Exemplo n.º 1
0
def bayesian(matrix, configs, metrics):
    """Create suggestions based on bayesian optimization."""
    from polyaxon.polyflow import V1Bayes
    from polyaxon.polytune.search_managers.bayesian_optimization.manager import (
        BayesSearchManager, )

    matrix = V1Bayes.read(matrix)

    suggestions = BayesSearchManager(config=matrix).get_suggestions(
        configs=configs, metrics=metrics)
    log_suggestions(suggestions)

    Printer.print_success("Suggestions generated with bayesian optimization")
Exemplo n.º 2
0
def bayes(matrix, join, iteration):
    """Create suggestions based on bayesian optimization."""
    from polyaxon.client import RunClient
    from polyaxon.polyflow import V1Bayes, V1Join
    from polyaxon.polytune.iteration_lineage import (
        get_iteration_definition,
        handle_iteration,
        handle_iteration_failure,
    )
    from polyaxon.polytune.search_managers.bayesian_optimization.manager import (
        BayesSearchManager, )

    matrix = V1Bayes.read(matrix)
    join = V1Join.read(join)
    client = RunClient()
    values = get_iteration_definition(
        client=client,
        iteration=iteration,
        join=join,
        optimization_metric=matrix.metric.name,
    )
    if not values:
        return
    run_uuids, configs, metrics = values

    retry = 1
    exp = None
    suggestions = None
    while retry < 3:
        try:
            suggestions = BayesSearchManager(config=matrix, ).get_suggestions(
                configs=configs, metrics=metrics)
            exp = None
            break
        except Exception as exp:
            retry += 1
            logger.warning(exp)

    if exp:
        handle_iteration_failure(client=client, exp=exp)
        return

    handle_iteration(
        client=client,
        iteration=iteration,
        suggestions=suggestions,
    )
Exemplo n.º 3
0
def get_bo_tuner(
    matrix: V1Bayes,
    join: V1Join,
    iteration: int,
) -> V1Operation:
    iteration = matrix.create_iteration(iteration)
    return get_tuner(
        name="bayesian-tuner",
        container=get_container(
            tuner_container=get_default_tuner_container(
                ["polyaxon", "tuner", "bayes"]),
            container=matrix.container,
        ),
        matrix=matrix,
        join=join,
        iteration=iteration,
    )
Exemplo n.º 4
0
def bayes(matrix, configs, metrics, iteration):
    """Create suggestions based on bayesian optimization."""
    from polyaxon.client import RunClient
    from polyaxon.polyflow import V1Bayes
    from polyaxon.polytune.iteration_lineage import (
        handle_iteration,
        handle_iteration_failure,
    )
    from polyaxon.polytune.search_managers.bayesian_optimization.manager import (
        BayesSearchManager, )

    matrix = V1Bayes.read(matrix)
    if configs:
        configs = ujson.loads(configs)
    if metrics:
        metrics = ujson.loads(metrics)

    client = RunClient()

    retry = 1
    exp = None
    suggestions = None
    while retry < 3:
        try:
            suggestions = BayesSearchManager(config=matrix, ).get_suggestions(
                configs=configs, metrics=metrics)
            exp = None
            break
        except Exception as e:
            retry += 1
            logger.warning(e)
            exp = e

    if exp:
        handle_iteration_failure(client=client, exp=exp)
        return

    handle_iteration(
        client=client,
        suggestions=suggestions,
    )