Exemplo n.º 1
0
def gooding_coe(k, p, ecc, inc, raan, argp, nu, tof, numiter=150, rtol=1e-8):
    # TODO: parabolic and hyperbolic not implemented cases
    if ecc >= 1.0:
        raise NotImplementedError(
            "Parabolic/Hyperbolic cases still not implemented in gooding.")

    M0 = E_to_M(nu_to_E(nu, ecc), ecc)
    semi_axis_a = p / (1 - ecc**2)
    n = np.sqrt(k / np.abs(semi_axis_a)**3)
    M = M0 + n * tof

    # Start the computation
    n = 0
    c = ecc * np.cos(M)
    s = ecc * np.sin(M)
    psi = s / np.sqrt(1 - 2 * c + ecc**2)
    f = 1.0
    while f**2 >= rtol and n <= numiter:
        xi = np.cos(psi)
        eta = np.sin(psi)
        fd = (1 - c * xi) + s * eta
        fdd = c * eta + s * xi
        f = psi - fdd
        psi = psi - f * fd / (fd**2 - 0.5 * f * fdd)
        n += 1

    E = M + psi
    return E_to_nu(E, ecc)
Exemplo n.º 2
0
def markley_coe(k, p, ecc, inc, raan, argp, nu, tof):

    M0 = E_to_M(nu_to_E(nu, ecc), ecc)
    a = p / (1 - ecc**2)
    n = np.sqrt(k / a**3)
    M = M0 + n * tof

    # Range between -pi and pi
    M = (M + np.pi) % (2 * np.pi) - np.pi

    # Equation (20)
    alpha = (3 * np.pi**2 + 1.6 * (np.pi - np.abs(M)) /
             (1 + ecc)) / (np.pi**2 - 6)

    # Equation (5)
    d = 3 * (1 - ecc) + alpha * ecc

    # Equation (9)
    q = 2 * alpha * d * (1 - ecc) - M**2

    # Equation (10)
    r = 3 * alpha * d * (d - 1 + ecc) * M + M**3

    # Equation (14)
    w = (np.abs(r) + np.sqrt(q**3 + r**2))**(2 / 3)

    # Equation (15)
    E = (2 * r * w / (w**2 + w * q + q**2) + M) / d

    # Equation (26)
    f0 = _kepler_equation(E, M, ecc)
    f1 = _kepler_equation_prime(E, M, ecc)
    f2 = ecc * np.sin(E)
    f3 = ecc * np.cos(E)
    f4 = -f2

    # Equation (22)
    delta3 = -f0 / (f1 - 0.5 * f0 * f2 / f1)
    delta4 = -f0 / (f1 + 0.5 * delta3 * f2 + 1 / 6 * delta3**2 * f3)
    delta5 = -f0 / (f1 + 0.5 * delta4 * f2 + 1 / 6 * delta4**2 * f3 +
                    1 / 24 * delta4**3 * f4)

    E += delta5
    nu = E_to_nu(E, ecc)

    return nu
Exemplo n.º 3
0
def pimienta_coe(k, p, ecc, inc, raan, argp, nu, tof):

    q = p / (1 + ecc)

    # TODO: Do something to increase parabolic accuracy?
    n = np.sqrt(k * (1 - ecc)**3 / q**3)
    M0 = E_to_M(nu_to_E(nu, ecc), ecc)

    M = M0 + n * tof

    # Equation (32a), (32b), (32c) and (32d)
    c3 = 5 / 2 + 560 * ecc
    a = 15 * (1 - ecc) / c3
    b = -M / c3
    y = np.sqrt(b**2 / 4 + a**3 / 27)

    # Equation (33)
    x_bar = (-b / 2 + y)**(1 / 3) - (b / 2 + y)**(1 / 3)

    # Coefficients from equations (34a) and (34b)
    c15 = 3003 / 14336 + 16384 * ecc
    c13 = 3465 / 13312 - 61440 * ecc
    c11 = 945 / 2816 + 92160 * ecc
    c9 = 175 / 384 - 70400 * ecc
    c7 = 75 / 112 + 28800 * ecc
    c5 = 9 / 8 - 6048 * ecc

    # Precompute x_bar powers, equations (35a) to (35d)
    x_bar2 = x_bar**2
    x_bar3 = x_bar2 * x_bar
    x_bar4 = x_bar3 * x_bar
    x_bar5 = x_bar4 * x_bar
    x_bar6 = x_bar5 * x_bar
    x_bar7 = x_bar6 * x_bar
    x_bar8 = x_bar7 * x_bar
    x_bar9 = x_bar8 * x_bar
    x_bar10 = x_bar9 * x_bar
    x_bar11 = x_bar10 * x_bar
    x_bar12 = x_bar11 * x_bar
    x_bar13 = x_bar12 * x_bar
    x_bar14 = x_bar13 * x_bar
    x_bar15 = x_bar14 * x_bar

