def set_rock_and_fluid(self):
     """
     Set rock and fluid properties to granite and water.
     """
     self.rock = pp.Granite()
     self.rock.FRICTION_COEFFICIENT = 0.5
     self.fluid = pp.Water()
     self.rock.PERMEABILITY = 1e-16
Exemplo n.º 2
0
 def test_granite(self):
     R = pp.Granite()
     self.assertEqual(R.PERMEABILITY, 1e-8 * pp.DARCY)
     self.assertEqual(R.POROSITY, 0.01)
     self.assertEqual(R.YOUNG_MODULUS, 40 * pp.GIGA * pp.PASCAL)
     self.assertEqual(R.POISSON_RATIO, 0.2)
     self.assertEqual(R.DENSITY, 2700 * pp.KILOGRAM / pp.METER**3)
     self.assertTrue(np.allclose(R.LAMBDA, 11111111111.1111112))
     self.assertTrue(np.allclose(R.MU, 16666666666.6666667))
Exemplo n.º 3
0
    def __init__(self, pb):

        pb["theta_ref"] = pb["temperature_at_depth"]
        pb["water"] = pp.Water(pb["theta_ref"])
        pb["rock"] = pp.Granite(pb["theta_ref"])

        # create the computational grid
        gb = create_grid(pb)

        # Darcy problem
        self.assign_data(gb, pb, FlowData, "problem")
        pb["file_name"] = "hydraulic_head"
        flow = pp.EllipticModel(gb, **pb)

        # transport problem
        self.assign_data(gb, pb, TransportData, "transport_data")
        pb["file_name"] = "temperature"
        transport = TransportSolver(gb, **pb)

        darcy_and_transport.DarcyAndTransport.__init__(self, flow, transport)
Exemplo n.º 4
0
def assign_data(gb):
    # First we define the rock
    matrix_rock = pp.Granite()
    matrix_rock.MU = 20 * pp.GIGA * pp.PASCAL
    matrix_rock.LAMBDA = 20 * pp.GIGA * pp.PASCAL

    # We define the variable aperture_change which will be used to update the aperture
    # at each time step
    gb.add_node_props(['aperture_change'])
    for g, d in gb:
        d['aperture_change'] = np.zeros(g.num_cells)
        if g.dim == 3:
            d['rock'] = matrix_rock
            d['flow_data'] = MatrixDomain(g, d)
            d['mech_data'] = MechDomain(g, d)
            d['slip_data'] = pp.FrictionSlipDataAssigner(g, d)
        else:
            # We define an injection in the first fracture
            if d['node_number'] == 1:
                d['flow_data'] = InjectionDomain(g, d)
            else:
                d['flow_data'] = FractureDomain(g, d)
Exemplo n.º 5
0
    def set_parameters(self, g, data_node, mg, data_edge):
        """
        Set the parameters for the simulation. The stress is given in GPa.
        """
        # Define the finite volume sub grid
        s_t = pp.fvutils.SubcellTopology(g)

        # Rock parameters
        rock = pp.Granite()
        lam = rock.LAMBDA * np.ones(g.num_cells) / self.pressure_scale
        mu = rock.MU * np.ones(g.num_cells) / self.pressure_scale
        k = pp.FourthOrderTensor(g.dim, mu, lam)
        F = self._friction_coefficient(g, mg, data_edge, s_t)

        # Define boundary regions
        east = g.face_centers[0] > np.max(g.nodes[0]) - 1e-9
        west = g.face_centers[0] < np.min(g.nodes[0]) + 1e-9
        north = g.face_centers[1] > np.max(g.nodes[1]) - 1e-9
        south = g.face_centers[1] < np.min(g.nodes[1]) + 1e-9
        top = g.face_centers[2] > np.max(g.nodes[2]) - 1e-9
        bot = g.face_centers[2] < np.min(g.nodes[2]) + 1e-9

        top_hf = top[s_t.fno_unique]
        bot_hf = bot[s_t.fno_unique]

        # define boundary condition
        bc = pp.BoundaryConditionVectorial(g)
        bc.is_dir[0, east] = True  # Rolling
        bc.is_dir[0, west] = True  # Rolling
        bc.is_dir[1, north] = True  # Rolling
        bc.is_dir[1, south] = True  # Rolling
        bc.is_dir[:, bot] = True  # Dirichlet
        bc.is_neu[bc.is_dir + bc.is_rob] = False

        # extract boundary condition to subcells
        bc = pp.fvutils.boundary_to_sub_boundary(bc, s_t)

        # Give boundary condition values
        A = g.face_areas[s_t.fno_unique][top_hf] / 3  #* pp.length_scale**g.dim
        u_bc = np.zeros((g.dim, s_t.num_subfno_unique))
        u_bc[2, top_hf] = -4.5 * pp.MEGA * pp.PASCAL / self.pressure_scale * A

        # Find the continuity points
        eta = 1 / 3
        eta_vec = eta * np.ones(s_t.num_subfno_unique)

        cont_pnt = g.face_centers[:g.dim, s_t.fno_unique] + eta_vec * (
            g.nodes[:g.dim, s_t.nno_unique] -
            g.face_centers[:g.dim, s_t.fno_unique])

