Exemplo n.º 1
0
    def binary_fn(self, x, y):
        '''
        The black_box function is a binary function of form y*sin(2*pi*x) + x*cos(2*pi*y)
        '''
        x_temp, y_temp, prev_x_temp, prev_y_temp = self.init_values(x, y)
        self.prev_position_x = x
        self.prev_position_y = y
        position_difference_x = abs(x_temp - prev_x_temp)
        position_difference_y = abs(y_temp - prev_y_temp)
        final_flag = False
        poppy_mov = poppy.PoppyBO(next_position_x=x_temp,
                                  next_position_y=y_temp,
                                  position_difference_x=position_difference_x,
                                  position_difference_y=position_difference_y,
                                  final_movement=final_flag)
        poppy_mov.multi_dimensional_poppy_robot()

        # Calculation of f(X) function
        result = y * math.sin(2 * math.pi * x) + x * math.cos(2 * math.pi * y)

        if self.best < abs(result):
            best = abs(result)
            print('The best outcome reward is {}'.format(best))
        self.count += 1
        return result
Exemplo n.º 2
0
    def probability_density_fn(self, x):
        '''
        result = -(1/math.sqrt(2*math.pi*var))*(math.exp(-((x-mean)**2) / (2*var)))
        '''
        mean = 0.3
        var = 0.2
        prev_x_temp = self.poppy_angle_settings()
        if self.search_domain is (0, 1):
            x_temp = x * 180 - 90
        else:
            search_temp = self.search_domain[1]
            temp_x = (180 / (search_temp * 2))
            x_temp = (prev_x_temp + search_temp) * temp_x - 90
        self.prev_position_x = x
        position_difference = abs(x_temp - prev_x_temp)
        final_flag = False
        poppy_mov = poppy.PoppyBO(next_position_x=x_temp,
                                  position_difference_x=position_difference,
                                  final_movement=final_flag)
        poppy_mov.single_dimensional_poppy_robot()

        # Calculation of f(X) function
        result = -stats.norm(mean, var).pdf(x)

        #String the list of explored parameters to the BO function
        bo.Bayesian_optimization_main.explored_parameters_fn(x=x,
                                                             result=result)
        if self.best < abs(result):
            best = abs(result)
            print('The best outcome reward is {}'.format(best))
        self.count += 1
        return result
Exemplo n.º 3
0
    def ackley_fn(self, x, y):

        x_temp, y_temp, prev_x_temp, prev_y_temp = self.init_values(x, y)
        self.prev_position_x = x
        self.prev_position_y = y
        position_difference_x = abs(x_temp - prev_x_temp)
        position_difference_y = abs(y_temp - prev_y_temp)
        final_flag = False
        poppy_mov = poppy.PoppyBO(next_position_x=x_temp,
                                  next_position_y=y_temp,
                                  position_difference_x=position_difference_x,
                                  position_difference_y=position_difference_y,
                                  final_movement=final_flag)
        poppy_mov.multi_dimensional_poppy_robot()

        a = -20 * math.exp(-0.2 *
                           (math.sqrt(0.5 *
                                      (math.pow(x, 2) + math.pow(y, 2)))))
        b = -math.exp(0.5 *
                      (math.cos(2 * math.pi * x) + math.cos(2 * math.pi * y)))
        c = math.exp(1)
        d = 20
        result = a + b + c + d
        if self.best < abs(result):
            best = abs(result)
            print('The best outcome reward  till now is {}'.format(best))
        self.count += 1
        return result
Exemplo n.º 4
0
    def schaffer_N_4(self, x):

        prev_x_temp, prev_y_temp = self.poppy_angle_settings()
        x_temp = x[0, 0] * 180 - 90
        y_temp = -(x[0, 1] * 70) - 110
        position_difference_x = abs(x_temp - prev_x_temp)
        position_difference_y = abs(y_temp - prev_y_temp)
        final_flag = False
        poppy_mov = poppy.PoppyBO(next_position_x=x_temp,
                                  next_position_y=y_temp,
                                  position_difference_x=position_difference_x,
                                  position_difference_y=position_difference_y,
                                  final_movement=final_flag)
        poppy_mov.multi_dimensional_poppy_robot()
        a = (math.pow(
            math.cos(math.sin(
                abs(math.pow(x[0, 0], 2) - math.pow(x[0, 1], 2)))), 2) -
             0.5) / (math.pow(
                 (1 + 0.001 *
                  (math.pow(x[0, 0], 2) + math.pow(x[0, 1], 2))), 2))
        result = -1 * (0.5 + a)
        self.logDicx[self.count] = x
        self.logDicy[self.count] = result
        print('\n Best X: ', self.logDicx[min(self.logDicy,
                                              key=self.logDicy.get)])
        print('\n Best Y: ', self.logDicy[min(self.logDicy,
                                              key=self.logDicy.get)])
        #String the list of explored parameters to the BO function
        bo.Bayesian_optimization_main.explored_parameters_fn(
            x=self.logDicx, result=self.logDicy)
        if self.best < abs(result):
            best = abs(result)
            print('The best outcome reward  till now is {}'.format(best))
        self.count += 1
        return result
Exemplo n.º 5
0
    def eesom_fn(self, x):

