prior interpretations saved in
        a pmag_specimens formatted file [and  allows re-interpretations of best-fit lines
        and planes and saves (revised or new) interpretations in a pmag_specimens file.
        interpretations are saved in the coordinate system used. Also allows judicious editting of
        measurements to eliminate "bad" measurements.  These are marked as such in the magic_measurements
        input file.  they are NOT deleted, just ignored. ] Bracketed part not yet implemented

    SYNTAX
        zeq_magic.py [command line options]

    OPTIONS
        -h prints help message and quits
        -f  MEASFILE: sets measurements format input file, default: measurements.txt
        -fsp SPECFILE: sets specimens format file with prior interpreations, default: specimens.txt
        -fsa SAMPFILE: sets samples format file sample=>site information, default: samples.txt
        -fsi SITEFILE: sets sites format file with site=>location informationprior interpreations, default: samples.txt
        -Fp PLTFILE: sets filename for saved plot, default is name_type.fmt (where type is zijd, eqarea or decay curve)
        -crd [s,g,t]: sets coordinate system,  g=geographic, t=tilt adjusted, default: specimen coordinate system
        -spc SPEC  plots single specimen SPEC, saves plot with specified format
              with optional -dir settings and quits
        -dir [L,P,F][beg][end]: sets calculation type for principal component analysis, default is none
             beg: starting step for PCA calculation
             end: ending step for PCA calculation
             [L,P,F]: calculation type for line, plane or fisher mean
             must be used with -spc option
        -fmt FMT: set format of saved plot [png,svg,jpg]
        -A:  suppresses averaging of  replicate measurements, default is to average
        -sav: saves all plots without review
    SCREEN OUTPUT:
        Specimen, N, a95, StepMin, StepMax, Dec, Inc, calculation type

    """
    # initialize some variables
    doave, e, b = 1, 0, 0  # average replicates, initial end and beginning step
    intlist = ['magn_moment', 'magn_volume', 'magn_mass', 'magnitude']
    plots, coord = 0, 's'
    noorient = 0
    version_num = pmag.get_version()
    verbose = pmagplotlib.verbose
    calculation_type, fmt = "", "svg"
    spec_keys = []
    geo, tilt, ask = 0, 0, 0
    PriorRecs = []  # empty list for prior interpretations
    backup = 0
    specimen = ""  # can skip everything and just plot one specimen with bounds e,b
    if '-h' in sys.argv:
        print(main.__doc__)
        sys.exit()
    dir_path = pmag.get_named_arg("-WD", default_val=os.getcwd())
    meas_file = pmag.get_named_arg("-f", default_val="measurements.txt")
    spec_file = pmag.get_named_arg("-fsp", default_val="specimens.txt")
    samp_file = pmag.get_named_arg("-fsa", default_val="samples.txt")
    site_file = pmag.get_named_arg("-fsi", default_val="sites.txt")
    #meas_file = os.path.join(dir_path, meas_file)
    #spec_file = os.path.join(dir_path, spec_file)
    #samp_file = os.path.join(dir_path, samp_file)
    #site_file = os.path.join(dir_path, site_file)
    plot_file = pmag.get_named_arg("-Fp", default_val="")
    crd = pmag.get_named_arg("-crd", default_val="s")
    if crd == "s":
        coord = "-1"
    elif crd == "t":
        coord = "100"
    else:
        coord = "0"
    saved_coord = coord
    fmt = pmag.get_named_arg("-fmt", "svg")
    specimen = pmag.get_named_arg("-spc", default_val="")
    #if specimen: # just save plot and exit
    #    plots, verbose = 1, 0
    beg_pca, end_pca = "", ""
    if '-dir' in sys.argv:
        ind = sys.argv.index('-dir')
        direction_type = sys.argv[ind + 1]
        beg_pca = int(sys.argv[ind + 2])
        end_pca = int(sys.argv[ind + 3])
        if direction_type == 'L':
            calculation_type = 'DE-BFL'
        if direction_type == 'P':
            calculation_type = 'DE-BFP'
        if direction_type == 'F':
            calculation_type = 'DE-FM'
    if '-A' in sys.argv:
        doave = 0
    if '-sav' in sys.argv:
        plots, verbose = 1, 0
    #
    first_save = 1
    fnames = {
        'measurements': meas_file,
        'specimens': spec_file,
        'samples': samp_file,
        'sites': site_file
    }
    contribution = cb.Contribution(
        dir_path,
        custom_filenames=fnames,
        read_tables=['measurements', 'specimens', 'samples', 'sites'])
    #
    #   import  specimens

    if 'measurements' not in contribution.tables:
        print('-W- No measurements table found in your working directory')
        return

    specimen_cols = [
        'analysts', 'aniso_ftest', 'aniso_ftest12', 'aniso_ftest23', 'aniso_s',
        'aniso_s_mean', 'aniso_s_n_measurements', 'aniso_s_sigma',
        'aniso_s_unit', 'aniso_tilt_correction', 'aniso_type', 'aniso_v1',
        'aniso_v2', 'aniso_v3', 'citations', 'description', 'dir_alpha95',
        'dir_comp', 'dir_dec', 'dir_inc', 'dir_mad_free', 'dir_n_measurements',
        'dir_tilt_correction', 'experiments', 'geologic_classes',
        'geologic_types', 'hyst_bc', 'hyst_bcr', 'hyst_mr_moment',
        'hyst_ms_moment', 'int_abs', 'int_b', 'int_b_beta', 'int_b_sigma',
        'int_corr', 'int_dang', 'int_drats', 'int_f', 'int_fvds', 'int_gamma',
        'int_mad_free', 'int_md', 'int_n_measurements', 'int_n_ptrm', 'int_q',
        'int_rsc', 'int_treat_dc_field', 'lithologies', 'meas_step_max',
        'meas_step_min', 'meas_step_unit', 'method_codes', 'sample',
        'software_packages', 'specimen'
    ]
    if 'specimens' in contribution.tables:
        contribution.propagate_name_down('sample', 'measurements')
        # add location/site info to measurements table for naming plots
        if pmagplotlib.isServer:
            contribution.propagate_name_down('site', 'measurements')
            contribution.propagate_name_down('location', 'measurements')
        spec_container = contribution.tables['specimens']
        if 'method_codes' not in spec_container.df.columns:
            spec_container.df['method_codes'] = None
        prior_spec_data = spec_container.get_records_for_code(
            'LP-DIR', strict_match=False
        )  # look up all prior directional interpretations
#
#  tie sample names to measurement data
#
    else:
        spec_container, prior_spec_data = None, []