    # Function f and its derivatives are given by all the (36) equation set
    f = (c15 * x_bar15 + c13 * x_bar13 + c11 * x_bar11 + c9 * x_bar9 +
         c7 * x_bar7 + c5 * x_bar5 + c3 * x_bar3 + 15 * (1 - ecc) * x_bar - M)
    f1 = (15 * c15 * x_bar14 + 13 * c13 * x_bar12 + 11 * c11 * x_bar10 +
          9 * c9 * x_bar8 + 7 * c7 * x_bar6 + 5 * c5 * x_bar4 +
          3 * c3 * x_bar2 + 15 * (1 - ecc))
    f2 = (210 * c15 * x_bar13 + 156 * c13 * x_bar11 + 110 * c11 * x_bar9 +
          72 * c9 * x_bar7 + 42 * c7 * x_bar5 + 20 * c5 * x_bar3 +
          6 * c3 * x_bar)
    f3 = (2730 * c15 * x_bar12 + 1716 * c13 * x_bar10 + 990 * c11 * x_bar8 +
          504 * c9 * x_bar6 + 210 * c7 * x_bar4 + 60 * c5 * x_bar2 + 6 * c3)
    f4 = (32760 * c15 * x_bar11 + 17160 * c13 * x_bar9 + 7920 * c11 * x_bar7 +
          3024 * c9 * x_bar5 + 840 * c7 * x_bar3 + 120 * c5 * x_bar)
    f5 = (360360 * c15 * x_bar10 + 154440 * c13 * x_bar8 +
          55440 * c11 * x_bar6 + 15120 * c9 * x_bar4 + 2520 * c7 * x_bar2 +
          120 * c5)
    f6 = (3603600 * c15 * x_bar9 + 1235520 * c13 * x_bar7 +
          332640 * c11 * x_bar5 + 60480 * c9 * x_bar3 + 5040 * c7 * x_bar)
    f7 = (32432400 * c15 * x_bar8 + 8648640 * c13 * x_bar6 +
          1663200 * c11 * x_bar4 + 181440 * c9 * x_bar2 + 5040 * c7)
    f8 = (259459200 * c15 * x_bar7 + 51891840 * c13 * x_bar5 +
          6652800 * c11 * x_bar3 + 362880 * c9 * x_bar)
    f9 = (1.8162144e9 * c15 * x_bar6 + 259459200 * c13 * x_bar4 +
          19958400 * c11 * x_bar2 + 362880 * c9)
    f10 = (1.08972864e10 * c15 * x_bar5 + 1.0378368e9 * c13 * x_bar3 +
           39916800 * c11 * x_bar)
    f11 = 5.4486432e10 * c15 * x_bar4 + 3.1135104e9 * c13 * x_bar2 + 39916800 * c11
    f12 = 2.17945728e11 * c15 * x_bar3 + 6.2270208e9 * c13 * x_bar
    f13 = 6.53837184 * c15 * x_bar2 + 6.2270208e9 * c13
    f14 = 1.307674368e13 * c15 * x_bar
    f15 = 1.307674368e13 * c15

    # Solving g parameters defined by equations (37a), (37b), (37c) and (37d)
    g1 = 1 / 2
    g2 = 1 / 6
    g3 = 1 / 24
    g4 = 1 / 120
    g5 = 1 / 720
    g6 = 1 / 5040
    g7 = 1 / 40320
    g8 = 1 / 362880
    g9 = 1 / 3628800
    g10 = 1 / 39916800
    g11 = 1 / 479001600
    g12 = 1 / 6.2270208e9
    g13 = 1 / 8.71782912e10
    g14 = 1 / 1.307674368e12

    # Solving for the u_{i} and h_{i} variables defined by equation (38)
    u1 = -f / f1

    h2 = f1 + g1 * u1 * f2
    u2 = -f / h2

    h3 = f1 + g1 * u2 * f2 + g2 * u2**2 * f3
    u3 = -f / h3

    h4 = f1 + g1 * u3 * f2 + g2 * u3**2 * f3 + g3 * u3**3 * f4
    u4 = -f / h4

    h5 = f1 + g1 * u4 * f2 + g2 * u4**2 * f3 + g3 * u4**3 * f4 + g4 * u4**4 * f5
    u5 = -f / h5

    h6 = (f1 + g1 * u5 * f2 + g2 * u5**2 * f3 + g3 * u5**3 * f4 +
          g4 * u5**4 * f5 + g5 * u5**5 * f6)
    u6 = -f / h6

    h7 = (f1 + g1 * u6 * f2 + g2 * u6**2 * f3 + g3 * u6**3 * f4 +
          g4 * u6**4 * f5 + g5 * u6**5 * f6 + g6 * u6**6 * f7)
    u7 = -f / h7

    h8 = (f1 + g1 * u7 * f2 + g2 * u7**2 * f3 + g3 * u7**3 * f4 +
          g4 * u7**4 * f5 + g5 * u7**5 * f6 + g6 * u7**6 * f7 +
          g7 * u7**7 * f8)
    u8 = -f / h8

    h9 = (f1 + g1 * u8 * f2 + g2 * u8**2 * f3 + g3 * u8**3 * f4 +
          g4 * u8**4 * f5 + g5 * u8**5 * f6 + g6 * u8**6 * f7 +
          g7 * u8**7 * f8 + g8 * u8**8 * f9)
    u9 = -f / h9

    h10 = (f1 + g1 * u9 * f2 + g2 * u9**2 * f3 + g3 * u9**3 * f4 +
           g4 * u9**4 * f5 + g5 * u9**5 * f6 + g6 * u9**6 * f7 +
           g7 * u9**7 * f8 + g8 * u9**8 * f9 + g9 * u9**9 * f10)
    u10 = -f / h10

    h11 = (f1 + g1 * u10 * f2 + g2 * u10**2 * f3 + g3 * u10**3 * f4 +
           g4 * u10**4 * f5 + g5 * u10**5 * f6 + g6 * u10**6 * f7 +
           g7 * u10**7 * f8 + g8 * u10**8 * f9 + g9 * u10**9 * f10 +
           g10 * u10**10 * f11)
    u11 = -f / h11

    h12 = (f1 + g1 * u11 * f2 + g2 * u11**2 * f3 + g3 * u11**3 * f4 +
           g4 * u11**4 * f5 + g5 * u11**5 * f6 + g6 * u11**6 * f7 +
           g7 * u11**7 * f8 + g8 * u11**8 * f9 + g9 * u11**9 * f10 +
           g10 * u11**10 * f11 + g11 * u11**11 * f12)
    u12 = -f / h12

    h13 = (f1 + g1 * u12 * f2 + g2 * u12**2 * f3 + g3 * u12**3 * f4 +
           g4 * u12**4 * f5 + g5 * u12**5 * f6 + g6 * u12**6 * f7 +
           g7 * u12**7 * f8 + g8 * u12**8 * f9 + g9 * u12**9 * f10 +
           g10 * u12**10 * f11 + g11 * u12**11 * f12 + g12 * u12**12 * f13)
    u13 = -f / h13

    h14 = (f1 + g1 * u13 * f2 + g2 * u13**2 * f3 + g3 * u13**3 * f4 +
           g4 * u13**4 * f5 + g5 * u13**5 * f6 + g6 * u13**6 * f7 +
           g7 * u13**7 * f8 + g8 * u13**8 * f9 + g9 * u13**9 * f10 +
           g10 * u13**10 * f11 + g11 * u13**11 * f12 + g12 * u13**12 * f13 +
           g13 * u13**13 * f14)
    u14 = -f / h14

    h15 = (f1 + g1 * u14 * f2 + g2 * u14**2 * f3 + g3 * u14**3 * f4 +
           g4 * u14**4 * f5 + g5 * u14**5 * f6 + g6 * u14**6 * f7 +
           g7 * u14**7 * f8 + g8 * u14**8 * f9 + g9 * u14**9 * f10 +
           g10 * u14**10 * f11 + g11 * u14**11 * f12 + g12 * u14**12 * f13 +
           g13 * u14**13 * f14 + g14 * u14**14 * f15)
    u15 = -f / h15

