Exemplo n.º 1
0
 def play_against_boring_ai(self):
     # if nobody survived the last generation, generate a new population
     if len(self.population) == 0:
         print('\nCreating new population')
         self.strict_breeding = False
         self.games = []
         self.generation = 0
         while len(self.population) < self.population_size:
             game = PongGame()
             nn_paddle = NNPaddle(PongGame.window_width - 50, PongGame.window_height / 2, game.ball, game)
             nn_paddle.generation = self.generation
             game.paddle1 = nn_paddle
             # ai_2 = NNPaddle(50, PongGame.window_height / 2, ball, game)
             self.population.append(nn_paddle)
             self.games.append(game)
         for game in self.games:
             game.paddle2.ball = game.ball
             game.speed = self.cur_speed
             game.start_game()
             print(game.paddle1)
             self.cur_speed = game.speed
     else:
         print('\n=== Generation', self.generation, '===')
         for game in self.games:
             game.paddle2.ball = game.ball
             game.paddle2.score = 0
             game.paddle1.score = 0
             game.paddle1.reset(PongGame.window_width - 50, PongGame.window_height / 2, game.ball)
             game.speed = self.cur_speed
             game.start_game()
             print(game.paddle1)
             self.cur_speed = game.speed
Exemplo n.º 2
0
    def init_breeder(self, parent=None):
        # if there is no parent, create a new randomly generated population
        if parent is None:
            self.create_new_population()
            population = []

            for game in self.games:
                # set the game up to play using the new paddles and ball
                game.paddle1.ball = game.ball
                game.paddle2.ball = game.ball
                game.speed = self.cur_speed

                # play the game and record the game speed multiplier to use for future games
                game.start_game()
                print(game.paddle1)
                self.cur_speed = game.speed
                # append the neural net to the population
                population.append(game.paddle1)
            # sort the population best -> worst
            self.population = sorted(population,
                                     key=lambda x: x.fitness,
                                     reverse=True)
        # if there is a parent, create a generation based off the parent's genes
        elif parent is not None:
            population = parent
            if type(parent) is list:
                self.generation = population[0].generation
            else:
                self.generation = parent.generation

            print(population, len(population))
            # go through the population and assign paddles to games, balls to paddles, etc
            for p in population:
                game = PongGame()
                p.game = game
                p.ball = game.ball
                game.paddle1 = p
                self.games.append(game)

            for i in range(self.population_size - 1):
                if type(parent) is list and len(parent) > 1:
                    population.append(
                        self.crossover(random.choice(parent),
                                       random.choice(parent)))
                else:
                    population.append(self.crossover(parent))

            self.population = population
            self.generation = self.population[0].generation
Exemplo n.º 3
0
    def crossover(self, parent1, parent2=None):
        # use the parent as a skeleton to create the offspring, like adam and eve or something
        game = PongGame()
        offspring = copy.deepcopy(parent1)
        offspring.game = game
        offspring.ball = game.ball
        game.paddle1 = offspring
        self.games.append(game)

        # if no other parent, breed with some random
        if parent2 is None:
            mate = NNPaddle(PongGame.window_width - 50,
                            PongGame.window_height / 2, offspring.game.ball,
                            offspring.game)
            offspring.parents = [parent1, mate]
        else:
            offspring.parents = [parent1, parent2]
            mate = parent2
        offspring.fitness = 0
        offspring.contacts_ball = 0
        offspring.generation = self.generation

        # perform crossover for each layer and synapse
        for layer in range(len(offspring.net.synapses)):
            for synapse in range(len(offspring.net.synapses[layer])):
                # if the laws of nature say it must be so, mutate the current synapse
                if random.uniform(0, 1) < self.mutation_rate:
                    offspring.net.synapses[layer][
                        synapse].weight = self.mutate(
                            offspring.net.synapses[layer][synapse].weight)
                else:
                    if random.uniform(0, 1) > (1 / 3):
                        offspring.net.synapses[layer][
                            synapse].weight = parent1.net.synapses[layer][
                                synapse].weight
                    else:
                        offspring.net.synapses[layer][
                            synapse].weight = mate.net.synapses[layer][
                                synapse].weight
            # crossover the parent's colors as well
            offspring.colors = [
                parent1.colors[0], mate.colors[1], parent1.colors[2],
                mate.colors[3]
            ]
        f_name = random.choice(parent1.name.split())
        l_name = random.choice(mate.name.split())
        offspring.name = f_name + ' ' + l_name

        return offspring
Exemplo n.º 4
0
    def create_new_population(self):
        print('\nCreating new population of size', self.population_size)
        self.generation = 0
        self.train_each_other = False
        temp_population_size = self.population_size
        population = []

        # create new games and neural net paddles equal to the population size
        for ndx in range(temp_population_size):
            game = PongGame()
            ai_1 = NNPaddle(PongGame.window_width - 50, PongGame.window_height / 2, game.ball, game)
            ai_1.generation = self.generation
            # ai_2 = NNPaddle(50, PongGame.window_height / 2, ball, game)
            game.paddle1 = ai_1

            population.append(ai_1)
            # population.append(ai_2)
            self.games.append(game)

        self.population = population