Exemplo n.º 1
0
def list_recent_crime_categories_and_resolutions_in_order(postcode):
    api = PoliceAPI()
    hood = api.locate_neighbourhood(*get_lat_long_of_postcode(postcode))

    recent_crimes = api.get_crimes_area(hood.boundary)

    all_outcomes_of_recent_crimes = []
    for crime in recent_crimes:
        if str(crime.outcome_status) not in all_outcomes_of_recent_crimes:
            all_outcomes_of_recent_crimes.append(str(crime.outcome_status))

    recent_crimes_by_category = {}

    # TODO: it could be richer to have non exclusive categories (tagging vs one category)

    # Build up categories
    for crime in recent_crimes:
        recent_crimes_by_category[crime.category.name] = []

    for crime in recent_crimes:
        if is_ongoing(crime) is False:
            recent_crimes_by_category[crime.category.name].append(crime)

    def get_outcome_breakdown(crime_category_string):
        crime_category = recent_crimes_by_category[crime_category_string]

        crime_outcomes = {}  # Build category specific crime outcomes
        for crime in crime_category:
            status = str(crime.outcome_status)
            crime_outcomes[status] = []
        for crime in crime_category:
            status = str(crime.outcome_status)
            crime_outcomes[status].append(crime)

        counted_crime_outcomes = {}
        for category in crime_outcomes:
            counted_crime_outcomes[category] = len(crime_outcomes[category])

        counted_crime_outcomes_ordered = get_ordered_dict_sorted_by_number_of_definitions(counted_crime_outcomes)
        return counted_crime_outcomes_ordered

    for category in recent_crimes_by_category.keys():
        print(category)
        print(get_outcome_breakdown(category))
        print()
Exemplo n.º 2
0
def latlng():
    lat = request.form.get('lat')
    lng = request.form.get('lng')
    api = PoliceAPI()
    n = api.locate_neighbourhood(lat, lng)
    ncrimes = len(api.get_crimes_area(n.boundary, date='2020-01'))
    population = n.population
    highRisk = False

    if population > 0:
        cpp = ncrimes / population
        noMonths = 1 / cpp
        noMonths = round(noMonths)
        Mth = str(noMonths)
    else:
        minLat = min(latlong[0] for latlong in n.boundary)
        maxLat = max(latlong[0] for latlong in n.boundary)
        minLong = min(latlong[1] for latlong in n.boundary)
        maxLong = max(latlong[1] for latlong in n.boundary)
        totalLat = maxLat - minLat
        totalLong = maxLong - minLong
        latMeters = totalLat * 111.32
        longCos = math.cos(totalLong)
        longMeters = (longCos / 360) * 40075
        totalArea = latMeters * longMeters
        ukArea = 242495
        numberPeople = 66440000
        ppa = numberPeople / ukArea
        ppn = totalArea * ppa
        ppn = round(ppn)
        cpp = ncrimes / ppn
        noMonths = 1 / cpp
        noMonths = round(noMonths)
        Mth = str(noMonths)
        population = ppn
    if cpp > 0.02:
        highRisk = True
    #as = Antisocial behaviour
    #t = theft
    #b = burglary
    #cda = criminal damage and arson
    #d = drugs
    #pw = possession of weapons
    #po = public order
    #r = robbery
    #s = shoplifting
    #vc = vehicle crime
    #vso = violent and sexual offences
    #o = other crime
    asTally = 0
    tTally = 0
    bTally = 0
    cdaTally = 0
    dTally = 0
    pwTally = 0
    poTally = 0
    rTally = 0
    sTally = 0
    vcTally = 0
    vsoTally = 0
    oTally = 0
    crimes = api.get_crimes_area(n.boundary, date='2020-01')
    for x in crimes:
        type = str(x.category)
        if type == '<CrimeCategory> Anti-social behaviour':
            asTally += 1
        elif type == '<CrimeCategory> Bicycle theft' or type == '<CrimeCategory> Other theft' or type == '<CrimeCategory> Theft from the person':
            tTally += 1
        elif type == '<CrimeCategory> Burglary':
            bTally += 1
        elif type == '<CrimeCategory> Criminal damage and arson':
            cdaTally += 1
        elif type == '<CrimeCategory> Drugs':
            dTally += 1
        elif type == '<CrimeCategory> Possession of weapons':
            pwTally += 1
        elif type == '<CrimeCategory> Public order':
            poTally += 1
        elif type == '<CrimeCategory> Robbery':
            rTally += 1
        elif type == '<CrimeCategory> Shoplifting':
            sTally += 1
        elif type == '<CrimeCategory> Vehicle crime':
            vcTally += 1
        elif type == '<CrimeCategory> Violence and sexual offences':
            vsoTally += 1
        elif type == '<CrimeCategory> Other crime':
            oTally += 1
        array = [
            asTally, tTally, bTally, cdaTally, dTally, pwTally, poTally,
            rTally, sTally, vcTally, vsoTally, oTally
        ]
        array.sort(reverse=True)
        mostCrimeNumber = int(array[0])

