Exemplo n.º 1
0
 def _convert_obs(self):
     robot = self.soadrl_sim.robot
     # lidar obs
     lidar_pos = np.array([robot.px, robot.py, robot.theta], dtype=np.float32)
     ranges = np.ones((self.n_angles,), dtype=np.float32) * 25.
     angles = np.linspace(self.kLidarMergedMinAngle,
                          self.kLidarMergedMaxAngle-self.kLidarAngleIncrement,
                          self.n_angles) + lidar_pos[2]
     render_contours_in_lidar(ranges, angles, self.flat_contours, lidar_pos[:2])
     # agents
     other_agents = []
     for i, human in enumerate(self.soadrl_sim.humans):
         pos = np.array([human.px, human.py, human.theta], dtype=np.float32)
         dist = self.distances_travelled_in_base_frame[i].astype(np.float32)
         vel = np.array([human.vx, human.vy], dtype=np.float32)
         if self.lidar_legs:
             agent = CSimAgent(pos, dist, vel)
         else:
             agent = CSimAgent(pos, dist, vel, type_="trunk", radius=human.radius)
         other_agents.append(agent)
     # apply through converter map (res 1., origin 0,0 -> i,j == x,y)
     self.converter_cmap2d.render_agents_in_lidar(ranges, angles, other_agents, lidar_pos[:2])
     self.lidar_scan = ranges
     self.lidar_angles = angles
     # robotstate obs
     # shape (n_agents, 5 [grx, gry, vx, vy, vtheta]) - all in base frame
     baselink_in_world = np.array([robot.px, robot.py, robot.theta])
     world_in_baselink = inverse_pose2d(baselink_in_world)
     robotvel_in_world = np.array([robot.vx, robot.vy, 0])  # TODO: actual robot rot vel?
     robotvel_in_baselink = apply_tf_to_vel(robotvel_in_world, world_in_baselink)
     goal_in_world = np.array([robot.gx, robot.gy, 0])
     goal_in_baselink = apply_tf_to_pose(goal_in_world, world_in_baselink)
     robotstate_obs = np.hstack([goal_in_baselink[:2], robotvel_in_baselink])
     obs = (self.lidar_scan, robotstate_obs)
     return obs
Exemplo n.º 2
0
    def visuals_loop(self):
        while True:
            xx, yy, clusters, is_legs, cogs, radii = self.clusters_data
            # past positions
            tf_past_in_rob = []
            if self.tf_pastrobs_in_fix:
                tf_rob_in_fix = self.tf_pastrobs_in_fix[-1]
                for i, tf_a in enumerate(self.tf_pastrobs_in_fix[::-1]):
                    tf_b = apply_tf_to_pose(
                        Pose2D(tf_a), inverse_pose2d(Pose2D(tf_rob_in_fix)))
                    tf_past_in_rob.append(tf_b)
            # Plotting
            plt.figure("clusters")
            plt.cla()
            plt.scatter(xx,
                        yy,
                        zorder=1,
                        facecolor=(1, 1, 1, 1),
                        edgecolor=(0, 0, 0, 1),
                        color='k',
                        marker='.')
            #         for x, y in zip(xx, yy):
            #             plt.plot([0, x], [0, y], linewidth=0.01, color='red' , zorder=2)
            plt.scatter([0], [0], marker='+', color='k', s=1000)
            for c in clusters:
                plt.plot(xx[c], yy[c], zorder=2)
            for l, cog, r in zip(is_legs, cogs, radii):
                if l:
                    patch = patches.Circle(cog,
                                           r,
                                           facecolor=(0, 0, 0, 0),
                                           edgecolor=(0, 0, 0, 1),
                                           linewidth=3)
                else:
                    patch = patches.Circle(cog,
                                           r,
                                           facecolor=(0, 0, 0, 0),
                                           edgecolor=(0, 0, 0, 1),
                                           linestyle='--')
                plt.gca().add_artist(patch)
            if tf_past_in_rob:
                xy_past = np.array(tf_past_in_rob)
                plt.plot(xy_past[:, 0], xy_past[:, 1], color='red')