    # Solving for x
    x = x_bar + u15
    w = x - 0.01171875 * x**17 / (1 + ecc)

    # Solving for the true anomaly from eccentricity anomaly
    E = M + ecc * (-16384 * w**15 + 61440 * w**13 - 92160 * w**11 + 70400 *
                   w**9 - 28800 * w**7 + 6048 * w**5 - 560 * w**3 + 15 * w)

    return E_to_nu(E, ecc)
Exemplo n.º 4
0
def recseries_coe(k,
                  p,
                  ecc,
                  inc,
                  raan,
                  argp,
                  nu,
                  tof,
                  method="rtol",
                  order=8,
                  numiter=100,
                  rtol=1e-8):

    # semi-major axis
    semi_axis_a = p / (1 - ecc**2)
    # mean angular motion
    n = np.sqrt(k / np.abs(semi_axis_a)**3)

    if ecc == 0:
        # Solving for circular orbit

        # compute initial mean anoamly
        M0 = nu  # For circular orbit (M = E = nu)
        # final mean anaomaly
        M = M0 + n * tof
        # snapping anomaly to [0,pi] range
        nu = M - 2 * np.pi * np.floor(M / 2 / np.pi)

        return nu

    elif ecc < 1.0:
        # Solving for elliptical orbit

        # compute initial mean anoamly
        M0 = E_to_M(nu_to_E(nu, ecc), ecc)
        # final mean anaomaly
        M = M0 + n * tof
        # snapping anomaly to [0,pi] range
        M = M - 2 * np.pi * np.floor(M / 2 / np.pi)

        # set recursion iteration
        if method == "rtol":
            Niter = numiter
        elif method == "order":
            Niter = order
        else:
            raise ValueError(
                "Unknown recursion termination method ('rtol','order').")

        # compute eccentric anomaly through recursive series
        E = M + ecc  # Using initial guess from vallado to improve convergence
        for i in range(0, Niter):
            En = M + ecc * np.sin(E)
            # check for break condition
            if method == "rtol" and (abs(En - E) / abs(E)) < rtol:
                break
            E = En

        return E_to_nu(E, ecc)

    else:
        # Parabolic/Hyperbolic orbits are not supported
        raise ValueError("Parabolic/Hyperbolic orbits not supported.")

    return nu
Exemplo n.º 5
0
def mikkola_coe(k, p, ecc, inc, raan, argp, nu, tof):

    a = p / (1 - ecc**2)
    n = np.sqrt(k / np.abs(a)**3)

    # Solve for specific geometrical case
    if ecc < 1.0:
        # Equation (9a)
        alpha = (1 - ecc) / (4 * ecc + 1 / 2)
        M0 = E_to_M(nu_to_E(nu, ecc), ecc)
    else:
        alpha = (ecc - 1) / (4 * ecc + 1 / 2)
        M0 = F_to_M(nu_to_F(nu, ecc), ecc)

    M = M0 + n * tof
    beta = M / 2 / (4 * ecc + 1 / 2)

    # Equation (9b)
    if beta >= 0:
        z = (beta + np.sqrt(beta**2 + alpha**3))**(1 / 3)
    else:
        z = (beta - np.sqrt(beta**2 + alpha**3))**(1 / 3)

    s = z - alpha / z

    # Apply initial correction
    if ecc < 1.0:
        ds = -0.078 * s**5 / (1 + ecc)
    else:
        ds = 0.071 * s**5 / (1 + 0.45 * s**2) / (1 + 4 * s**2) / ecc

    s += ds

    # Solving for the true anomaly
    if ecc < 1.0:
        E = M + ecc * (3 * s - 4 * s**3)
        f = E - ecc * np.sin(E) - M
        f1 = 1.0 - ecc * np.cos(E)
        f2 = ecc * np.sin(E)
        f3 = ecc * np.cos(E)
        f4 = -f2
        f5 = -f3
    else:
        E = 3 * np.log(s + np.sqrt(1 + s**2))
        f = -E + ecc * np.sinh(E) - M
        f1 = -1.0 + ecc * np.cosh(E)
        f2 = ecc * np.sinh(E)
        f3 = ecc * np.cosh(E)
        f4 = f2
        f5 = f3

    # Apply Taylor expansion
    u1 = -f / f1
    u2 = -f / (f1 + 0.5 * f2 * u1)
    u3 = -f / (f1 + 0.5 * f2 * u2 + (1.0 / 6.0) * f3 * u2**2)
    u4 = -f / (f1 + 0.5 * f2 * u3 + (1.0 / 6.0) * f3 * u3**2 +
               (1.0 / 24.0) * f4 * (u3**3))
    u5 = -f / (f1 + f2 * u4 / 2 + f3 * (u4 * u4) / 6.0 + f4 *
               (u4 * u4 * u4) / 24.0 + f5 * (u4 * u4 * u4 * u4) / 120.0)

    E += u5

    if ecc < 1.0:
        nu = E_to_nu(E, ecc)
    else:
        if ecc == 1.0:
            # Parabolic
            nu = D_to_nu(E)
        else:
            # Hyperbolic
            nu = F_to_nu(E, ecc)

    return nu
Exemplo n.º 6
0
def markley_bulk(k, tof, pp, eecc, iinc, rraan, aargp, nnu0):
    """ Solves the kepler problem by a non iterative method. Relative error is
    around 1e-18, only limited by machine double-precission errors.