        # collect parameters in dictionary
        key = 'mech'
        key_m = 'mech'

        data_node = pp.initialize_data(
            g, data_node, key, {
                'bc': bc,
                'bc_values': u_bc.ravel('F'),
                'source': 0,
                'fourth_order_tensor': k,
                'mpsa_eta': eta_vec,
                'cont_pnt': cont_pnt,
                'rock': rock,
            })
        pp.initialize_data(
            mg, data_edge, key_m, {
                'friction_coeff': F,
                'c': 100 * pp.GIGA * pp.PASCAL / self.pressure_scale
            })

        # Define discretization
        # Solve linear elasticity with mpsa
        mpsa = pp.Mpsa(key)
        data_node[pp.PRIMARY_VARIABLES] = {'u': {'cells': g.dim}}
        data_node[pp.DISCRETIZATION] = {'u': {'mpsa': mpsa}}
        # Add a Robin condition to the mortar grid
        contact = pp.numerics.interface_laws.elliptic_interface_laws.RobinContact(
            key_m, mpsa)
        data_edge[pp.PRIMARY_VARIABLES] = {'lam': {'cells': g.dim}}
        data_edge[pp.COUPLING_DISCRETIZATION] = {
            'robin_disc': {
                g: ('u', 'mpsa'),
                g: ('u', 'mpsa'),
                (g, g): ('lam', contact),
            }
        }
        return key, key_m
Exemplo n.º 6
0

if __name__ == "__main__":

    file_geo = "Algeroyna.csv"
    aperture = pp.MILLIMETER
    data = {"aperture": aperture, "kf": aperture ** 2 / 12}
    folder = "upscaling"
    upscaling(file_geo, data, folder, dfn=True)

    file_geo = "Algeroyna.csv"
    folder = "solution"

    theta_ref = 30. * pp.CELSIUS
    fluid = pp.Water(theta_ref)
    rock = pp.Granite(theta_ref)

    aperture = 2 * pp.MILLIMETER

    # select the permeability depending on the selected test case
    data = {
        "aperture": aperture,
        "kf": aperture ** 2 / 12,
        "km": 1e7 * rock.PERMEABILITY,
        "porosity_f": 0.85,
        "dt": 1e6 * pp.SECOND,
        "t_max": 1e7 * pp.SECOND,
        "fluid": fluid,
        "rock": rock,
    }
Exemplo n.º 7
0
    def set_parameters(self, g, data_node, mg, data_edge):
        """
        Set the parameters for the simulation. The stress is given in GPa.
        """
        # Define the finite volume sub grid
        s_t = pp.fvutils.SubcellTopology(g)

        # Rock parameters
        rock = pp.Granite()
        lam = rock.LAMBDA * np.ones(g.num_cells) / self.pressure_scale
        mu = rock.MU * np.ones(g.num_cells) / self.pressure_scale
        F = self._friction_coefficient(g, mg, data_edge, s_t)

        k = pp.FourthOrderTensor(g.dim, mu, lam)

        # Define boundary regions
        top = g.face_centers[g.dim - 1] > np.max(g.nodes[1]) - 1e-9
        bot = g.face_centers[g.dim - 1] < np.min(g.nodes[1]) + 1e-9

        top_hf = top[s_t.fno_unique]
        bot_hf = bot[s_t.fno_unique]

        # Define boundary condition on sub_faces
        bc = pp.BoundaryConditionVectorial(g, top + bot, 'dir')
        bc = pp.fvutils.boundary_to_sub_boundary(bc, s_t)

        # Set the boundary values
        u_bc = np.zeros((g.dim, s_t.num_subfno_unique))
        u_bc[1, top_hf] = -0.002
        u_bc[0, top_hf] = 0.005

        # Find the continuity points
        eta = 1 / 3
        eta_vec = eta * np.ones(s_t.num_subfno_unique)

        cont_pnt = g.face_centers[:g.dim, s_t.fno_unique] + eta_vec * (
            g.nodes[:g.dim, s_t.nno_unique] -
            g.face_centers[:g.dim, s_t.fno_unique])

        # collect parameters in dictionary
        key = 'mech'
        key_m = 'mech'

        data_node = pp.initialize_data(
            g, data_node, key, {
                'bc': bc,
                'bc_values': u_bc.ravel('F'),
                'source': 0,
                'fourth_order_tensor': k,
                'mpsa_eta': eta_vec,
                'cont_pnt': cont_pnt,
                'rock': rock,
            })

        pp.initialize_data(mg, data_edge, key_m, {
            'friction_coeff': F,
            'c': 100
        })

        # Define discretization
        # For the 2D domain we solve linear elasticity with mpsa.
        mpsa = pp.Mpsa(key)
        data_node[pp.PRIMARY_VARIABLES] = {'u': {'cells': g.dim}}
        data_node[pp.DISCRETIZATION] = {'u': {'mpsa': mpsa}}

        # And define a Robin condition on the mortar grid
        contact = pp.numerics.interface_laws.elliptic_interface_laws.RobinContact(
            key_m, mpsa)
        data_edge[pp.PRIMARY_VARIABLES] = {'lam': {'cells': g.dim}}
        data_edge[pp.COUPLING_DISCRETIZATION] = {
            'robin_disc': {
                g: ('u', 'mpsa'),
                g: ('u', 'mpsa'),
                (g, g): ('lam', contact),
            }
        }
        return key, key_m