            plt.gca().set_aspect('equal', adjustable='box')
            LIM = 10
            plt.ylim([-LIM, LIM])
            plt.xlim([-LIM, LIM])
            # pause
            plt.pause(0.1)
            rospy.timer.sleep(0.01)
Exemplo n.º 3
0
 def _update_dist_travelled(self):
     """ update dist travel var used for animating legs """
     # for each human, get vel in base frame
     for i, human in enumerate(self.soadrl_sim.humans):
         # dig up rotational velocity from past states log
         vrot = 0.
         if len(self.soadrl_sim.states) > 1:
             vrot = (self.soadrl_sim.states[-1][1][i].theta
                     - self.soadrl_sim.states[-2][1][i].theta) / self._get_dt()
         # transform world vel to base vel
         baselink_in_world = np.array([human.px, human.py, human.theta])
         world_in_baselink = inverse_pose2d(baselink_in_world)
         vel_in_world_frame = np.array([human.vx, human.vy, vrot])
         vel_in_baselink_frame = apply_tf_to_vel(vel_in_world_frame, world_in_baselink)
         self.distances_travelled_in_base_frame[i, :] += vel_in_baselink_frame * self._get_dt()
    def execute_current_task(self, agent_index):
        # TODO run a task-specific controller instead
        task = self.current_tasks[agent_index]
        task_start = self.task_start_times[agent_index]
        if task is None or task_start is None:
            return np.array([0,0,0])
        # get action from current task
        N = int(NAIVE_AGENT_LIVE_WAYPOINT_DISTANCE / self.iaenv.worldstate.map.resolution())
        waypoint_idx = min(task['tasktargetpathidx'], N)
        waypoint = task['taskfullpath'][waypoint_idx]
        vp_pos = self.rlenv.virtual_peppers[agent_index].pos
        waypoint_in_vp_frame = pose2d.apply_tf(waypoint, pose2d.inverse_pose2d(vp_pos))
        theta = np.arctan2(waypoint_in_vp_frame[1], waypoint_in_vp_frame[0])
        delta = np.array([waypoint_in_vp_frame[0], waypoint_in_vp_frame[1], theta])
        action = delta
        # apply actions to iaenv, such as SAY
#         TODO
        # end task
        task_elapsed = self.get_sim_time() - task_start
        if task_elapsed > self.get_max_task_alotted_time():
            self.reset_task(agent_index)
            if self.args.verbose:
                print("{:.1f} | {}: Agent {} | task timed-out".format(
                    self.get_walltime_since_sim_start_sec(), self.get_sim_time_sec(), agent_index))
            # reset blocked collision episodes for agent (new chance to be allowed through)
            for j in range(self.n_sim_agents):
                if agent_index == j:
                    continue
                if self.collision_episodes[agent_index, j] == 1:
                    self.collision_episodes[agent_index, j] = 0
                    self.collision_episodes[j, agent_index] = 0
        # we should stop, but I kind of like the idle movement. just slow down.
        if isinstance(task['taskaction'], actions.Loiter):
            action = action * 0.8
        else:
            # check if task succeeded
            if np.linalg.norm(vp_pos[:2] - waypoint) < self.get_agent_radius(agent_index):
                self.reset_task(agent_index)
                action = np.array([0,0,0])
                if self.args.verbose:
                    print("Agent {} | task succeeded".format(agent_index))
        return action
 def turn_to_face_goal_callback(self, event=None):
     with self.lock:
         if self.plan_executor_node.task_being_executed is not None:
             return
         if self.refmap_manager.tf_frame_in_refmap is None:
             return
         if self.goal_xy_in_refmap is None:
             return
         p2_refmap_in_robot = inverse_pose2d(
             Pose2D(self.refmap_manager.tf_frame_in_refmap))
         goal_xy_in_robot = apply_tf(self.goal_xy_in_refmap,
                                     p2_refmap_in_robot)
     rospy.loginfo_throttle(5., "turning to face goal")
     gx, gy = goal_xy_in_robot
     angle_to_goal = np.arctan2(gy, gx)  # [-pi, pi]
     w = 0
     if np.abs(angle_to_goal) > ((np.pi / 4) / 10):  # deadzone
         w = 0.3 * np.sign(angle_to_goal)
     if not self.STOP:
         cmd_vel_msg = Twist()
         cmd_vel_msg.angular.z = w
         self.cmd_vel_pub.publish(cmd_vel_msg)
Exemplo n.º 6
0
    def planner_routine(self, event=None):
        nowstamp = rospy.Time.now()
        if self.tf_wpt_in_fix is None:
            rospy.logwarn_throttle(10., "Global path not available yet")
            return
        if self.tf_rob_in_fix is None:
            rospy.logwarn_throttle(10., "tf_rob_in_fix not available yet")
            return
        if self.odom is None:
            rospy.logwarn_throttle(10., "odom not available yet")
            return
        # remove old obstacles from buffer
        k2s = 2.
        with self.lock:
            tic = timer()
            dynamic_obstacles = []
            self.obstacles_buffer = [
                obst_msg for obst_msg in self.obstacles_buffer
                if nowstamp - obst_msg.header.stamp < rospy.Duration(k2s)
            ]
            # DEBUG remove
            #             for obst_msg in self.obstacles_buffer:
            for obst_msg in self.obstacles_buffer[-1:]:
                dynamic_obstacles.extend(obst_msg.obstacles)
            # take into account static obstacles if not old
            static_obstacles = []
            if self.static_obstacles_buffer is not None:
                if (nowstamp - self.static_obstacles_buffer.header.stamp
                    ) < rospy.Duration(k2s):
                    static_obstacles = self.static_obstacles_buffer.obstacles
            # vel to goal in fix
            goal_in_fix = np.array(Pose2D(self.tf_wpt_in_fix)[:2])
            toc = timer()
            print("Lock preproc {:.1f} ms".format((toc - tic) * 1000.))
            # robot position
            tf_rob_in_fix = self.tf_rob_in_fix