    Parameters
    ----------
    k : float
        Standar Gravitational parameter
    r0 : array
        Initial position vector wrt attractor center.
    v0 : array
        Initial velocity vector.
    tof : float
        Time of flight.

    Returns
    -------
    rf: array
        Final position vector
    vf: array
        Final velocity vector

    Note
    ----
    The following algorithm was taken from http://dx.doi.org/10.1007/BF00691917.
    """

    # Solve first for eccentricity and mean anomaly
    # p, ecc, inc, raan, argp, nu = rv2coe(k, r0, v0)

    # check of all orbits are elipses
    # if eecc.max() >= 1:
    # raise ValueError("All eccentricities must be smaller than 1")

    EE = nu_to_E(nnu0, eecc)
    MM0 = E_to_M(EE, eecc)

    aa = pp / (1 - eecc**2)
    nn = np.sqrt(k / aa**3)
    MM = MM0 + nn * tof

    # Range between -pi and pi
    MM = (MM + np.pi) % (2 * np.pi) - np.pi
    # MM = MM % (2 * np.pi)
    # for i, MM_elmt in enumerate(MM):
    #     if MM_elmt > np.pi:
    #         MM[i] = -(2 * np.pi - MM_elmt)

    # Equation (20)
    aalpha = (3 * np.pi**2 + 1.6 * (np.pi - np.abs(MM)) /
              (1 + eecc)) / (np.pi**2 - 6)

    # Equation (5)
    dd = 3 * (1 - eecc) + aalpha * eecc

    # Equation (9)
    qq = 2 * aalpha * dd * (1 - eecc) - MM**2

    # Equation (10)
    rr = 3 * aalpha * dd * (dd - 1 + eecc) * MM + MM**3

    # Equation (14)
    ww = (np.abs(rr) + np.sqrt(qq**3 + rr**2))**(2 / 3)

    # Equation (15)
    EE = (2 * rr * ww / (ww**2 + ww * qq + qq**2) + MM) / dd

    # Equation (26)
    f0 = _kepler_equation(EE, MM, eecc)
    f1 = _kepler_equation_prime(EE, MM, eecc)
    f2 = eecc * np.sin(EE)
    f3 = eecc * np.cos(EE)
    f4 = -f2

    # Equation (22)
    delta3 = -f0 / (f1 - 0.5 * f0 * f2 / f1)
    delta4 = -f0 / (f1 + 0.5 * delta3 * f2 + 1 / 6 * delta3**2 * f3)
    delta5 = -f0 / (f1 + 0.5 * delta4 * f2 + 1 / 6 * delta4**2 * f3 +
                    1 / 24 * delta4**3 * f4)

    EE += delta5
    nnu = E_to_nu(EE, eecc)

    return nnu
Exemplo n.º 7
0
def rv2coe(k, r, v, tol=1e-8):
    r"""Converts from vectors to classical orbital elements.

    1. First the angular momentum is computed:
        .. math::
            \vec{h} = \vec{r} \times \vec{v}

    2. With it the eccentricity can be solved:
        .. math::
            \begin{align}
            \vec{e} &= \frac{1}{\mu}\left [ \left ( v^{2} - \frac{\mu}{r}\right ) \vec{r}  - (\vec{r} \cdot \vec{v})\vec{v} \right ] \\
            e &= \sqrt{\vec{e}\cdot\vec{e}} \\
            \end{align}

    3. The node vector line is solved:
        .. math::
            \begin{align}
            \vec{N} &= \vec{k} \times \vec{h} \\
            N &= \sqrt{\vec{N}\cdot\vec{N}}
            \end{align}

    4. The rigth ascension node is computed:
        .. math::
            \Omega = \left\{ \begin{array}{lcc}
             cos^{-1}{\left ( \frac{N_{x}}{N} \right )} &   if  & N_{y} \geq  0 \\
             \\ 360^{o} -cos^{-1}{\left ( \frac{N_{x}}{N} \right )} &  if & N_{y} < 0 \\
             \end{array}
            \right.

    5. The argument of perigee:
        .. math::
            \omega  = \left\{ \begin{array}{lcc}
             cos^{-1}{\left ( \frac{\vec{N}\vec{e}}{Ne} \right )} &   if  & e_{z} \geq  0 \\
             \\ 360^{o} -cos^{-1}{\left ( \frac{\vec{N}\vec{e}}{Ne} \right )} &  if & e_{z} < 0 \\
             \end{array}
            \right.

    6. And finally the true anomaly:
        .. math::
            \nu  = \left\{ \begin{array}{lcc}
             cos^{-1}{\left ( \frac{\vec{e}\vec{r}}{er} \right )} &   if  & v_{r} \geq  0 \\
             \\ 360^{o} -cos^{-1}{\left ( \frac{\vec{e}\vec{r}}{er} \right )} &  if & v_{r} < 0 \\
             \end{array}
            \right.

    Parameters
    ----------
    k : float
        Standard gravitational parameter (km^3 / s^2)
    r : array
        Position vector (km)
    v : array
        Velocity vector (km / s)
    tol : float, optional
        Tolerance for eccentricity and inclination checks, default to 1e-8

    Returns
    -------
    p : float
        Semi-latus rectum of parameter (km)
    ecc: float
        Eccentricity
    inc: float
        Inclination (rad)
    raan: float
        Right ascension of the ascending nod (rad)
    argp: float
        Argument of Perigee (rad)
    nu: float
        True Anomaly (rad)

    Examples
    --------
    >>> from poliastro.constants import GM_earth
    >>> from astropy import units as u
    >>> k = GM_earth.to(u.km ** 3 / u.s ** 2).value  # Earth gravitational parameter
    >>> r = np.array([-6045., -3490., 2500.])
    >>> v = np.array([-3.457, 6.618, 2.533])
    >>> p, ecc, inc, raan, argp, nu = rv2coe(k, r, v)
    >>> print("p:", p, "[km]")
    p: 8530.47436396927 [km]
    >>> print("ecc:", ecc)
    ecc: 0.17121118195416898
    >>> print("inc:", np.rad2deg(inc), "[deg]")
    inc: 153.2492285182475 [deg]
    >>> print("raan:", np.rad2deg(raan), "[deg]")
    raan: 255.27928533439618 [deg]
    >>> print("argp:", np.rad2deg(argp), "[deg]")
    argp: 20.068139973005366 [deg]
    >>> print("nu:", np.rad2deg(nu), "[deg]")
    nu: 28.445804984192122 [deg]

