Exemplo n.º 1
0
    def get_returns(self, column="Total"):
        try:
            self.data
        except AttributeError:
            self.get_timeseries()
        else:
            pass

        self.data_growth, _ = returns_column(df=self.data_growth,
                                             column=column)

        # get date range from the transaction list
        self.min_date = min(self.transactions.Date.min(),
                            self.payments.Date.min())
        self.max_date = datetime.datetime.now()

        # make a list of days between min and max date as index for timeseries df
        date_index = pd.date_range(self.min_date, self.max_date, freq="D")
        _ts = pd.Series(range(len(date_index)), index=date_index)

        # create timeseries df from date index and wallet entries
        _df_ts = _ts.to_frame("Day")
        #

        # join in daily price change data for each security
        cols = []
        for security in self.tickers:
            _series = self.securities[security].data["Close"]
            _col_name = str(_series.name) + "_" + security
            _series = _series.rename(_col_name)
            _df_ts = _df_ts.join(_series, how="left",
                                 rsuffix="").fillna(method="ffill")
            _df_ts, _ = returns_column(df=_df_ts,
                                       column=_col_name,
                                       outname=security)
            cols.append(_col_name)

        self.returns = _df_ts.drop(cols, axis=1)
Exemplo n.º 2
0
    def get_benchmark(self, benchmark_ticker="^GSPC"):

        if benchmark_ticker == "sp500" or benchmark_ticker == "^GSPC":
            _ticker = "^GSPC"
        else:
            _ticker = "^GSPC"  # S&P 500 as default

        # create security class object for benchmark ticker
        _benchmark = Security(_ticker, start=self.min_date, end=self.max_date)

        # calculate returns for the benchmark
        _benchmark.data, _ = returns_column(df=_benchmark.data, column="Close")

        self.benchmark = _benchmark
Exemplo n.º 3
0
    def get_benchmark(self, benchmark_ticker="^GSPC"):

        self.min_date = self.data.index.min()
        self.max_date = min(self.data.index.max(), dt.now())

        if benchmark_ticker == "sp500" or benchmark_ticker == "^GSPC":
            _ticker = "^GSPC"
        elif benchmark_ticker:
            _ticker = benchmark_ticker
        else:
            _ticker = "^GSPC"  # S&P 500 as default

        # create security class object for benchmark ticker
        _benchmark = Security(_ticker, start=self.min_date, end=self.max_date)

        # calculate returns for the benchmark
        _benchmark.data, _ = returns_column(
            df=_benchmark.data, column="Close", uselogs=True
        )

        self.benchmark = _benchmark
Exemplo n.º 4
0
 def get_returns(self, column="Total"):
     self.data, _ = returns_column(df=self.data, column=column)
Exemplo n.º 5
0
 def get_returns(self, column="Close"):
     self.data, _ = returns_column(df=self.data, column=column)