        tic = timer()

        # RVO set up
        positions = []
        radii = []
        velocities = []
        obstacles = []
        metadata = []  # agent metadata

        # create agents for RVO
        # first agent is the robot
        positions.append(Pose2D(tf_rob_in_fix)[:2])
        radii.append(self.kRadius)
        velocities.append(
            [self.odom.twist.twist.linear.x, self.odom.twist.twist.linear.y])
        metadata.append({'source': 'robot'})
        # create agent for every dynamic obstacle
        for obst in dynamic_obstacles:
            positions.append(
                [obst.polygon.points[0].x, obst.polygon.points[0].y])
            radii.append(obst.radius)
            velocities.append([
                obst.velocities.twist.linear.x, obst.velocities.twist.linear.y
            ])
            metadata.append({'source': 'dynamic'})
        # create agents for local static obstacles (table leg, chair, etc)
        for obst in static_obstacles:
            if obst.radius > 0.5:
                continue  # TODO big walls make big circles : but dangerous to do this!
            positions.append(
                [obst.polygon.points[0].x, obst.polygon.points[0].y])
            radii.append(obst.radius)
            velocities.append([
                obst.velocities.twist.linear.x, obst.velocities.twist.linear.y
            ])
            metadata.append({'source': 'nonleg'})

        # create static obstacle vertices from refmap if available (walls, etc)
        if self.refmap_manager.tf_frame_in_refmap is not None:
            kMapObstMaxDist = 3.
            obstacles_in_ref = self.refmap_manager.map_as_closed_obstacles
            pose2d_ref_in_fix = inverse_pose2d(
                Pose2D(self.refmap_manager.tf_frame_in_refmap))
            near_obstacles = [
                apply_tf(vertices, pose2d_ref_in_fix)
                for vertices in obstacles_in_ref if len(vertices) > 1
            ]
            near_obstacles = [
                vertices for vertices in near_obstacles if np.mean(
                    np.linalg.norm(vertices - np.array(positions[0]), axis=1))
                < kMapObstMaxDist
            ]
            obstacles = near_obstacles

        toc = timer()
        print("Pre-RVO {:.1f} ms".format((toc - tic) * 1000.))
        tic = timer()