    if array[0] == bTally:
        mostCrime = 'Burglary'
    elif array[0] == cdaTally:
        mostCrime = 'Criminal damage and arson'
    elif array[0] == dTally:
        mostCrime = 'Drugs'
    elif array[0] == pwTally:
        mostCrime = 'Possession of weapons'
    elif array[0] == poTally:
        mostCrime = 'Public order'
    elif array[0] == rTally:
        mostCrime = 'Robbery'
    elif array[0] == sTally:
        mostCrime = 'Shoplifting'
    elif array[0] == vcTally:
        mostCrime = 'Vehicle crime'
    elif array[0] == vsoTally:
        mostCrime = 'Violence and sexual offences'
    elif array[0] == oTally:
        mostCrime = 'Other crime'
    elif array[0] == asTally:
        mostCrime = 'Antisocial Behaviour'

    #these are the percentages that the clock needs:
    asTotal = (asTally / ncrimes) * 100
    tTotal = (tTally / ncrimes) * 100
    bTotal = (bTally / ncrimes) * 100
    cdaTotal = (cdaTally / ncrimes) * 100
    dTotal = (dTally / ncrimes) * 100
    pwTotal = (pwTally / ncrimes) * 100
    poTotal = (poTally / ncrimes) * 100
    rTotal = (rTally / ncrimes) * 100
    sTotal = (sTally / ncrimes) * 100
    vcTotal = (vcTally / ncrimes) * 100
    vsoTotal = (vsoTally / ncrimes) * 100
    oTotal = (oTally / ncrimes) * 100

    return render_template(
        'clock.html',
        lng=lng,
        lat=lat,
        ncrimes=ncrimes,
        n=n,
        mostCrime=mostCrime,
        mostCrimeNumber=mostCrimeNumber,
        Mth=Mth,
        highRisk=highRisk,
        population=population,
        asTotal=asTotal,
        tTotal=tTotal,
        bTotal=bTotal,
        cdaTotal=cdaTotal,
        dTotal=dTotal,
        pwTotal=pwTotal,
        poTotal=poTotal,
        rTotal=rTotal,
        sTotal=sTotal,
        vcTotal=vcTotal,
        vsoTotal=vsoTotal,
        oTotal=oTotal,
    )
Exemplo n.º 3
0
"""
form = cgi.FieldStorage()
Userpc = form["command"].value
if command != "" :
     print "<p> Finding Data For Postcode" + Userpc + "</p>" 
pcr = pc.get(Userpc)
pcr2 = pcr["geo"]
UserLat = pcr2["lat"]
UserLong = pcr2["lng"]
location = g_m.search(location=Userpc)
#locate = location.first()
#print locate.city
print location
from police_api import PoliceAPI 
papi = PoliceAPI()
locate = papi.locate_neighbourhood(UserLat, UserLong) 
print "Police Data for" + Userpc
#print "<h2>" + locate + "</h2>"
print "<h2> Force </h2<"
print "<h2> Contact details </h2> "
print  
print "<h3>" + locate.force + "</h3>"
print "<h3>" + papi.get.crimes.area + "</h3>"
#OSM = OsmApi()
#print "       "
#print "       "
#print "OSM Data"
#print OSM.NodeGet(123)