Exemplo n.º 1
0
def make_sim_cluster():
    work_dir = '/u/jlu/work/gc/jwst/2018_03_19/'

    ages = [4e6, 1e8, 8e9]
    cluster_mass = [1e4, 1e4, 1e7]
    AKs = 2.7
    deltaAKs = 1.0
    distance = 8000
    mass_sampling = 5

    isochrones = []
    clusters = []

    evo = evolution.MergedBaraffePisaEkstromParsec()
    atm_func = atm.get_merged_atmosphere
    red_law = reddening.RedLawHosek18()
    multi = multiplicity.MultiplicityUnresolved()

    imf_mass_limits = np.array([0.07, 0.5, 1, np.inf])
    imf_powers_old = np.array([-1.3, -2.3, -2.3])
    imf_powers_yng = np.array([-1.3, -1.8, -1.8])
    my_imf_old = imf.IMF_broken_powerlaw(imf_mass_limits,
                                         imf_powers_old,
                                         multiplicity=multi)
    my_imf_yng = imf.IMF_broken_powerlaw(imf_mass_limits,
                                         imf_powers_yng,
                                         multiplicity=multi)

    # Test all filters
    filt_list = [
        'wfc3,ir,f127m', 'wfc3,ir,f139m', 'wfc3,ir,f153m', 'acs,wfc1,f814w',
        'wfc3,ir,f125w', 'wfc3,ir,f160w', 'jwst,F090W', 'jwst,F115W',
        'jwst,F164N', 'jwst,F187N', 'jwst,F212N', 'jwst,F323N', 'jwst,F405N',
        'jwst,F466N', 'jwst,F470N', 'jwst,F140M', 'jwst,F162M', 'jwst,F182M',
        'jwst,F210M', 'jwst,F250M', 'jwst,F300M', 'jwst,F335M', 'jwst,F360M',
        'jwst,F410M', 'jwst,F430M', 'jwst,F460M', 'jwst,F480M', 'nirc2,J',
        'nirc2,H', 'nirc2,Kp', 'nirc2,Lp', 'nirc2,Ms'
    ]

    startTime = time.time()
    for ii in range(len(ages)):
        logAge = np.log10(ages[ii])

        iso = syn.IsochronePhot(logAge,
                                AKs,
                                distance,
                                evo_model=evo,
                                atm_func=atm_func,
                                red_law=red_law,
                                filters=filt_list,
                                mass_sampling=mass_sampling,
                                iso_dir=work_dir)

        print('Constructed isochrone: %d seconds' % (time.time() - startTime))

        if ii < 2:
            imf_ii = my_imf_yng
        else:
            imf_ii = my_imf_old

        cluster = syn.ResolvedClusterDiffRedden(iso, imf_ii, cluster_mass[ii],
                                                deltaAKs)

        # Save generated clusters to file.
        save_file_fmt = '{0}/clust_{1:.2f}_{2:4.2f}_{3:4s}.fits'
        save_file_txt = save_file_fmt.format(work_dir, logAge, AKs,
                                             str(distance).zfill(5))
        save_file = open(save_file_txt, 'wb')
        pickle.dump(cluster, save_file)

    return

    return
Exemplo n.º 2
0
    def likelihood(cube, ndim, nparams):
        ##########
        # Priors (I think order matters)
        ##########
        parName = [
            'distance', 'LogAge', 'AKs', 'dAKs', 'alpha1', 'alpha2', 'mbreak',
            'Mcl'
        ]
        par, par_prior_logp = get_prior_info(cube, parName)

        sysMass = np.zeros(len(t))