        # RVO ----------------
        import rvo2
        t_horizon = 10.
        DT = 1 / 10.
        #RVOSimulator(timeStep, neighborDist, maxNeighbors, timeHorizon, timeHorizonObst, radius, maxSpeed, velocity = [0,0]);
        sim = rvo2.PyRVOSimulator(DT, 1.5, 5, 1.5, 2, 0.4, 2)

        # Pass either just the position (the other parameters then use
        # the default values passed to the PyRVOSimulator constructor),
        # or pass all available parameters.
        agents = []
        for p, v, r, m in zip(positions, velocities, radii, metadata):
            #addAgent(posxy, neighborDist, maxNeighbors, timeHorizon, timeHorizonObst, radius, maxSpeed, velocity = [0,0]);
            a = sim.addAgent(tuple(p), radius=r, velocity=tuple(v))
            agents.append(a)
            # static agents can't move
            if m['source'] != 'robot' and np.linalg.norm(v) == 0:
                sim.setAgentMaxSpeed(a, 0)

        # Obstacle(list of vertices), anticlockwise (clockwise for bounding obstacle)
        for vert in obstacles:
            o1 = sim.addObstacle(list(vert))
        sim.processObstacles()

        toc = timer()
        print("RVO init {:.1f} ms".format((toc - tic) * 1000.))
        tic = timer()

        n_steps = int(t_horizon / DT)
        pred_tracks = [[] for a in agents]
        pred_vels = [[] for a in agents]
        pred_t = []
        for step in range(n_steps):
            for i in range(len(agents)):
                # TODO: early stop if agent 0 reaches goal
                a = agents[i]
                pref_vel = velocities[
                    i]  # assume agents want to keep initial vel
                if i == 0:
                    vector_to_goal = goal_in_fix - np.array(
                        sim.getAgentPosition(a))
                    pref_vel = self.kIdealVelocity * vector_to_goal / np.linalg.norm(
                        vector_to_goal)
                sim.setAgentPrefVelocity(a, tuple(pref_vel))
                pred_tracks[i].append(sim.getAgentPosition(a))
                pred_vels[i].append(sim.getAgentVelocity(a))
            pred_t.append(1. * step * DT)
            sim.doStep()
        # -------------------------
        toc = timer()
        print("RVO steps {} - {} agents - {} obstacles".format(
            step, len(agents), len(obstacles)))
        print("RVO sim {:.1f} ms".format((toc - tic) * 1000.))

        # PLOT ---------------------------
        #         self.transport_data = (sim, agents, metadata, radii, obstacles, pred_tracks)
        # -----------------------------

        # publish predicted tracks as paths
        rob_track = pred_tracks[0]
        pub = rospy.Publisher("/rvo_robot_plan", Path, queue_size=1)
        path_msg = Path()
        path_msg.header.stamp = nowstamp
        path_msg.header.frame_id = self.kFixedFrame
        for pose, t in zip(rob_track, pred_t):
            pose_msg = PoseStamped()
            pose_msg.header.stamp = nowstamp + rospy.Duration(t)
            pose_msg.header.frame_id = path_msg.header.frame_id
            pose_msg.pose.position.x = pose[0]
            pose_msg.pose.position.y = pose[1]
            path_msg.poses.append(pose_msg)
        pub.publish(path_msg)