#
#   import samples  for orientation info
#
    if 'samples' in contribution.tables:
        samp_container = contribution.tables['samples']
        samps = samp_container.df
        samp_data = samps.to_dict(
            'records'
        )  # convert to list of dictionaries for use with get_orient
    else:
        samp_data = []
    #if ('samples' in contribution.tables) and ('specimens' in contribution.tables):
    #    #        contribution.propagate_name_down('site','measurements')
    #    contribution.propagate_cols(col_names=[
    #                                'azimuth', 'dip', 'orientation_quality','bed_dip','bed_dip_direction'], target_df_name='measurements', source_df_name='samples')
##
# define figure numbers for equal area, zijderveld,
#  and intensity vs. demagnetiztion step respectively
#
    ZED = {}
    ZED['eqarea'], ZED['zijd'], ZED['demag'] = 1, 2, 3
    pmagplotlib.plot_init(ZED['eqarea'], 6, 6)
    pmagplotlib.plot_init(ZED['zijd'], 6, 6)
    pmagplotlib.plot_init(ZED['demag'], 6, 6)
    #    save_pca=0
    angle, direction_type, setangle = "", "", 0
    #   create measurement dataframe
    #
    meas_container = contribution.tables['measurements']
    meas_data = meas_container.df
    #
    meas_data = meas_data[meas_data['method_codes'].str.contains(
        'LT-NO|LT-AF-Z|LT-T-Z|LT-M-Z') == True]  # fish out steps for plotting
    meas_data = meas_data[meas_data['method_codes'].str.contains(
        'AN|ARM|LP-TRM|LP-PI-ARM') == False]  # strip out unwanted experiments
    intensity_types = [
        col_name for col_name in meas_data.columns if col_name in intlist
    ]
    intensity_types = [
        col_name for col_name in intensity_types if any(meas_data[col_name])
    ]
    if not len(intensity_types):
        print('-W- No intensity columns found')
        return
    # plot first non-empty intensity method found - normalized to initial value anyway -
    # doesn't matter which used
    int_key = intensity_types[0]
    # get all the non-null intensity records of the same type
    meas_data = meas_data[meas_data[int_key].notnull()]
    if 'quality' not in meas_data.columns:
        meas_data['quality'] = 'g'  # set the default flag to good
# need to treat LP-NO specially  for af data, treatment should be zero,
# otherwise 273.
#meas_data['treatment'] = meas_data['treat_ac_field'].where(
#    cond=meas_data['treat_ac_field'] != 0, other=meas_data['treat_temp'])
    meas_data['treatment'] = meas_data['treat_ac_field'].where(
        cond=meas_data['treat_ac_field'].astype(bool),
        other=meas_data['treat_temp'])
    meas_data['ZI'] = 1  # initialize these to one
    meas_data['instrument_codes'] = ""  # initialize these to blank
    #   for unusual case of microwave power....
    if 'treat_mw_power' in meas_data.columns:
        meas_data.loc[
            (meas_data.treat_mw_power != 0) & (meas_data.treat_mw_power) &
            (meas_data.treat_mw_time),
            'treatment'] = meas_data.treat_mw_power * meas_data.treat_mw_time
#
# get list of unique specimen names from measurement data
#
# this is a list of all the specimen names
    specimen_names = meas_data.specimen.unique()
    specimen_names = specimen_names.tolist()
    specimen_names.sort()
    #
    # set up new DataFrame for this sessions specimen interpretations
    #
    data_container = cb.MagicDataFrame(dtype='specimens',
                                       columns=specimen_cols)
    # this is for interpretations from this session
    current_spec_data = data_container.df
    if specimen == "":
        k = 0
    else:
        k = specimen_names.index(specimen)
    # let's look at the data now
    while k < len(specimen_names):
        mpars = {"specimen_direction_type": "Error"}
        # set the current specimen for plotting
        this_specimen = specimen_names[k]
        # reset beginning/end pca if plotting more than one specimen
        if not specimen:
            beg_pca, end_pca = "", ""
        if verbose and this_specimen != "":
            print(this_specimen, k + 1, 'out of ', len(specimen_names))
        if setangle == 0:
            angle = ""
        this_specimen_measurements = meas_data[
            meas_data['specimen'].str.contains(this_specimen).astype(
                bool)]  # fish out this specimen
        this_specimen_measurements = this_specimen_measurements[
            -this_specimen_measurements['quality'].str.contains('b').astype(
                bool)]  # remove bad measurements
        if len(this_specimen_measurements) != 0:  # if there are measurements
            meas_list = this_specimen_measurements.to_dict(
                'records')  # get a list of dictionaries
            this_sample = ""
            if coord != '-1' and 'sample' in meas_list[0].keys(
            ):  # look up sample name
                this_sample = pmag.get_dictitem(meas_list, 'specimen',
                                                this_specimen, 'T')
                if len(this_sample) > 0:
                    this_sample = this_sample[0]['sample']
            #
            #    set up datablock [[treatment,dec, inc, int, direction_type],[....]]
            #
            #
            # figure out the method codes
            #
            units, methods, title = "", "", this_specimen

            if pmagplotlib.isServer:
                try:
                    loc = this_specimen_measurements.loc[:,
                                                         'location'].values[0]
                except:
                    loc = ""
                try:
                    site = this_specimen_measurements.loc[:, 'site'].values[0]
                except:
                    site = ""
                try:
                    samp = this_specimen_measurements.loc[:,
                                                          'sample'].values[0]
                except:
                    samp = ""
                title = "LO:_{}_SI:_{}_SA:_{}_SP:_{}_".format(
                    loc, site, samp, this_specimen)
            # this is a list of all the specimen method codes
            meas_meths = this_specimen_measurements.method_codes.unique()
            tr = pd.to_numeric(this_specimen_measurements.treatment).tolist()
            if any(cb.is_null(treat, False) for treat in tr):
                print(
                    '-W- Missing required values in measurements.treatment for {}, skipping'
                    .format(this_specimen))
                if specimen:
                    return
                k += 1
                continue
            if set(tr) == set([0]):
                print(
                    '-W- Missing required values in measurements.treatment for {}, skipping'
                    .format(this_specimen))
                if specimen:
                    return
                k += 1
                continue
            for m in meas_meths:
                if 'LT-AF-Z' in m and 'T' not in units:
                    units = 'T'  # units include tesla
                    tr[0] = 0
                if 'LT-T-Z' in m and 'K' not in units:
                    units = units + ":K"  # units include kelvin
                if 'LT-M-Z' in m and 'J' not in units:
                    units = units + ':J'  # units include joules
                    tr[0] = 0
                units = units.strip(':')  # strip off extra colons
                if 'LP-' in m:
                    methods = methods + ":" + m
            decs = pd.to_numeric(this_specimen_measurements.dir_dec).tolist()
            incs = pd.to_numeric(this_specimen_measurements.dir_inc).tolist()