        ##########
        # Load up the model cluster.
        ##########
        imf_mass_limits = np.array([imf_mmin, par['mbreak'], imf_mmax])
        imf_powers = np.array([par['alpha2'], par['alpha1']])
        imf_multi = None
        new_imf = imf.IMF_broken_powerlaw(imf_mass_limits, imf_powers,
                                          imf_multi)

        print 'Getting Isochrone'
        new_iso = synthetic.IsochronePhot(par['LogAge'],
                                          par['AKs'],
                                          par['distance'],
                                          evo_model=evo_model,
                                          atm_func=atm_func,
                                          red_law=red_law)

        print 'Getting Cluster'
        cluster = synthetic.ResolvedClusterDiffRedden(new_iso,
                                                      new_imf,
                                                      Mcl_sim,
                                                      par['dAKs'],
                                                      red_law=red_law)

        # Convert simulated cluster into agnitude-color-color histogram
        mag = cluster.star_systems['mag160w']
        col1 = cluster.star_systems['mag814w'] - mag
        col2 = cluster.star_systems['mag125w'] - mag

        data = np.array([mag, col1, col2]).T
        bins = np.array([bins_mag, bins_col1, bins_col2])

        H_sim_c, edges = np.histogramdd(data, bins=bins, normed=True)
        H_sim = H_sim_c * completeness_map

        # Convert Observed cluster into magnitude-color-color histogram
        mag = t['m_2010_F160W']
        col1 = t['m_2005_F814W'] - t['m_2010_F160W']
        col2 = t['m_2010_F125W'] - t['m_2010_F160W']

        data = np.array([mag, col1, col2]).T
        bins = np.array([bins_mag, bins_col1, bins_col2])

        H_obs, edges = np.histogramdd(data, bins=bins)

        # Plotting
        extent = (bins_col1[0], bins_col2[-1], bins_mag[0], bins_mag[-1])
        py.figure(1)
        py.clf()
        py.imshow(H_sim_c.sum(axis=2), extent=extent)
        py.gca().invert_yaxis()
        py.colorbar()
        py.axis('tight')
        py.title('Sim Complete')

        py.figure(2)
        py.clf()
        py.imshow(H_sim.sum(axis=2), extent=extent)
        py.gca().invert_yaxis()
        py.colorbar()
        py.axis('tight')
        py.title('Sim Incomplete')

        py.figure(3)
        py.clf()
        py.imshow(H_obs.sum(axis=2), extent=extent)
        py.gca().invert_yaxis()
        py.colorbar()
        py.axis('tight')
        py.title('Obs Incomplete')

        py.figure(4)
        py.clf()
        py.imshow(completeness_map.mean(axis=2), extent=extent, vmin=0, vmax=1)
        py.gca().invert_yaxis()
        py.colorbar()
        py.axis('tight')
        py.title('Completeness Map')

        pdb.set_trace()

        mcc_cluster = 1

        print likei.sum()
        return likei.sum()
Exemplo n.º 3
0
def test_ResolvedClusterDiffRedden():
    from popstar import synthetic as syn
    from popstar import atmospheres as atm
    from popstar import evolution
    from popstar import reddening
    from popstar.imf import imf
    from popstar.imf import multiplicity

    logAge = 6.7
    AKs = 2.4
    distance = 4000
    cluster_mass = 10**5.
    deltaAKs = 0.05
    mass_sampling = 5

    # Test filters
    filt_list = ['nirc2,J', 'nirc2,Kp']

    startTime = time.time()

    evo = evolution.MergedBaraffePisaEkstromParsec()
    atm_func = atm.get_merged_atmosphere

    red_law = reddening.RedLawNishiyama09()

    iso = syn.IsochronePhot(logAge,
                            AKs,
                            distance,
                            evo_model=evo,
                            atm_func=atm_func,
                            red_law=red_law,
                            filters=filt_list,
                            mass_sampling=mass_sampling)

    print('Constructed isochrone: %d seconds' % (time.time() - startTime))

    imf_mass_limits = np.array([0.07, 0.5, 1, np.inf])
    imf_powers = np.array([-1.3, -2.3, -2.3])

