Exemplo n.º 1
0
 def _create_examples(lines, set_type):
     """Creates examples for the training and dev sets."""
     examples = []
     for (i, line) in enumerate(lines):
         guid = "%s-%s" % (set_type, i)
         text = tokenization.convert_to_unicode(line[0])
         label = tokenization.convert_to_unicode(line[1])
         examples.append(
             InputExample(guid=guid, text_a=text, text_b=None, label=label))
     return examples
Exemplo n.º 2
0
 def _create_examples(self, lines, set_type):
     """Creates examples for the training and dev sets."""
     examples = []
     for (i, line) in enumerate(lines):
         if i == 0:
             continue
         guid = "%s-%s" % (set_type, i)
         text_a = tokenization.convert_to_unicode(line[3])
         text_b = tokenization.convert_to_unicode(line[4])
         if set_type == "test":
             label = "0"
         else:
             label = tokenization.convert_to_unicode(line[0])
         examples.append(
             InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
     return examples
Exemplo n.º 3
0
 def _create_examples(self, lines, set_type):
     """Creates examples for the training and dev sets."""
     examples = []
     for (i, line) in enumerate(lines):
         # Only the test set has a header
         if set_type == "test" and i == 0:
             continue
         guid = "%s-%s" % (set_type, i)
         if set_type == "test":
             text_a = tokenization.convert_to_unicode(line[1])
             label = "0"
         else:
             text_a = tokenization.convert_to_unicode(line[3])
             label = tokenization.convert_to_unicode(line[1])
         examples.append(
             InputExample(guid=guid, text_a=text_a, text_b=None, label=label))
     return examples
Exemplo n.º 4
0
 def get_dev_examples(self, data_dir):
     """See base class."""
     lines = self._read_tsv(os.path.join(data_dir, "xnli.dev.tsv"))
     examples = []
     for (i, line) in enumerate(lines):
         if i == 0:
             continue
         guid = "dev-%d" % (i)
         language = tokenization.convert_to_unicode(line[0])
         if language != tokenization.convert_to_unicode(self.language):
             continue
         text_a = tokenization.convert_to_unicode(line[6])
         text_b = tokenization.convert_to_unicode(line[7])
         label = tokenization.convert_to_unicode(line[1])
         examples.append(
             InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
     return examples
Exemplo n.º 5
0
 def get_train_examples(self, data_dir):
     """See base class."""
     lines = self._read_tsv(
         os.path.join(data_dir, "multinli",
                      "multinli.train.%s.tsv" % self.language))
     examples = []
     for (i, line) in enumerate(lines):
         if i == 0:
             continue
         guid = "train-%d" % (i)
         text_a = tokenization.convert_to_unicode(line[0])
         text_b = tokenization.convert_to_unicode(line[1])
         label = tokenization.convert_to_unicode(line[2])
         if label == tokenization.convert_to_unicode("contradictory"):
             label = tokenization.convert_to_unicode("contradiction")
         examples.append(
             InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
     return examples
def create_training_instances(input_files, tokenizer, max_seq_length,
                              dupe_factor, short_seq_prob, masked_lm_prob,
                              max_predictions_per_seq, rng):
    """Create `TrainingInstance`s from raw text."""
    all_documents = [[]]

    # Input file format:
    # (1) One sentence per line. These should ideally be actual sentences, not
    # entire paragraphs or arbitrary spans of text. (Because we use the
    # sentence boundaries for the "next sentence prediction" task).
    # (2) Blank lines between documents. Document boundaries are needed so
    # that the "next sentence prediction" task doesn't span between documents.
    for input_file in input_files:
        with tf.io.gfile.GFile(input_file, "r") as reader:
            while True:
                line = tokenization.convert_to_unicode(reader.readline())
                if not line:
                    break
                line = line.strip()

                # Empty lines are used as document delimiters
                if not line:
                    all_documents.append([])
                tokens = tokenizer.tokenize(line)
                if tokens:
                    all_documents[-1].append(tokens)

    # Remove empty documents
    all_documents = [x for x in all_documents if x]
    rng.shuffle(all_documents)

    vocab_words = list(tokenizer.vocab.keys())
    instances = []
    for _ in range(dupe_factor):
        for document_index in range(len(all_documents)):
            instances.extend(
                create_instances_from_document(all_documents, document_index,
                                               max_seq_length, short_seq_prob,
                                               masked_lm_prob,
                                               max_predictions_per_seq,
                                               vocab_words, rng))

    rng.shuffle(instances)
    return instances
Exemplo n.º 7
0
def read_examples(input_file):
    """Read a list of `InputExample`s from an input file."""
    examples = []
    unique_id = 0
    with tf.io.gfile.GFile(input_file, "r") as reader:
        while True:
            line = tokenization.convert_to_unicode(reader.readline())
            if not line:
                break
            line = line.strip()
            text_a = None
            text_b = None
            m = re.match(r"^(.*) \|\|\| (.*)$", line)
            if m is None:
                text_a = line
            else:
                text_a = m.group(1)
                text_b = m.group(2)
            examples.append(
                InputExample(unique_id=unique_id, text_a=text_a,
                             text_b=text_b))
            unique_id += 1
    return examples