            #
            #    fix the coordinate system
            #
            # revert to original coordinate system
            coord = saved_coord
            if coord != '-1':  # need to transform coordinates to geographic
                # get the azimuth
                or_info, az_type = pmag.get_orient(samp_data,
                                                   this_sample,
                                                   data_model=3)
                if 'azimuth' in or_info.keys() and cb.not_null(
                        or_info['azimuth']):
                    #azimuths = pd.to_numeric(
                    #    this_specimen_measurements.azimuth).tolist()
                    #dips = pd.to_numeric(this_specimen_measurements.dip).tolist()
                    azimuths = len(decs) * [or_info['azimuth']]
                    dips = len(decs) * [or_info['dip']]
                # if azimuth/dip is missing, plot using specimen coordinates instead
                else:
                    azimuths, dips = [], []
                if any([cb.is_null(az) for az in azimuths if az != 0]):
                    coord = '-1'
                    print("-W- Couldn't find azimuth and dip for {}".format(
                        this_specimen))
                    print("    Plotting with specimen coordinates instead")
                elif any([cb.is_null(dip) for dip in dips if dip != 0]):
                    coord = '-1'
                    print("-W- Couldn't find azimuth and dip for {}".format(
                        this_specimen))
                    print("    Plotting with specimen coordinates instead")
                else:
                    coord = saved_coord
                # if azimuth and dip were found, continue with geographic coordinates
                if coord != "-1" and len(azimuths) > 0:
                    dirs = [decs, incs, azimuths, dips]
                    # this transposes the columns and rows of the list of lists
                    dirs_geo = np.array(list(map(list, list(zip(*dirs)))))
                    decs, incs = pmag.dogeo_V(dirs_geo)
                    if coord == '100' and 'bed_dip_direction' in or_info.keys(
                    ) and or_info[
                            'bed_dip_direction'] != "":  # need to do tilt correction too
                        bed_dip_dirs = len(decs) * [
                            or_info['bed_dip_direction']
                        ]
                        bed_dips = len(decs) * [or_info['bed_dip']]
                        #bed_dip_dirs = pd.to_numeric(
                        #    this_specimen_measurements.bed_dip_direction).tolist()  # get the azimuths
                        #bed_dips = pd.to_numeric(
                        #    this_specimen_measurements.bed_dip).tolist()  # get the azimuths

                        dirs = [decs, incs, bed_dip_dirs, bed_dips]
                        ## this transposes the columns and rows of the list of lists
                        dirs_tilt = np.array(list(map(list, list(zip(*dirs)))))
                        decs, incs = pmag.dotilt_V(dirs_tilt)
                        if pmagplotlib.isServer:
                            title = title + "CO:_t_"
                        else:
                            title = title + '_t'
                    else:
                        if pmagplotlib.isServer:
                            title = title + "CO:_g_"
                        else:
                            title = title + '_g'
            if angle == "":
                angle = decs[0]
            ints = pd.to_numeric(this_specimen_measurements[int_key]).tolist()
            ZI = this_specimen_measurements.ZI.tolist()
            flags = this_specimen_measurements.quality.tolist()
            codes = this_specimen_measurements.instrument_codes.tolist()
            datalist = [tr, decs, incs, ints, ZI, flags, codes]
            # this transposes the columns and rows of the list of lists
            datablock = list(map(list, list(zip(*datalist))))
            pmagplotlib.plot_zed(ZED, datablock, angle, title, units)
            if verbose and not set_env.IS_WIN:
                pmagplotlib.draw_figs(ZED)
#
#     collect info for current_specimen_interpretation dictionary
#

#
#     find prior interpretation
#
            prior_specimen_interpretations = []
            if len(prior_spec_data):
                prior_specimen_interpretations = prior_spec_data[
                    prior_spec_data['specimen'].str.contains(
                        this_specimen) == True]
            if (beg_pca == "") and (len(prior_specimen_interpretations) != 0):
                if len(prior_specimen_interpretations) > 0:
                    beg_pcas = pd.to_numeric(prior_specimen_interpretations.
                                             meas_step_min.values).tolist()
                    end_pcas = pd.to_numeric(prior_specimen_interpretations.
                                             meas_step_max.values).tolist()
                    spec_methods = prior_specimen_interpretations.method_codes.tolist(
                    )
                    # step through all prior interpretations and plot them
                    for ind in range(len(beg_pcas)):
                        spec_meths = spec_methods[ind].split(':')
                        for m in spec_meths:
                            if 'DE-BFL' in m:
                                calculation_type = 'DE-BFL'  # best fit line
                            if 'DE-BFP' in m:
                                calculation_type = 'DE-BFP'  # best fit plane
                            if 'DE-FM' in m:
                                calculation_type = 'DE-FM'  # fisher mean
                            if 'DE-BFL-A' in m:
                                calculation_type = 'DE-BFL-A'  # anchored best fit line
                        if len(beg_pcas) != 0:
                            try:
                                # getting the starting and ending points
                                start, end = tr.index(beg_pcas[ind]), tr.index(
                                    end_pcas[ind])
                                mpars = pmag.domean(datablock, start, end,
                                                    calculation_type)
                            except ValueError:
                                print(
                                    '-W- Specimen record contains invalid start/stop bounds:'
                                )
                                mpars['specimen_direction_type'] = "Error"
                        # calculate direction/plane
                            if mpars["specimen_direction_type"] != "Error":
                                # put it on the plot
                                pmagplotlib.plot_dir(ZED, mpars, datablock,
                                                     angle)
                                if verbose and not set_env.IS_WIN:
                                    pmagplotlib.draw_figs(ZED)
### SKIP if no prior interpretation - this section should not be used:
#            else:
#                try:
#                    start, end = int(beg_pca), int(end_pca)
#                except ValueError:
#                    beg_pca = 0
#                    end_pca = len(datablock) - 1
#                    start, end = int(beg_pca), int(end_pca)
#            #    # calculate direction/plane
#                try:
#                    mpars = pmag.domean(datablock, start, end, calculation_type)
#                except Exception as ex:
#                    print('-I- Problem with {}'.format(this_specimen))
#                    print('   ', ex)
#                    print('    Skipping')
#                    continue
#                    k += 1
#                if mpars["specimen_direction_type"] != "Error":
#                    # put it on the plot
#                    pmagplotlib.plot_dir(ZED, mpars, datablock, angle)
#                    if verbose:
#                        pmagplotlib.draw_figs(ZED)