    Note
    ----
    This example is a real exercise from Orbital Mechanics for Engineering
    students by Howard D.Curtis. This exercise is 4.3 of 3rd. Edition, page 200.
    """

    h = cross(r, v)
    n = cross([0, 0, 1], h)
    e = ((v.dot(v) - k / (norm(r))) * r - r.dot(v) * v) / k
    ecc = norm(e)
    p = h.dot(h) / k
    inc = np.arccos(h[2] / norm(h))

    circular = ecc < tol
    equatorial = abs(inc) < tol

    if equatorial and not circular:
        raan = 0
        argp = np.arctan2(e[1], e[0]) % (2 * np.pi)  # Longitude of periapsis
        nu = np.arctan2(h.dot(cross(e, r)) / norm(h), r.dot(e))
    elif not equatorial and circular:
        raan = np.arctan2(n[1], n[0]) % (2 * np.pi)
        argp = 0
        # Argument of latitude
        nu = np.arctan2(r.dot(cross(h, n)) / norm(h), r.dot(n))
    elif equatorial and circular:
        raan = 0
        argp = 0
        nu = np.arctan2(r[1], r[0]) % (2 * np.pi)  # True longitude
    else:
        a = p / (1 - (ecc**2))
        ka = k * a
        if a > 0:
            e_se = r.dot(v) / sqrt(ka)
            e_ce = norm(r) * v.dot(v) / k - 1
            nu = E_to_nu(np.arctan2(e_se, e_ce), ecc)
        else:
            e_sh = r.dot(v) / sqrt(-ka)
            e_ch = norm(r) * (norm(v)**2) / k - 1
            nu = F_to_nu(np.log((e_ch + e_sh) / (e_ch - e_sh)) / 2, ecc)

        raan = np.arctan2(n[1], n[0]) % (2 * np.pi)
        px = r.dot(n)
        py = r.dot(cross(h, n)) / norm(h)
        argp = (np.arctan2(py, px) - nu) % (2 * np.pi)

    nu = (nu + np.pi) % (2 * np.pi) - np.pi

    return p, ecc, inc, raan, argp, nu
Exemplo n.º 8
0
def nu_from_delta_t(delta_t, ecc, k=1.0, q=1.0, delta=1e-2):
    """True anomaly for given elapsed time since periapsis.

    Parameters
    ----------
    delta_t : float
        Time elapsed since periapsis.
    ecc : float
        Eccentricity.
    k : float
        Gravitational parameter.
    q : float
        Periapsis distance.
    delta : float
        Parameter that controls the size of the near parabolic region.

    Returns
    -------
    nu : float
        True anomaly.

    """
    if ecc < 1 - delta:
        # Strong elliptic
        n = np.sqrt(k * (1 - ecc)**3 / q**3)
        M = n * delta_t
        # This might represent several revolutions,
        # so we wrap the true anomaly
        E = M_to_E((M + np.pi) % (2 * np.pi) - np.pi, ecc)
        nu = E_to_nu(E, ecc)
    elif 1 - delta <= ecc < 1:
        E_delta = np.arccos((1 - delta) / ecc)
        # We compute M assuming we are in the strong elliptic case
        # and verify later
        n = np.sqrt(k * (1 - ecc)**3 / q**3)
        M = n * delta_t
        # We check against abs(M) because E_delta could also be negative
        if E_to_M(E_delta, ecc) <= abs(M):
            # Strong elliptic, proceed
            # This might represent several revolutions,
            # so we wrap the true anomaly
            E = M_to_E((M + np.pi) % (2 * np.pi) - np.pi, ecc)
            nu = E_to_nu(E, ecc)
        else:
            # Near parabolic, recompute M
            n = np.sqrt(k / (2 * q**3))
            M = n * delta_t
            D = M_to_D_near_parabolic(M, ecc)
            nu = D_to_nu(D)
    elif ecc == 1:
        # Parabolic
        n = np.sqrt(k / (2 * q**3))
        M = n * delta_t
        D = M_to_D(M)
        nu = D_to_nu(D)
    elif 1 < ecc <= 1 + delta:
        F_delta = np.arccosh((1 + delta) / ecc)
        # We compute M assuming we are in the strong hyperbolic case
        # and verify later
        n = np.sqrt(k * (ecc - 1)**3 / q**3)
        M = n * delta_t
        # We check against abs(M) because F_delta could also be negative
        if F_to_M(F_delta, ecc) <= abs(M):
            # Strong hyperbolic, proceed
            F = M_to_F(M, ecc)
            nu = F_to_nu(F, ecc)
        else:
            # Near parabolic, recompute M
            n = np.sqrt(k / (2 * q**3))
            M = n * delta_t
            D = M_to_D_near_parabolic(M, ecc)
            nu = D_to_nu(D)
    # elif 1 + delta < ecc:
    else:
        # Strong hyperbolic
        n = np.sqrt(k * (ecc - 1)**3 / q**3)
        M = n * delta_t
        F = M_to_F(M, ecc)
        nu = F_to_nu(F, ecc)

    return nu
Exemplo n.º 9
0
def gooding(k, r0, v0, tof, numiter=150, rtol=1e-8):
    """ Solves the Elliptic Kepler Equation with a cubic convergence and
    accuracy better than 10e-12 rad is normally achieved. It is not valid for
    eccentricities equal or higher than 1.0.

    Parameters
    ----------
    k : float
        Standard gravitational parameter of the attractor.
    r : 1x3 vector
        Position vector.
    v : 1x3 vector
        Velocity vector.
    tof : float
        Time of flight.
    rtol: float
        Relative error for accuracy of the method.

