Exemplo n.º 1
0
 def test_unit_square(self):
     p = np.array([[0, 0], [1, 0], [1, 1], [0, 1]]).T
     d = cg.dist_pointset(p)
     s2 = np.sqrt(2)
     known = np.array([[0, 1, s2, 1], [1, 0, 1, s2], [s2, 1, 0, 1],
                       [1, s2, 1, 0]])
     assert np.allclose(d, known)
Exemplo n.º 2
0
 def test_3d(self):
     p = np.array([[0, 0, 0], [0, 1, 0], [1, 0, 0]]).T
     d = cg.dist_pointset(p)
     known = np.array([[0, 1, 1],
                       [1, 0, np.sqrt(2)],
                       [1, np.sqrt(2), 0]])
     assert np.allclose(d, known)
Exemplo n.º 3
0
def merge_1d_grids(g, h, global_ind_offset=0, tol=1e-4):
    """ Merge two 1d grids with non-matching nodes to a single grid.

    The grids should have common start and endpoints. They can be into 3d space
    in a genreal way.

    The function is primarily intended for merging non-conforming DFN grids.

    Parameters:
        g: 1d tensor grid.
        h: 1d tensor grid
        glob_ind_offset (int, defaults to 0): Off set for the global point
            index of the new grid.
        tol (double, defaults to 1e-4): Tolerance for when two nodes are merged
            into one.

    Returns:
        TensorGrid: New tensor grid, containing the combined node definition.
        int: New global ind offset, increased by the number of cells in the
            combined grid.
        np.array (int): Indices of common nodes (after sorting) of g and the
            new grid.
        np.array (int): Indices of common nodes (after sorting) of h and the
            new grid.
        np.array (int): Permutation indices that sort the node coordinates of
            g. The common indices between g and the new grid are found as
            new_grid.nodes[:, g_in_combined] = g.nodes[:, sorted]
        np.array (int): Permutation indices that sort the node coordinates of
            h. The common indices between h and the new grid are found as
            new_grid.nodes[:, h_in_combined] = h.nodes[:, sorted]

    """

    # Nodes of the two 1d grids, combine them
    gp = g.nodes
    hp = h.nodes
    combined = np.hstack((gp, hp))

    num_g = gp.shape[1]
    num_h = hp.shape[1]

    # Keep track of where we put the indices of the original grids
    g_in_full = np.arange(num_g)
    h_in_full = num_g + np.arange(num_h)

    # The tolerance should not be larger than the smallest distance between
    # two points on any of the grids.
    diff_gp = np.min(cg.dist_pointset(gp, True))
    diff_hp = np.min(cg.dist_pointset(hp, True))
    min_diff = np.minimum(tol, 0.5 * np.minimum(diff_gp, diff_hp))

    # Uniquify points
    combined_unique, _, new_2_old = unique_columns_tol(combined, tol=min_diff)
    # Follow locations of the original grid points
    g_in_unique = new_2_old[g_in_full]
    h_in_unique = new_2_old[h_in_full]

    # The combined nodes must be sorted along their natural line.
    # Find the dimension with the largest spatial extension, and sort those
    # coordinates
    max_coord = combined_unique.max(axis=1)
    min_coord = combined_unique.min(axis=1)
    dx = max_coord - min_coord
    sort_dim = np.argmax(dx)

    sort_ind = np.argsort(combined_unique[sort_dim])
    combined_sorted = combined_unique[:, sort_ind]

    # Follow the position of the orginial nodes through sorting
    _, g_sorted = ismember_rows(g_in_unique, sort_ind)
    _, h_sorted = ismember_rows(h_in_unique, sort_ind)

    num_new_grid = combined_sorted.shape[1]

    # Create a new 1d grid.
    # First use a 1d coordinate to initialize topology
    new_grid = TensorGrid(np.arange(num_new_grid))
    # Then set the right, 3d coordinates
    new_grid.nodes = cg.make_collinear(combined_sorted)

    # Set global point indices
    new_grid.global_point_ind = global_ind_offset + np.arange(num_new_grid)
    global_ind_offset += num_new_grid

    return new_grid, global_ind_offset, g_sorted, h_sorted, np.arange(num_g),\
           np.arange(num_h)
Exemplo n.º 4
0
 def test_zero_diagonal(self):
     sz = 5
     p = np.random.rand(3, sz)
     d = cg.dist_pointset(p)
     self.assertTrue(np.allclose(np.diagonal(d), np.zeros(sz)))
Exemplo n.º 5
0
 def test_single_point(self):
     p = np.random.rand(2)
     d = cg.dist_pointset(p)
     self.assertTrue(d.shape == (1, 1))
     self.assertTrue(d[0, 0] == 0)
Exemplo n.º 6
0
 def test_symmetry(self):
     p = np.random.rand(3, 7)
     d = cg.dist_pointset(p)
     self.assertTrue(np.allclose(d, d.T))
Exemplo n.º 7
0
 def test_single_point(self):
     p = np.random.rand(2)
     d = cg.dist_pointset(p)
     assert d.shape == (1, 1)
     assert d[0, 0] == 0