            if plots == 1 or specimen != "":
                if plot_file == "":
                    basename = title
                else:
                    basename = plot_file
                files = {}
                for key in list(ZED.keys()):
                    files[key] = basename + '_' + key + '.' + fmt
                    if pmagplotlib.isServer:
                        files[key] = basename + "TY:_{}_.".format(key) + fmt
                pmagplotlib.save_plots(ZED, files)
                if specimen != "":
                    sys.exit()
            if verbose:
                recnum = 0
                for plotrec in datablock:
                    if units == 'T':
                        print('%s: %i  %7.1f %s  %8.3e %7.1f %7.1f %s' %
                              (plotrec[5], recnum, plotrec[0] * 1e3, " mT",
                               plotrec[3], plotrec[1], plotrec[2], plotrec[6]))
                    if units == "K":
                        print('%s: %i  %7.1f %s  %8.3e %7.1f %7.1f %s' %
                              (plotrec[5], recnum, plotrec[0] - 273, ' C',
                               plotrec[3], plotrec[1], plotrec[2], plotrec[6]))
                    if units == "J":
                        print('%s: %i  %7.1f %s  %8.3e %7.1f %7.1f %s' %
                              (plotrec[5], recnum, plotrec[0], ' J',
                               plotrec[3], plotrec[1], plotrec[2], plotrec[6]))
                    if 'K' in units and 'T' in units:
                        if plotrec[0] >= 1.:
                            print('%s: %i  %7.1f %s  %8.3e %7.1f %7.1f %s' %
                                  (plotrec[5], recnum, plotrec[0] - 273, ' C',
                                   plotrec[3], plotrec[1], plotrec[2],
                                   plotrec[6]))
                        if plotrec[0] < 1.:
                            print('%s: %i  %7.1f %s  %8.3e %7.1f %7.1f %s' %
                                  (plotrec[5], recnum, plotrec[0] * 1e3, " mT",
                                   plotrec[3], plotrec[1], plotrec[2],
                                   plotrec[6]))
                    recnum += 1
            # we have a current interpretation
            elif mpars["specimen_direction_type"] != "Error":
                #
                # create a new specimen record for the interpreation for this
                # specimen
                this_specimen_interpretation = {
                    col: ""
                    for col in specimen_cols
                }
                #               this_specimen_interpretation["analysts"]=user
                this_specimen_interpretation['software_packages'] = version_num
                this_specimen_interpretation['specimen'] = this_specimen
                this_specimen_interpretation["method_codes"] = calculation_type
                this_specimen_interpretation["meas_step_unit"] = units
                this_specimen_interpretation["meas_step_min"] = tr[start]
                this_specimen_interpretation["meas_step_max"] = tr[end]
                this_specimen_interpretation["dir_dec"] = '%7.1f' % (
                    mpars['specimen_dec'])
                this_specimen_interpretation["dir_inc"] = '%7.1f' % (
                    mpars['specimen_inc'])
                this_specimen_interpretation["dir_dang"] = '%7.1f' % (
                    mpars['specimen_dang'])
                this_specimen_interpretation["dir_n_measurements"] = '%i' % (
                    mpars['specimen_n'])
                this_specimen_interpretation["dir_tilt_correction"] = coord
                methods = methods.replace(" ", "")
                if "T" in units:
                    methods = methods + ":LP-DIR-AF"
                if "K" in units:
                    methods = methods + ":LP-DIR-T"
                if "J" in units:
                    methods = methods + ":LP-DIR-M"
                this_specimen_interpretation["method_codes"] = methods.strip(
                    ':')
                this_specimen_interpretation[
                    "experiments"] = this_specimen_measurements.experiment.unique(
                    )[0]
                #
                #   print some stuff
                #
                if calculation_type != 'DE-FM':
                    this_specimen_interpretation["dir_mad_free"] = '%7.1f' % (
                        mpars['specimen_mad'])
                    this_specimen_interpretation["dir_alpha95"] = ''
                    if verbose:
                        if units == 'K':
                            print(
                                '%s %i %7.1f %7.1f %7.1f %7.1f %7.1f %7.1f %s \n'
                                %
                                (this_specimen_interpretation["specimen"],
                                 int(this_specimen_interpretation[
                                     "dir_n_measurements"]),
                                 float(this_specimen_interpretation[
                                     "dir_mad_free"]),
                                 float(
                                     this_specimen_interpretation["dir_dang"]),
                                 float(this_specimen_interpretation[
                                     "meas_step_min"]) - 273,
                                 float(this_specimen_interpretation[
                                     "meas_step_max"]) - 273,
                                 float(
                                     this_specimen_interpretation["dir_dec"]),
                                 float(
                                     this_specimen_interpretation["dir_inc"]),
                                 calculation_type))
                        elif units == 'T':
                            print(
                                '%s %i %7.1f %7.1f %7.1f %7.1f %7.1f %7.1f %s \n'
                                %
                                (this_specimen_interpretation["specimen"],
                                 int(this_specimen_interpretation[
                                     "dir_n_measurements"]),
                                 float(this_specimen_interpretation[
                                     "dir_mad_free"]),
                                 float(
                                     this_specimen_interpretation["dir_dang"]),
                                 float(this_specimen_interpretation[
                                     "meas_step_min"]) * 1e3,
                                 float(this_specimen_interpretation[
                                     "meas_step_max"]) * 1e3,
                                 float(
                                     this_specimen_interpretation["dir_dec"]),
                                 float(
                                     this_specimen_interpretation["dir_inc"]),
                                 calculation_type))
                        elif 'T' in units and 'K' in units:
                            if float(this_specimen_interpretation[
                                    'meas_step_min']) < 1.0:
                                min = float(this_specimen_interpretation[
                                    'meas_step_min']) * 1e3
                            else:
                                min = float(this_specimen_interpretation[
                                    'meas_step_min']) - 273
                            if float(this_specimen_interpretation[
                                    'meas_step_max']) < 1.0:
                                max = float(this_specimen_interpretation[
                                    'meas_step_max']) * 1e3
                            else:
                                max = float(this_specimen_interpretation[
                                    'meas_step_max']) - 273
                            print(
                                '%s %i %7.1f %i %i %7.1f %7.1f %7.1f %s \n' %