    Returns
    -------
    rr : 1x3 vector
        Propagated position vectors.
     vv : 1x3 vector

    Note
    ----
    Original paper for the algorithm: https://doi.org/10.1007/BF01238923
    """

    # Solve first for eccentricity and mean anomaly
    p, ecc, inc, raan, argp, nu = rv2coe(k, r0, v0)

    # TODO: parabolic and hyperbolic not implemented cases
    if ecc >= 1.0:
        raise NotImplementedError(
            "Parabolic/Hyperbolic cases still not implemented in gooding.")

    M0 = nu_to_M(nu, ecc, delta=0)
    semi_axis_a = p / (1 - ecc**2)
    n = np.sqrt(k / np.abs(semi_axis_a)**3)
    M = M0 + n * tof

    # Start the computation
    n = 0
    c = ecc * np.cos(M)
    s = ecc * np.sin(M)
    psi = s / np.sqrt(1 - 2 * c + ecc**2)
    f = 1.0
    while f**2 >= rtol and n <= numiter:
        xi = np.cos(psi)
        eta = np.sin(psi)
        fd = (1 - c * xi) + s * eta
        fdd = c * eta + s * xi
        f = psi - fdd
        psi = psi - f * fd / (fd**2 - 0.5 * f * fdd)
        n += 1

    E = M + psi
    nu = E_to_nu(E, ecc)

    return coe2rv(k, p, ecc, inc, raan, argp, nu)
Exemplo n.º 10
0
def pimienta(k, r0, v0, tof):
    """ Raw algorithm for Adonis' Pimienta and John L. Crassidis 15th order
    polynomial Kepler solver.

    Parameters
    ----------
    k : float
        Standar Gravitational parameter
    r0 : array
        Initial position vector wrt attractor center.
    v0 : array
        Initial velocity vector.
    tof : float
        Time of flight.

    Returns
    -------
    rf: array
        Final position vector
    vf: array
        Final velocity vector

    Note
    ----
    This algorithm was drived from the original paper: http://hdl.handle.net/10477/50522
    """

    # TODO: implement hyperbolic case

    # Solve first for eccentricity and mean anomaly
    p, ecc, inc, raan, argp, nu = rv2coe(k, r0, v0)

    M0 = nu_to_M(nu, ecc, delta=0)
    semi_axis_a = p / (1 - ecc**2)
    n = np.sqrt(k / np.abs(semi_axis_a)**3)
    M = M0 + n * tof

    # Equation (32a), (32b), (32c) and (32d)
    c3 = 5 / 2 + 560 * ecc
    a = 15 * (1 - ecc) / c3
    b = -M / c3
    y = np.sqrt(b**2 / 4 + a**3 / 27)

    # Equation (33)
    x_bar = (-b / 2 + y)**(1 / 3) - (b / 2 + y)**(1 / 3)

    # Coefficients from equations (34a) and (34b)
    c15 = 3003 / 14336 + 16384 * ecc
    c13 = 3465 / 13312 - 61440 * ecc
    c11 = 945 / 2816 + 92160 * ecc
    c9 = 175 / 384 - 70400 * ecc
    c7 = 75 / 112 + 28800 * ecc
    c5 = 9 / 8 - 6048 * ecc

    # Precompute x_bar powers, equations (35a) to (35d)
    x_bar2 = x_bar**2
    x_bar3 = x_bar2 * x_bar
    x_bar4 = x_bar3 * x_bar
    x_bar5 = x_bar4 * x_bar
    x_bar6 = x_bar5 * x_bar
    x_bar7 = x_bar6 * x_bar
    x_bar8 = x_bar7 * x_bar
    x_bar9 = x_bar8 * x_bar
    x_bar10 = x_bar9 * x_bar
    x_bar11 = x_bar10 * x_bar
    x_bar12 = x_bar11 * x_bar
    x_bar13 = x_bar12 * x_bar
    x_bar14 = x_bar13 * x_bar
    x_bar15 = x_bar14 * x_bar

    # Function f and its derivatives are given by all the (36) equation set
    f = (c15 * x_bar15 + c13 * x_bar13 + c11 * x_bar11 + c9 * x_bar9 +
         c7 * x_bar7 + c5 * x_bar5 + c3 * x_bar3 + 15 * (1 - ecc) * x_bar - M)
    f1 = (15 * c15 * x_bar14 + 13 * c13 * x_bar12 + 11 * c11 * x_bar10 +
          9 * c9 * x_bar8 + 7 * c7 * x_bar6 + 5 * c5 * x_bar4 +
          3 * c3 * x_bar2 + 15 * (1 - ecc))
    f2 = (210 * c15 * x_bar13 + 156 * c13 * x_bar11 + 110 * c11 * x_bar9 +
          72 * c9 * x_bar7 + 42 * c7 * x_bar5 + 20 * c5 * x_bar3 +
          6 * c3 * x_bar)
    f3 = (2730 * c15 * x_bar12 + 1716 * c13 * x_bar10 + 990 * c11 * x_bar8 +
          504 * c9 * x_bar6 + 210 * c7 * x_bar4 + 60 * c5 * x_bar2 + 6 * c3)
    f4 = (32760 * c15 * x_bar11 + 17160 * c13 * x_bar9 + 7920 * c11 * x_bar7 +
          3024 * c9 * x_bar5 + 840 * c7 * x_bar3 + 120 * c5 * x_bar)
    f5 = (360360 * c15 * x_bar10 + 154440 * c13 * x_bar8 +
          55440 * c11 * x_bar6 + 15120 * c9 * x_bar4 + 2520 * c7 * x_bar2 +
          120 * c5)
    f6 = (3603600 * c15 * x_bar9 + 1235520 * c13 * x_bar7 +
          332640 * c11 * x_bar5 + 60480 * c9 * x_bar3 + 5040 * c7 * x_bar)
    f7 = (32432400 * c15 * x_bar8 + 8648640 * c13 * x_bar6 +
          1663200 * c11 * x_bar4 + 181440 * c9 * x_bar2 + 5040 * c7)
    f8 = (259459200 * c15 * x_bar7 + 51891840 * c13 * x_bar5 +
          6652800 * c11 * x_bar3 + 362880 * c9 * x_bar)
    f9 = (1.8162144e9 * c15 * x_bar6 + 259459200 * c13 * x_bar4 +
          19958400 * c11 * x_bar2 + 362880 * c9)
    f10 = (1.08972864e10 * c15 * x_bar5 + 1.0378368e9 * c13 * x_bar3 +
           39916800 * c11 * x_bar)
    f11 = 5.4486432e10 * c15 * x_bar4 + 3.1135104e9 * c13 * x_bar2 + 39916800 * c11
    f12 = 2.17945728e11 * c15 * x_bar3 + 6.2270208e9 * c13 * x_bar
    f13 = 6.53837184 * c15 * x_bar2 + 6.2270208e9 * c13
    f14 = 1.307674368e13 * c15 * x_bar
    f15 = 1.307674368e13 * c15