    ##########
    # Start without multiplicity
    ##########
    my_imf1 = imf.IMF_broken_powerlaw(imf_mass_limits,
                                      imf_powers,
                                      multiplicity=None)
    print('Constructed IMF: %d seconds' % (time.time() - startTime))

    cluster1 = syn.ResolvedClusterDiffRedden(iso, my_imf1, cluster_mass,
                                             deltaAKs)
    clust1 = cluster1.star_systems
    print('Constructed cluster: %d seconds' % (time.time() - startTime))

    assert len(clust1) > 0

    plt.figure(3)
    plt.clf()
    plt.plot(clust1['m_nirc2_J'] - clust1['m_nirc2_Kp'], clust1['m_nirc2_J'],
             'r.')
    plt.plot(iso.points['m_nirc2_J'] - iso.points['m_nirc2_Kp'],
             iso.points['m_nirc2_J'], 'c.')
    plt.gca().invert_yaxis()

    # *** Visual Inspections: ***
    #  - check that points (red) fall between isochrone points (blue)

    ##########
    # Test with multiplicity
    ##########
    multi = multiplicity.MultiplicityUnresolved()
    my_imf2 = imf.IMF_broken_powerlaw(imf_mass_limits,
                                      imf_powers,
                                      multiplicity=multi)
    print('Constructed IMF with multiples: %d seconds' %
          (time.time() - startTime))

    cluster2 = syn.ResolvedClusterDiffRedden(iso, my_imf2, cluster_mass,
                                             deltaAKs)
    clust2 = cluster2.star_systems
    print('Constructed cluster with multiples: %d seconds' %
          (time.time() - startTime))

    assert len(clust2) > 0
    assert len(cluster2.companions) > 0
    assert np.sum(clust2['N_companions']) == len(cluster2.companions)

    ##########
    # Plots
    ##########
    # Plot an IR CMD and compare cluster members to isochrone.
    plt.figure(1)
    plt.clf()
    plt.plot(clust1['m_nirc2_J'] - clust1['m_nirc2_Kp'], clust1['m_nirc2_J'],
             'r.')
    plt.plot(clust2['m_nirc2_J'] - clust2['m_nirc2_Kp'], clust2['m_nirc2_J'],
             'b.')
    plt.plot(iso.points['m_nirc2_J'] - iso.points['m_nirc2_Kp'],
             iso.points['m_nirc2_J'], 'c-')
    plt.gca().invert_yaxis()
    plt.xlabel('J - Kp (mag)')
    plt.ylabel('J (mag')

    # Plot a mass-magnitude relationship.
    plt.figure(2)
    plt.clf()
    plt.semilogx(clust1['mass'], clust1['m_nirc2_J'], 'r.')
    plt.semilogx(clust2['mass'], clust2['m_nirc2_J'], 'r.')
    plt.gca().invert_yaxis()
    plt.xlabel('Mass (Msun)')
    plt.ylabel('J (mag)')

    return
Exemplo n.º 4
0
def test_ResolvedClusterDiffRedden():
    from popstar import synthetic as syn
    from popstar import atmospheres as atm
    from popstar import evolution
    from popstar import reddening
    from popstar.imf import imf
    from popstar.imf import multiplicity

    logAge = 6.7
    AKs = 2.4
    distance = 4000
    cluster_mass = 10**5.
    deltaAKs = 0.05
    mass_sampling = 5