                                (this_specimen_interpretation["specimen"],
                                 int(this_specimen_interpretation[
                                     "dir_n_measurements"]),
                                 float(this_specimen_interpretation[
                                     "dir_mad_free"]),
                                 float(
                                     this_specimen_interpretation["dir_dang"]),
                                 min, max,
                                 float(
                                     this_specimen_interpretation["dir_dec"]),
                                 float(
                                     this_specimen_interpretation["dir_inc"]),
                                 calculation_type))
                        else:
                            print(
                                '%s %i %7.1f %7.1f %7.1f %7.1f %7.1f %7.1f %s \n'
                                %
                                (this_specimen_interpretation["specimen"],
                                 int(this_specimen_interpretation[
                                     "dir_n_measurements"]),
                                 float(this_specimen_interpretation[
                                     "dir_mad_free"]),
                                 float(
                                     this_specimen_interpretation["dir_dang"]),
                                 float(this_specimen_interpretation[
                                     "meas_step_min"]),
                                 float(this_specimen_interpretation[
                                     "meas_step_max"]),
                                 float(
                                     this_specimen_interpretation["dir_dec"]),
                                 float(
                                     this_specimen_interpretation["dir_inc"]),
                                 calculation_type))
                else:
                    this_specimen_interpretation["dir_alpha95"] = '%7.1f' % (
                        mpars['specimen_alpha95'])
                    this_specimen_interpretation["dir_mad_free"] = ''
                    if verbose:
                        if 'K' in units:
                            print(
                                '%s %i %7.1f %7.1f %7.1f %7.1f %7.1f %7.1f %s \n'
                                %
                                (this_specimen_interpretation["specimen"],
                                 int(this_specimen_interpretation[
                                     "dir_n_measurments"]),
                                 float(this_specimen_interpretation[
                                     "dir_mad_free"]),
                                 float(
                                     this_specimen_interpretation["dir_dang"]),
                                 float(this_specimen_interpretation[
                                     "meas_step_min"]) - 273,
                                 float(this_specimen_interpretation[
                                     "meas_step_max"]) - 273,
                                 float(
                                     this_specimen_interpretation["dir_dec"]),
                                 float(
                                     this_specimen_interpretation["dir_inc"]),
                                 calculation_type))
                        elif 'T' in units:
                            print(
                                '%s %i %7.1f %7.1f %7.1f %7.1f %7.1f %7.1f %s \n'
                                %
                                (this_specimen_interpretation["specimen"],
                                 int(this_specimen_interpretation[
                                     "dir_n_measurements"]),
                                 float(this_specimen_interpretation[
                                     "dir_alpha95"]),
                                 float(
                                     this_specimen_interpretation["dir_dang"]),
                                 float(this_specimen_interpretation[
                                     "meas_step_min"]) * 1e3,
                                 float(this_specimen_interpretation[
                                     "meas_step_max"]) * 1e3,
                                 float(
                                     this_specimen_interpretation["dir_dec"]),
                                 float(
                                     this_specimen_interpretation["dir_inc"]),
                                 calculation_type))
                        elif 'T' in units and 'K' in units:
                            if float(this_specimen_interpretation[
                                    'meas_step_min']) < 1.0:
                                min = float(this_specimen_interpretation[
                                    'meas_step_min']) * 1e3
                            else:
                                min = float(this_specimen_interpretation[
                                    'meas_step_min']) - 273
                            if float(this_specimen_interpretation[
                                    'meas_step_max']) < 1.0:
                                max = float(this_specimen_interpretation[
                                    'meas_step_max']) * 1e3
                            else:
                                max = float(this_specimen_interpretation[
                                    'meas_step_max']) - 273
                            print('%s %i %7.1f %i %i %7.1f %7.1f %s \n' % (
                                this_specimen_interpretation["specimen"],
                                int(this_specimen_interpretation[
                                    "dir_n_measurements"]),
                                float(
                                    this_specimen_interpretation["dir_alpha95"]
                                ), min, max,
                                float(this_specimen_interpretation["dir_dec"]),
                                float(this_specimen_interpretation["dir_inc"]),
                                calculation_type))
                        else:
                            print(
                                '%s %i %7.1f %7.1f %7.1f %7.1f %7.1f %s \n' %
                                (this_specimen_interpretation["specimen"],
                                 int(this_specimen_interpretation[
                                     "dir_n_measurements"]),
                                 float(this_specimen_interpretation[
                                     "dir_alpha95"]),
                                 float(this_specimen_interpretation[
                                     "meas_step_min"]),
                                 float(this_specimen_interpretation[
                                     "meas_step_max"]),
                                 float(
                                     this_specimen_interpretation["dir_dec"]),
                                 float(
                                     this_specimen_interpretation["dir_inc"]),
                                 calculation_type))
                if verbose:
                    saveit = input("Save this interpretation? [y]/n \n")
        else:
            print("no data", this_specimen)
        if verbose:
            pmagplotlib.draw_figs(ZED)
            #res = input('  <return> for next specimen, [q]uit  ')
            res = input("S[a]ve plots, [q]uit, or <return> to continue  ")
            if res == 'a':
                files = {
                    plot_type: this_specimen + "_" + plot_type + "." + fmt
                    for plot_type in ZED
                }
                pmagplotlib.save_plots(ZED, files)
                print("")
            if res == 'q':
                return
        k += 1
Exemplo n.º 5
0
def main():
    """
    NAME
        thellier_magic.py