    # Solving g parameters defined by equations (37a), (37b), (37c) and (37d)
    g1 = 1 / 2
    g2 = 1 / 6
    g3 = 1 / 24
    g4 = 1 / 120
    g5 = 1 / 720
    g6 = 1 / 5040
    g7 = 1 / 40320
    g8 = 1 / 362880
    g9 = 1 / 3628800
    g10 = 1 / 39916800
    g11 = 1 / 479001600
    g12 = 1 / 6.2270208e9
    g13 = 1 / 8.71782912e10
    g14 = 1 / 1.307674368e12

    # Solving for the u_{i} and h_{i} variables defined by equation (38)
    u1 = -f / f1

    h2 = f1 + g1 * u1 * f2
    u2 = -f / h2

    h3 = f1 + g1 * u2 * f2 + g2 * u2**2 * f3
    u3 = -f / h3

    h4 = f1 + g1 * u3 * f2 + g2 * u3**2 * f3 + g3 * u3**3 * f4
    u4 = -f / h4

    h5 = f1 + g1 * u4 * f2 + g2 * u4**2 * f3 + g3 * u4**3 * f4 + g4 * u4**4 * f5
    u5 = -f / h5

    h6 = (f1 + g1 * u5 * f2 + g2 * u5**2 * f3 + g3 * u5**3 * f4 +
          g4 * u5**4 * f5 + g5 * u5**5 * f6)
    u6 = -f / h6

    h7 = (f1 + g1 * u6 * f2 + g2 * u6**2 * f3 + g3 * u6**3 * f4 +
          g4 * u6**4 * f5 + g5 * u6**5 * f6 + g6 * u6**6 * f7)
    u7 = -f / h7

    h8 = (f1 + g1 * u7 * f2 + g2 * u7**2 * f3 + g3 * u7**3 * f4 +
          g4 * u7**4 * f5 + g5 * u7**5 * f6 + g6 * u7**6 * f7 +
          g7 * u7**7 * f8)
    u8 = -f / h8

    h9 = (f1 + g1 * u8 * f2 + g2 * u8**2 * f3 + g3 * u8**3 * f4 +
          g4 * u8**4 * f5 + g5 * u8**5 * f6 + g6 * u8**6 * f7 +
          g7 * u8**7 * f8 + g8 * u8**8 * f9)
    u9 = -f / h9

    h10 = (f1 + g1 * u9 * f2 + g2 * u9**2 * f3 + g3 * u9**3 * f4 +
           g4 * u9**4 * f5 + g5 * u9**5 * f6 + g6 * u9**6 * f7 +
           g7 * u9**7 * f8 + g8 * u9**8 * f9 + g9 * u9**9 * f10)
    u10 = -f / h10

    h11 = (f1 + g1 * u10 * f2 + g2 * u10**2 * f3 + g3 * u10**3 * f4 +
           g4 * u10**4 * f5 + g5 * u10**5 * f6 + g6 * u10**6 * f7 +
           g7 * u10**7 * f8 + g8 * u10**8 * f9 + g9 * u10**9 * f10 +
           g10 * u10**10 * f11)
    u11 = -f / h11

    h12 = (f1 + g1 * u11 * f2 + g2 * u11**2 * f3 + g3 * u11**3 * f4 +
           g4 * u11**4 * f5 + g5 * u11**5 * f6 + g6 * u11**6 * f7 +
           g7 * u11**7 * f8 + g8 * u11**8 * f9 + g9 * u11**9 * f10 +
           g10 * u11**10 * f11 + g11 * u11**11 * f12)
    u12 = -f / h12

    h13 = (f1 + g1 * u12 * f2 + g2 * u12**2 * f3 + g3 * u12**3 * f4 +
           g4 * u12**4 * f5 + g5 * u12**5 * f6 + g6 * u12**6 * f7 +
           g7 * u12**7 * f8 + g8 * u12**8 * f9 + g9 * u12**9 * f10 +
           g10 * u12**10 * f11 + g11 * u12**11 * f12 + g12 * u12**12 * f13)
    u13 = -f / h13

    h14 = (f1 + g1 * u13 * f2 + g2 * u13**2 * f3 + g3 * u13**3 * f4 +
           g4 * u13**4 * f5 + g5 * u13**5 * f6 + g6 * u13**6 * f7 +
           g7 * u13**7 * f8 + g8 * u13**8 * f9 + g9 * u13**9 * f10 +
           g10 * u13**10 * f11 + g11 * u13**11 * f12 + g12 * u13**12 * f13 +
           g13 * u13**13 * f14)
    u14 = -f / h14

    h15 = (f1 + g1 * u14 * f2 + g2 * u14**2 * f3 + g3 * u14**3 * f4 +
           g4 * u14**4 * f5 + g5 * u14**5 * f6 + g6 * u14**6 * f7 +
           g7 * u14**7 * f8 + g8 * u14**8 * f9 + g9 * u14**9 * f10 +
           g10 * u14**10 * f11 + g11 * u14**11 * f12 + g12 * u14**12 * f13 +
           g13 * u14**13 * f14 + g14 * u14**14 * f15)
    u15 = -f / h15

    # Solving for x
    x = x_bar + u15
    w = x - 0.01171875 * x**17 / (1 + ecc)

    # Solving for the true anomaly from eccentricity anomaly
    E = M + ecc * (-16384 * w**15 + 61440 * w**13 - 92160 * w**11 + 70400 *
                   w**9 - 28800 * w**7 + 6048 * w**5 - 560 * w**3 + 15 * w)

    nu = E_to_nu(E, ecc)

    return coe2rv(k, p, ecc, inc, raan, argp, nu)
Exemplo n.º 11
0
def markley(k, r0, v0, tof):
    """ Solves the kepler problem by a non iterative method. Relative error is
    around 1e-18, only limited by machine double-precission errors.