        x_temp, y_temp, prev_x_temp, prev_y_temp = self.init_values(x, y)
        position_difference_x = abs(x_temp - prev_x_temp)
        position_difference_y = abs(y_temp - prev_y_temp)
        final_flag = False
        poppy_mov = poppy.PoppyBO(next_position_x=x_temp,
                                  next_position_y=y_temp,
                                  position_difference_x=position_difference_x,
                                  position_difference_y=position_difference_y,
                                  final_movement=final_flag)
        poppy_mov.multi_dimensional_poppy_robot()

        a = math.cos(x[0, 0])
        b = math.cos(x[0, 1])
        c = np.exp(-(math.pow(x[0, 0] - np.pi, 2) +
                     math.pow(x[0, 1] - np.pi, 2)))
        result = a * b * c
        self.logDicx[self.count] = x
        self.logDicy[self.count] = result
        print('\n Best X: ', self.logDicx[min(self.logDicy,
                                              key=self.logDicy.get)])
        print('\n Best Y: ', self.logDicy[min(self.logDicy,
                                              key=self.logDicy.get)])
        #String the list of explored parameters to the BO function
        bo.Bayesian_optimization_main.explored_parameters_fn(
            x=self.logDicx, result=self.logDicy)
        if self.best < abs(result):
            best = abs(result)
            print('The best outcome reward  till now is {}'.format(best))
        self.count += 1
        return result
Exemplo n.º 6
0
 def __init__(self, search_domain, is_two_dimensional=False):
     self.is_two_dimensional = is_two_dimensional
     self.search_domain = search_domain
     self.best = 0
     self.count = 0
     self.poppy_mov = poppy.PoppyBO(count=self.count)
     if self.is_two_dimensional is True:
         self.prev_position_x = 0
         self.prev_position_y = 0
     else:
         self.prev_position_x = 0
Exemplo n.º 7
0
 def __init__(self, search_domain, is_two_dimensional=False):
     self.is_two_dimensional = is_two_dimensional
     self.MAX = 0.95
     self.best = 0
     self.count = 0
     self.search_domain = search_domain
     self.poppy_mov = poppy.PoppyBO(count=self.count)
     if self.is_two_dimensional is True:
         self.logDicx = dict()
         self.logDicy = dict()
     else:
         self.prev_position_x = 0
Exemplo n.º 8
0
    def schaffer_N_4(self, x, y):

        x_temp, y_temp, prev_x_temp, prev_y_temp = self.init_values(x, y)
        self.prev_position_x = x
        self.prev_position_y = y
        position_difference_x = abs(x_temp - prev_x_temp)
        position_difference_y = abs(y_temp - prev_y_temp)
        final_flag = False
        poppy_mov = poppy.PoppyBO(next_position_x=x_temp,
                                  next_position_y=y_temp,
                                  position_difference_x=position_difference_x,
                                  position_difference_y=position_difference_y,
                                  final_movement=final_flag)
        poppy_mov.multi_dimensional_poppy_robot()
        a = (math.pow(math.cos(math.sin(abs(math.pow(x, 2) - math.pow(y, 2)))),
                      2) - 0.5) / (math.pow(
                          (1 + 0.001 * (math.pow(x, 2) + math.pow(y, 2))), 2))
        result = 0.5 + a
        if self.best < abs(result):
            best = abs(result)
            print('The best outcome reward  till now is {}'.format(best))
        self.count += 1
        return result
Exemplo n.º 9
0
 def sinc_fn(self, x):
     prev_x_temp, prev_y_temp = self.poppy_angle_settings()
     if self.search_domain is (0, 1):
         x_temp = x * 180 - 90
     else:
         search_temp = self.search_domain[1]
         temp_x = (180 / (search_temp * 2))
         x_temp = (prev_x_temp + search_temp) * temp_x - 90
     self.prev_position_x = x
     position_difference_x = abs(x_temp - prev_x_temp)
     final_flag = False
     poppy_mov = poppy.PoppyBO(next_position_x=x_temp,
                               position_difference_x=position_difference_x,
                               final_movement=final_flag)
     poppy_mov.single_dimensional_poppy_robot()
     result = -np.sinc(x)
     bo.Bayesian_optimization_main.explored_parameters_fn(x=x,
                                                          result=result)
     if self.best < abs(result):
         self.best = abs(result)
         print('The best outcome reward  till now is {}'.format(self.best))
     self.count += 1
     return result
Exemplo n.º 10
0
 def sinc_fn(self, x):
     prev_x_temp, prev_y_temp = self.poppy_angle_settings()
     if self.search_domain is (0, 1):
         x_temp = x * 180 - 90
     else:
         search_temp = self.search_domain[1]
         temp_x = (180 / (search_temp * 2))
         x_temp = (prev_x_temp + search_temp) * temp_x - 90
     self.prev_position_x = x
     position_difference_x = abs(x_temp - prev_x_temp)
     final_flag = False
     poppy_mov = poppy.PoppyBO(next_position_x=x_temp,
                               position_difference_x=position_difference_x,
                               final_movement=final_flag)
     poppy_mov.single_dimensional_poppy_robot()
     if x is 0:
         result = 1
     else:
         result = (math.sin(x) / x)
     if self.best < abs(result):
         self.best = abs(result)
         print('The best outcome reward  till now is {}'.format(self.best))
     self.count += 1
     return result
Exemplo n.º 11
0
    def eesom_fn(self, x, y):