    DESCRIPTION
        plots Thellier-Thellier data in version 3.0 format
        Reads saved interpretations from a specimen formatted table, default: specimens.txt

    SYNTAX
        thellier_magic.py [command line options]

    OPTIONS
        -h prints help message and quits
        -f MEAS, set measurements input file, default is 'measurements.txt'
        -fsp PRIOR, set specimens.txt prior interpretations file, default is 'specimens.txt'
        -fcr CRIT, set criteria file for grading.  # not yet implemented
        -fmt [svg,png,jpg], format for images - default is svg
        -sav,  saves plots with out review (in format specified by -fmt key or default)
        -spc SPEC, plots single specimen SPEC, saves plot with specified format
            with optional -b bounds and quits
        -b BEG END: sets  bounds for calculation
           BEG: starting step number for slope calculation
           END: ending step number for slope calculation
        -z use only z component difference for pTRM calculation

    OUTPUT
        figures:
            ALL:  numbers refer to temperature steps in command line window
            1) Arai plot:  closed circles are zero-field first/infield
                           open circles are infield first/zero-field
                           triangles are pTRM checks
                           squares are pTRM tail checks
                           VDS is vector difference sum
                           diamonds are bounds for interpretation
            2) Zijderveld plot:  closed (open) symbols are X-Y (X-Z) planes
                                 X rotated to NRM direction
            3) (De/Re)Magnetization diagram:
                           circles are NRM remaining
                           squares are pTRM gained
            4) equal area projections:
               green triangles are pTRM gained direction
                           red (purple) circles are lower(upper) hemisphere of ZI step directions
                           blue (cyan) squares are lower(upper) hemisphere IZ step directions
            5) Optional:  TRM acquisition
            6) Optional: TDS normalization
        command line window:
            list is: temperature step numbers, temperatures (C), Dec, Inc, Int (units of measuements)
                     list of possible commands: type letter followed by return to select option
                     saving of plots creates image files with specimen, plot type as name
    """
    #
    #   initializations
    #
    version_num = pmag.get_version()
    verbose = pmagplotlib.verbose
    #
    # default acceptance criteria
    #
    accept = pmag.default_criteria(0)[0]  # set the default criteria
    #
    # parse command line options
    #
    plots, fmt, Zdiff = 0, 'svg', 0
    if '-h' in sys.argv:
        print(main.__doc__)
        sys.exit()
    dir_path = pmag.get_named_arg("-WD", default_val=os.getcwd())
    meas_file = pmag.get_named_arg("-f", default_val="measurements.txt")
    spec_file = pmag.get_named_arg("-fsp", default_val="specimens.txt")
    crit_file = pmag.get_named_arg("-fcr", default_val="criteria.txt")
    spec_file = os.path.join(dir_path, spec_file)
    meas_file = os.path.join(dir_path, meas_file)
    crit_file = os.path.join(dir_path, crit_file)
    fmt = pmag.get_named_arg("-fmt", "svg")
    if '-sav' in sys.argv:
        plots, verbose = 1, 0
    if '-z' in sys.argv:
        Zdiff = 1
    specimen = pmag.get_named_arg("-spc", default_val="")
    if '-b' in sys.argv:
        ind = sys.argv.index('-b')
        start = int(sys.argv[ind + 1])
        end = int(sys.argv[ind + 2])
    else:
        start, end = "", ""
    fnames = {
        'measurements': meas_file,
        'specimens': spec_file,
        'criteria': crit_file
    }
    contribution = cb.Contribution(
        dir_path,
        custom_filenames=fnames,
        read_tables=['measurements', 'specimens', 'criteria'])
    #
    #   import  prior interpretations  from specimen file
    #
    specimen_cols = [
        'analysts', 'aniso_ftest', 'aniso_ftest12', 'aniso_ftest23', 'aniso_s',
        'aniso_s_mean', 'aniso_s_n_measurements', 'aniso_s_sigma',
        'aniso_s_unit', 'aniso_tilt_correction', 'aniso_type', 'aniso_v1',
        'aniso_v2', 'aniso_v3', 'citations', 'description', 'dir_alpha95',
        'dir_comp', 'dir_dec', 'dir_inc', 'dir_mad_free', 'dir_n_measurements',
        'dir_tilt_correction', 'experiments', 'geologic_classes',
        'geologic_types', 'hyst_bc', 'hyst_bcr', 'hyst_mr_moment',
        'hyst_ms_moment', 'int_abs', 'int_b', 'int_b_beta', 'int_b_sigma',
        'int_corr', 'int_dang', 'int_drats', 'int_f', 'int_fvds', 'int_gamma',
        'int_mad_free', 'int_md', 'int_n_measurements', 'int_n_ptrm', 'int_q',
        'int_rsc', 'int_treat_dc_field', 'lithologies', 'meas_step_max',
        'meas_step_min', 'meas_step_unit', 'method_codes', 'sample',
        'software_packages', 'specimen'
    ]
    spec_container, prior_spec_data = None, []
    if 'specimens' in contribution.tables:
        spec_container = contribution.tables['specimens']
        if 'method_codes' in spec_container.df.columns:
            # look up all prior intensity interpretations
            prior_spec_data = spec_container.get_records_for_code(
                'LP-PI-TRM', strict_match=False)
    backup = 0
    #
    Mkeys = ['magn_moment', 'magn_volume', 'magn_mass']
    #
    #   create measurement dataframe
    #
    if pmagplotlib.isServer:
        contribution.propagate_location_to_measurements()

    meas_container = contribution.tables['measurements']
    meas_data = meas_container.df
    #
    meas_data['method_codes'] = meas_data['method_codes'].str.replace(
        " ", "")  # get rid of nasty spaces
    meas_data = meas_data[meas_data['method_codes'].str.contains(
        'LP-PI-TRM|LP-TRM|LP-TRM-TD') ==
                          True]  # fish out zero field steps for plotting
    intensity_types = [
        col_name for col_name in meas_data.columns if col_name in Mkeys
    ]
    # plot first intensity method found - normalized to initial value anyway -
    # doesn't matter which used

    int_key = meas_container.find_filled_col(intensity_types)
    if not int_key:
        print("-W- No intensity data found, thellier_magic cannot run")
        return