    Parameters
    ----------
    k : float
        Standar Gravitational parameter
    r0 : array
        Initial position vector wrt attractor center.
    v0 : array
        Initial velocity vector.
    tof : float
        Time of flight.

    Returns
    -------
    rf: array
        Final position vector
    vf: array
        Final velocity vector

    Note
    ----
    The following algorithm was taken from http://dx.doi.org/10.1007/BF00691917.
    """

    # Solve first for eccentricity and mean anomaly
    p, ecc, inc, raan, argp, nu = rv2coe(k, r0, v0)

    M0 = nu_to_M(nu, ecc, delta=0)
    a = p / (1 - ecc**2)
    n = np.sqrt(k / a**3)
    M = M0 + n * tof

    # Range between -pi and pi
    M = M % (2 * np.pi)
    if M > np.pi:
        M = -(2 * np.pi - M)

    # Equation (20)
    alpha = (3 * np.pi**2 + 1.6 * (np.pi - np.abs(M)) /
             (1 + ecc)) / (np.pi**2 - 6)

    # Equation (5)
    d = 3 * (1 - ecc) + alpha * ecc

    # Equation (9)
    q = 2 * alpha * d * (1 - ecc) - M**2

    # Equation (10)
    r = 3 * alpha * d * (d - 1 + ecc) * M + M**3

    # Equation (14)
    w = (np.abs(r) + np.sqrt(q**3 + r**2))**(2 / 3)

    # Equation (15)
    E = (2 * r * w / (w**2 + w * q + q**2) + M) / d

    # Equation (26)
    f0 = _kepler_equation(E, M, ecc)
    f1 = _kepler_equation_prime(E, M, ecc)
    f2 = ecc * np.sin(E)
    f3 = ecc * np.cos(E)
    f4 = -f2

    # Equation (22)
    delta3 = -f0 / (f1 - 0.5 * f0 * f2 / f1)
    delta4 = -f0 / (f1 + 0.5 * delta3 * f2 + 1 / 6 * delta3**2 * f3)
    delta5 = -f0 / (f1 + 0.5 * delta4 * f2 + 1 / 6 * delta4**2 * f3 +
                    1 / 24 * delta4**3 * f4)

    E += delta5
    nu = E_to_nu(E, ecc)

    return coe2rv(k, p, ecc, inc, raan, argp, nu)
Exemplo n.º 12
0
def mikkola(k, r0, v0, tof, rtol=None):
    """ Raw algorithm for Mikkola's Kepler solver.

    Parameters
    ----------
    k : ~astropy.units.Quantity
        Standard gravitational parameter of the attractor.
    r : ~astropy.units.Quantity
        Position vector.
    v : ~astropy.units.Quantity
        Velocity vector.
    tofs : ~astropy.units.Quantity
        Array of times to propagate.
    rtol: float
        This method does not require of tolerance since it is non iterative.

    Returns
    -------
    rr : ~astropy.units.Quantity
        Propagated position vectors.
    vv : ~astropy.units.Quantity

    Note
    ----
    Original paper: https://doi.org/10.1007/BF01235850
    """

    # Solving for the classical elements
    p, ecc, inc, raan, argp, nu = rv2coe(k, r0, v0)
    M0 = nu_to_M(nu, ecc, delta=0)
    a = p / (1 - ecc**2)
    n = np.sqrt(k / np.abs(a)**3)
    M = M0 + n * tof

    # Solve for specific geometrical case
    if ecc < 1.0:
        # Equation (9a)
        alpha = (1 - ecc) / (4 * ecc + 1 / 2)
    else:
        alpha = (ecc - 1) / (4 * ecc + 1 / 2)

    beta = M / 2 / (4 * ecc + 1 / 2)

    # Equation (9b)
    if beta >= 0:
        z = (beta + np.sqrt(beta**2 + alpha**3))**(1 / 3)
    else:
        z = (beta - np.sqrt(beta**2 + alpha**3))**(1 / 3)

    s = z - alpha / z

    # Apply initial correction
    if ecc < 1.0:
        ds = -0.078 * s**5 / (1 + ecc)
    else:
        ds = 0.071 * s**5 / (1 + 0.45 * s**2) / (1 + 4 * s**2) / ecc

    s += ds

    # Solving for the true anomaly
    if ecc < 1.0:
        E = M + ecc * (3 * s - 4 * s**3)
        f = E - ecc * np.sin(E) - M
        f1 = 1.0 - ecc * np.cos(E)
        f2 = ecc * np.sin(E)
        f3 = ecc * np.cos(E)
        f4 = -f2
        f5 = -f3
    else:
        E = 3 * np.log(s + np.sqrt(1 + s**2))
        f = -E + ecc * np.sinh(E) - M
        f1 = -1.0 + ecc * np.cosh(E)
        f2 = ecc * np.sinh(E)
        f3 = ecc * np.cosh(E)
        f4 = f2
        f5 = f3

    # Apply Taylor expansion
    u1 = -f / f1
    u2 = -f / (f1 + 0.5 * f2 * u1)
    u3 = -f / (f1 + 0.5 * f2 * u2 + (1.0 / 6.0) * f3 * u2**2)
    u4 = -f / (f1 + 0.5 * f2 * u3 + (1.0 / 6.0) * f3 * u3**2 +
               (1.0 / 24.0) * f4 * (u3**3))
    u5 = -f / (f1 + f2 * u4 / 2 + f3 * (u4 * u4) / 6.0 + f4 *
               (u4 * u4 * u4) / 24.0 + f5 * (u4 * u4 * u4 * u4) / 120.0)

    E += u5

    if ecc < 1.0:
        nu = E_to_nu(E, ecc)
    else:
        if ecc == 1.0:
            # Parabolic
            nu = D_to_nu(E)
        else:
            # Hyperbolic
            nu = F_to_nu(E, ecc)

    return coe2rv(k, p, ecc, inc, raan, argp, nu)