        x_temp, y_temp, prev_x_temp, prev_y_temp = self.init_values(x, y)
        self.prev_position_x = x
        self.prev_position_y = y
        position_difference_x = abs(x_temp - prev_x_temp)
        position_difference_y = abs(y_temp - prev_y_temp)
        final_flag = False
        poppy_mov = poppy.PoppyBO(next_position_x=x_temp,
                                  next_position_y=y_temp,
                                  position_difference_x=position_difference_x,
                                  position_difference_y=position_difference_y,
                                  final_movement=final_flag)
        poppy_mov.multi_dimensional_poppy_robot()

        a = math.cos(x)
        b = math.cos(y)
        c = math.exp(-(math.pow(x - math.pi, 2) + math.pow(y - math.pi, 2)))
        result = -(a * b * c)
        if self.best < abs(result):
            best = abs(result)
            print('The best outcome reward  till now is {}'.format(best))
        self.count += 1
        return result
Exemplo n.º 12
0
    def get_results(self):
        '''
        Displays the final results and plot related to the experiments.
        '''
        if self.is_two_dimensional is False:
            # List of all the positions the robot and explored and exploited
            self.x_values = [i * 180 - 90 for i in self.x_values]
            print('The x observations are', self.x_values)
            print('The y observations are', self.y_values)

            # Final optimal position of the poppy after EXPLOITATION and EXPLORATION
            position = self.myBopt.x_opt * 180 - 90
            prev_position = self.x_values[-1] * 180 - 90
            if position > prev_position:
                difference = position - prev_position
            else:
                difference = abs(position - prev_position)
            final_flag = True
            poppy_mov = poppy.PoppyBO(next_position_x=position,
                                      position_difference_x=difference,
                                      final_movement=final_flag)
            poppy_mov.single_dimensional_poppy_robot()

            # Display of the optimal point and it's reward value
            print('The optimal point of function is x -> {}'.format(
                self.myBopt.x_opt))
            print('The optimal value of function is y -> {}'.format(
                abs(self.myBopt.fx_opt)))

            # Plotting of the iterations and the consecutiveness between the X's
            self.myBopt.plot_acquisition()
            self.myBopt.plot_convergence()
        else:
            # Final optimal position of the poppy after EXPLOITATION and EXPLORATION
            position_x, position_y = self.myBopt.x_opt
            print('The best x value is {}'.format(position_x))
            print('The best y value is {}'.format(position_y))
            position_x = position_x * 180 - 90
            position_y = -(position_y * 70) - 110
            di_temp = self.x_dict_values.get(self.num_iter + 4)
            prev_position_x, prev_position_y = di_temp[0][0], di_temp[0][1]
            print('The last x value is {}'.format(prev_position_x))
            print('The last y value is {}'.format(prev_position_y))
            prev_position_x = prev_position_x * 180 - 90
            prev_position_y = -(prev_position_y * 70) - 110
            if position_x > prev_position_x:
                difference_x = position_x - prev_position_x
            else:
                difference_x = abs(position_x - prev_position_x)

            if position_y > prev_position_y:
                difference_y = position_y - prev_position_y
            else:
                difference_y = abs(position_y - prev_position_y)

            flag = True
            poppy_mov = poppy.PoppyBO(next_position_x=position_x,
                                      next_position_y=position_y,
                                      position_difference_x=difference_x,
                                      position_difference_y=difference_y,
                                      final_movement=flag)
            poppy_mov.multi_dimensional_poppy_robot()
            # Display of the optimal point and it's reward value
            print('The optimal point of function is x -> {}'.format(
                self.myBopt.x_opt))
            print('The optimal value of function is y -> {}'.format(
                abs(self.myBopt.fx_opt)))
            # Plotting of the iterations and the consecutiveness between the X's
            self.myBopt.plot_acquisition()
            self.myBopt.plot_convergence()