    # get all the non-null intensity records of the same type
    meas_data = meas_data[meas_data[int_key].notnull()]

    if not len(meas_data):
        print("-W- No intensity data found, thellier_magic cannot run")
        return
    if 'flag' not in meas_data.columns:
        meas_data['flag'] = 'g'  # set the default flag to good
    meas_data = meas_data[meas_data['flag'].str.contains('g') ==
                          True]  # only the 'good' measurements
    thel_data = meas_data[meas_data['method_codes'].str.contains('LP-PI-TRM')
                          == True]  # get all the Thellier data
    trm_data = meas_data[meas_data['method_codes'].str.contains('LP-TRM') ==
                         True]  # get all the TRM acquisition data
    td_data = meas_data[meas_data['method_codes'].str.contains('LP-TRM-TD') ==
                        True]  # get all the TD data
    anis_data = meas_data[meas_data['method_codes'].str.contains('LP-AN') ==
                          True]  # get all the anisotropy data
    #
    # get list of unique specimen names from measurement data
    #
    # this is a Series of all the specimen names
    specimen_names = meas_data.specimen.unique()
    specimen_names = specimen_names.tolist()  # turns it into a list
    specimen_names.sort()  # sorts by specimen name
    #
    # set up new DataFrame for this sessions specimen interpretations
    #
    spec_container = cb.MagicDataFrame(dtype='specimens',
                                       columns=specimen_cols)
    # this is for interpretations from this session
    current_spec_data = spec_container.df
    if specimen == "":  # do all specimens
        k = 0
    else:
        k = specimen_names.index(specimen)  # just do this one
    # define figure numbers for arai, zijderveld and
    #   de-,re-magnetization diagrams
    AZD = {}
    AZD['deremag'], AZD['zijd'], AZD['arai'], AZD['eqarea'] = 1, 2, 3, 4
    pmagplotlib.plot_init(AZD['arai'], 5, 5)
    pmagplotlib.plot_init(AZD['zijd'], 5, 5)
    pmagplotlib.plot_init(AZD['deremag'], 5, 5)
    pmagplotlib.plot_init(AZD['eqarea'], 5, 5)
    if len(trm_data) > 0:
        AZD['TRM'] = 5
        pmagplotlib.plot_init(AZD['TRM'], 5, 5)
    if len(td_data) > 0:
        AZD['TDS'] = 6
        pmagplotlib.plot_init(AZD['TDS'], 5, 5)
    #
    while k < len(specimen_names):
        # set the current specimen for plotting
        this_specimen = specimen_names[k]
        if verbose and this_specimen != "":
            print(this_specimen, k + 1, 'out of ', len(specimen_names))
        if pmagplotlib.isServer:
            this_specimen_measurements = meas_data[meas_data['specimen'] ==
                                                   this_specimen]
            try:
                loc = this_specimen_measurements.loc[:, 'location'].values[0]
            except:
                loc = ""
            try:
                site = this_specimen_measurements.loc[:, 'site'].values[0]
            except:
                site = ""
            try:
                samp = this_specimen_measurements.loc[:, 'sample'].values[0]
            except:
                samp = ""

#
#    set up datablocks
#
        thelblock = thel_data[thel_data['specimen'].str.contains(this_specimen)
                              == True]  # fish out this specimen
        trmblock = trm_data[trm_data['specimen'].str.contains(this_specimen) ==
                            True]  # fish out this specimen
        tdsrecs = td_data[td_data['specimen'].str.contains(this_specimen) ==
                          True]  # fish out this specimen
        anisblock = anis_data[anis_data['specimen'].str.contains(this_specimen)
                              == True]  # fish out the anisotropy data
        if len(prior_spec_data):
            prior_specimen_interpretations = prior_spec_data[
                prior_spec_data['specimen'].str.contains(
                    this_specimen) == True]  # fish out prior interpretation
        else:
            prior_specimen_interpretations = []

#
# sort data into types
#
        araiblock, field = pmag.sortarai(thelblock,
                                         this_specimen,
                                         Zdiff,
                                         version=3)
        first_Z = araiblock[0]
        GammaChecks = araiblock[5]
        if len(first_Z) < 3:
            if backup == 0:
                k += 1
                if verbose:
                    print('skipping specimen - moving forward ', this_specimen)
            else:
                k -= 1
                if verbose:
                    print('skipping specimen - moving backward ',
                          this_specimen)
        else:
            backup = 0
            zijdblock, units = pmag.find_dmag_rec(this_specimen,
                                                  thelblock,
                                                  version=3)
            if start == "" and len(prior_specimen_interpretations) > 0:
                if verbose:
                    print('Looking up saved interpretation....')
#
# get prior interpretation steps
#
                beg_int = pd.to_numeric(prior_specimen_interpretations.
                                        meas_step_min.values).tolist()[0]
                end_int = pd.to_numeric(prior_specimen_interpretations.
                                        meas_step_max.values).tolist()[0]
            else:
                beg_int, end_int = "", ""
            recnum = 0
            if verbose:
                print("index step Dec   Inc  Int       Gamma")
            for plotrec in zijdblock:
                if plotrec[0] == beg_int:
                    start = recnum  # while we are at it, collect these bounds
                if plotrec[0] == end_int:
                    end = recnum
                if verbose:
                    if GammaChecks != "":
                        gamma = ""
                        for g in GammaChecks:
                            if g[0] == plotrec[0] - 273:
                                gamma = g[1]
                                break
                    if gamma is not "":
                        print('%i     %i %7.1f %7.1f %8.3e %7.1f' %
                              (recnum, plotrec[0] - 273, plotrec[1],
                               plotrec[2], plotrec[3], gamma))
                    else:
                        print('%i     %i %7.1f %7.1f %8.3e ' %
                              (recnum, plotrec[0] - 273, plotrec[1],
                               plotrec[2], plotrec[3]))
                recnum += 1
            for fig in list(AZD.keys()):
                pmagplotlib.clearFIG(AZD[fig])  # clear all figures
            if 'K' in units:
                u = 'K'
            elif 'J' in units:
                u = 'J'
            pmagplotlib.plot_arai_zij(AZD, araiblock, zijdblock, this_specimen,
                                      u)
            if verbose:
                pmagplotlib.draw_figs(AZD)
            if cb.is_null(start, False) or cb.is_null(end, False):
                if verbose:
                    ans = input('Return for next specimen, q to quit:  ')
                    if ans == 'q':
                        sys.exit()
                k += 1  # moving on
                start, end = "", ""
                continue