    # Test all filters
    filt_list = [
        'wfc3,ir,f127m', 'wfc3,ir,f139m', 'wfc3,ir,f153m', 'acs,wfc1,f814w',
        'wfc3,ir,f125w', 'wfc3,ir,f160w', 'decam,y', 'decam,i', 'decam,z',
        'decam,u', 'decam,g', 'decam,r', 'vista,Y', 'vista,Z', 'vista,J',
        'vista,H', 'vista,Ks', 'ps1,z', 'ps1,g', 'ps1,r', 'ps1,i', 'ps1,y',
        'jwst,F090W', 'jwst,F164N', 'jwst,F212N', 'jwst,F323N', 'jwst,F466N',
        'nirc2,J', 'nirc2,H', 'nirc2,Kp', 'nirc2,K', 'nirc2,Lp', 'nirc2,Ms',
        'nirc2,Hcont', 'nirc2,FeII', 'nirc2,Brgamma', 'jg,J', 'jg,H', 'jg,K'
    ]

    startTime = time.time()

    evo = evolution.MergedBaraffePisaEkstromParsec()
    atm_func = atm.get_merged_atmosphere

    red_law = reddening.RedLawNishiyama09()

    iso = syn.IsochronePhot(logAge,
                            AKs,
                            distance,
                            evo_model=evo,
                            atm_func=atm_func,
                            red_law=red_law,
                            filters=filt_list,
                            mass_sampling=mass_sampling)

    print 'Constructed isochrone: %d seconds' % (time.time() - startTime)

    imf_mass_limits = np.array([0.07, 0.5, 1, np.inf])
    imf_powers = np.array([-1.3, -2.3, -2.3])

    ##########
    # Start without multiplicity
    ##########
    my_imf1 = imf.IMF_broken_powerlaw(imf_mass_limits,
                                      imf_powers,
                                      multiplicity=None)
    print 'Constructed IMF: %d seconds' % (time.time() - startTime)

    cluster1 = syn.ResolvedClusterDiffRedden(iso, my_imf1, cluster_mass,
                                             deltaAKs)
    clust1 = cluster1.star_systems
    print 'Constructed cluster: %d seconds' % (time.time() - startTime)

    plt.figure(3)
    plt.clf()
    plt.plot(clust1['m_nirc2_J'] - clust1['m_nirc2_Kp'], clust1['m_nirc2_J'],
             'r.')
    plt.plot(iso.points['m_nirc2_J'] - iso.points['m_nirc2_Kp'],
             iso.points['m_nirc2_J'], 'c.')
    plt.gca().invert_yaxis()

    # *** Visual Inspections: ***
    #  - check that points (red) fall between isochrone points (blue)

    ##########
    # Test with multiplicity
    ##########
    multi = multiplicity.MultiplicityUnresolved()
    my_imf2 = imf.IMF_broken_powerlaw(imf_mass_limits,
                                      imf_powers,
                                      multiplicity=multi)
    print 'Constructed IMF with multiples: %d seconds' % (time.time() -
                                                          startTime)

    cluster2 = syn.ResolvedClusterDiffRedden(iso, my_imf2, cluster_mass,
                                             deltaAKs)
    clust2 = cluster2.star_systems
    print 'Constructed cluster with multiples: %d seconds' % (time.time() -
                                                              startTime)

    ##########
    # Plots
    ##########
    # Plot an IR CMD and compare cluster members to isochrone.
    plt.figure(1)
    plt.clf()
    plt.plot(clust1['m_nirc2_J'] - clust1['m_nirc2_Kp'], clust1['m_nirc2_J'],
             'r.')
    plt.plot(clust2['m_nirc2_J'] - clust2['m_nirc2_Kp'], clust2['m_nirc2_J'],
             'b.')
    plt.plot(iso.points['m_nirc2_J'] - iso.points['m_nirc2_Kp'],
             iso.points['m_nirc2_J'], 'c-')
    plt.gca().invert_yaxis()
    plt.xlabel('J - Kp (mag)')
    plt.ylabel('J (mag')

    # Plot a mass-magnitude relationship.
    plt.figure(2)
    plt.clf()
    plt.semilogx(clust1['mass'], clust1['m_nirc2_J'], 'r.')
    plt.semilogx(clust2['mass'], clust2['m_nirc2_J'], 'r.')
    plt.gca().invert_yaxis()
    plt.xlabel('Mass (Msun)')
    plt.ylabel('J (mag)')

    return