            pars, errcode = pmag.PintPars(thelblock,
                                          araiblock,
                                          zijdblock,
                                          start,
                                          end,
                                          accept,
                                          version=3)
            pars['measurement_step_unit'] = "K"
            pars['experiment_type'] = 'LP-PI-TRM'
            #
            # work on saving interpretations stuff later
            #
            if errcode != 1:  # no problem in PintPars
                pars["specimen_lab_field_dc"] = field
                pars["specimen_int"] = -1 * field * pars["specimen_b"]
                pars["er_specimen_name"] = this_specimen
                # pars,kill=pmag.scoreit(pars,this_specimen_interpretation,accept,'',verbose)
                # # deal with this later
                pars["specimen_grade"] = 'None'
                pars['measurement_step_min'] = pars['meas_step_min']
                pars['measurement_step_max'] = pars['meas_step_max']
                if pars['measurement_step_unit'] == 'K':
                    outstr = "specimen     Tmin  Tmax  N  lab_field  B_anc  b  q  f(coe)  Fvds  beta  MAD  Dang  Drats  Nptrm  Grade  R  MD%  sigma  Gamma_max \n"
                    pars_out = (this_specimen, (pars["meas_step_min"] - 273),
                                (pars["meas_step_max"] -
                                 273), (pars["specimen_int_n"]),
                                1e6 * (pars["specimen_lab_field_dc"]),
                                1e6 * (pars["specimen_int"]),
                                pars["specimen_b"], pars["specimen_q"],
                                pars["specimen_f"], pars["specimen_fvds"],
                                pars["specimen_b_beta"], pars["int_mad_free"],
                                pars["int_dang"], pars["int_drats"],
                                pars["int_n_ptrm"], pars["specimen_grade"],
                                np.sqrt(pars["specimen_rsc"]),
                                int(pars["int_md"]), pars["specimen_b_sigma"],
                                pars['specimen_gamma'])
                    outstring = '%s %4.0f %4.0f %i %4.1f %4.1f %5.3f %5.1f %5.3f %5.3f %5.3f  %7.1f %7.1f %7.1f %s %s %6.3f %i %5.3f %7.1f' % pars_out + '\n'
                elif pars['measurement_step_unit'] == 'J':
                    outstr = "specimen     Wmin  Wmax  N  lab_field  B_anc  b  q  f(coe)  Fvds  beta  MAD  Dang  Drats  Nptrm  Grade  R  MD%  sigma  ThetaMax DeltaMax GammaMax\n"
                    pars_out = (
                        this_specimen, (pars["meas_step_min"]),
                        (pars["meas_step_max"]), (pars["specimen_int_n"]),
                        1e6 * (pars["specimen_lab_field_dc"]),
                        1e6 * (pars["specimen_int"]), pars["specimen_b"],
                        pars["specimen_q"], pars["specimen_f"],
                        pars["specimen_fvds"], pars["specimen_b_beta"],
                        pars["specimen_int_mad"], pars["specimen_int_dang"],
                        pars["specimen_drats"], pars["specimen_int_ptrm_n"],
                        pars["specimen_grade"], np.sqrt(pars["specimen_rsc"]),
                        int(pars["specimen_md"]), pars["specimen_b_sigma"],
                        pars["specimen_theta"], pars["specimen_delta"],
                        pars["specimen_gamma"])
                    outstring = '%s %4.0f %4.0f %i %4.1f %4.1f %5.3f %5.1f %5.3f %5.3f %5.3f  %7.1f %7.1f %7.1f %s %s %6.3f %i %5.3f %7.1f %7.1f %7.1f' % pars_out + '\n'
                print(outstr)
                print(outstring)
                pmagplotlib.plot_b(AZD, araiblock, zijdblock, pars)
                mpars = pmag.domean(araiblock[1], start, end, 'DE-BFL')
                if verbose:
                    pmagplotlib.draw_figs(AZD)
                    print('pTRM direction= ',
                          '%7.1f' % (mpars['specimen_dec']),
                          ' %7.1f' % (mpars['specimen_inc']), ' MAD:',
                          '%7.1f' % (mpars['specimen_mad']))
            if len(anisblock) > 0:  # this specimen has anisotropy data
                if verbose:
                    print('Found anisotropy record... but ignoring for now ')
            if plots == 1:
                if fmt != "pmag":
                    files = {}
                    for key in list(AZD.keys()):
                        if pmagplotlib.isServer:
                            files[
                                key] = "LO:_{}_SI:_{}_SA:_{}_SP:_{}_TY:_{}_.{}".format(
                                    loc, site, samp, this_specimen, key, fmt)
                        else:
                            files[key] = 'SP:_' + this_specimen + \
                              '_TY:_' + key + '_' + '.' + fmt
                    if pmagplotlib.isServer:
                        black = '#000000'
                        purple = '#800080'
                        titles = {}
                        titles['deremag'] = 'DeReMag Plot'
                        titles['zijd'] = 'Zijderveld Plot'
                        titles['arai'] = 'Arai Plot'
                        titles['TRM'] = 'TRM Acquisition data'
                        titles['eqarea'] = 'Equal Area Plot'
                        AZD = pmagplotlib.add_borders(AZD, titles, black,
                                                      purple)
                    pmagplotlib.save_plots(AZD, files)
                else:  # save in pmag format
                    print('pmag format no longer supported')
                    #script="grep "+this_specimen+" output.mag | thellier -mfsi"
                    #script=script+' %8.4e'%(field)
                    # min='%i'%((pars["measurement_step_min"]-273))
                    # Max='%i'%((pars["measurement_step_max"]-273))
                    #script=script+" "+min+" "+Max
                    #script=script+" |plotxy;cat mypost >>thellier.ps\n"
                    # pltf.write(script)
                    # pmag.domagicmag(outf,MeasRecs)
            if specimen != "":
                sys.exit()  # syonara
            if verbose:
                ans = input('Return for next specimen, q to quit:  ')
                if ans == 'q':
                    sys.exit()
            start, end = "", ""
            k += 1  # moving on