        # publish tracks
        pub = rospy.Publisher("/rvo_simulated_tracks",
                              MarkerArray,
                              queue_size=1)
        ma = MarkerArray()
        id_ = 0
        end_x = [sim.getAgentPosition(agent_no)[0] for agent_no in agents]
        end_y = [sim.getAgentPosition(agent_no)[1] for agent_no in agents]
        end_t = pred_t[-1]
        for i in range(len(agents)):
            color = (0, 0, 0, 1)  # black
            color = (1, .8, 0,
                     1) if metadata[i]['source'] == 'robot' else color  # green
            color = (1, 0, 0,
                     1) if metadata[i]['source'] == 'dynamic' else color  # red
            color = (0, 0, 1,
                     1) if metadata[i]['source'] == 'nonleg' else color  # blue
            # track line
            mk = Marker()
            mk.lifetime = rospy.Duration(0.1)
            mk.header.frame_id = self.kFixedFrame
            mk.ns = "tracks"
            mk.id = i
            mk.type = 4  # LINE_STRIP
            mk.action = 0
            mk.scale.x = 0.02
            mk.color.r = color[0]
            mk.color.g = color[1]
            mk.color.b = color[2]
            mk.color.a = color[3]
            mk.frame_locked = True
            xx = np.array(pred_tracks[i])[:, 0]
            yy = np.array(pred_tracks[i])[:, 1]
            for x, y, t in zip(xx, yy, pred_t):
                pt = Point()
                pt.x = x
                pt.y = y
                pt.z = t / t_horizon
                mk.points.append(pt)
            ma.markers.append(mk)
            # endpoint
            r = radii[i]
            mk = Marker()
            mk.lifetime = rospy.Duration(0.1)
            mk.header.frame_id = self.kFixedFrame
            mk.ns = "endpoints"
            mk.id = i
            mk.type = 3  # CYLINDER
            mk.action = 0
            mk.scale.x = r * 2.
            mk.scale.y = r * 2.
            mk.scale.z = 0.1
            mk.color.r = color[0]
            mk.color.g = color[1]
            mk.color.b = color[2]
            mk.color.a = color[3]
            mk.frame_locked = True
            mk.pose.position.x = end_x[i]
            mk.pose.position.y = end_y[i]
            mk.pose.position.z = end_t / t_horizon
            ma.markers.append(mk)
        pub.publish(ma)

        pred_rob_vel_in_fix = np.array(
            pred_vels[0]
            [1])  # 2 is a cheat because 0 is usually the current speed
        pred_end_in_fix = np.array([end_x[0], end_y[0]])
        # in robot frame
        pose2d_fix_in_rob = inverse_pose2d(Pose2D(tf_rob_in_fix))
        pred_rob_vel_in_rob = apply_tf_to_vel(
            np.array(list(pred_rob_vel_in_fix) + [0]), pose2d_fix_in_rob)[:2]
        pred_end_in_rob = apply_tf(pred_end_in_fix, pose2d_fix_in_rob)
        # resulting command vel, and path
        best_u, best_v = pred_rob_vel_in_rob
        # check if goal is reached
        if np.linalg.norm(pred_end_in_rob) < 0.1:
            best_u, best_v = (0, 0)

        # Slow turn towards goal
        # TODO
        best_w = 0
        WMAX = 0.5
        gx, gy = pred_end_in_rob
        angle_to_goal = np.arctan2(gy, gx)  # [-pi, pi]
        if np.sqrt(gx * gx + gy * gy) > 0.5:  # turn only if goal is far away
            if np.abs(angle_to_goal) > (np.pi / 4 / 10):  # deadzone
                best_w = np.clip(angle_to_goal, -WMAX, WMAX)  # linear ramp

        cmd_vel_pub = rospy.Publisher("/cmd_vel", Twist, queue_size=1)
        if not self.STOP:
            # publish cmd_vel
            cmd_vel_msg = Twist()
            cmd_vel_msg.linear.x = best_u
            cmd_vel_msg.linear.y = best_v
            cmd_vel_msg.angular.z = best_w
            cmd_vel_pub.publish(cmd_vel_msg)
Exemplo n.º 7
0
    def render(self, mode='human', close=False,
               RENDER_LIDAR=True, lidar_scan_override=None, goal_override=None, save_to_file=False,
               show_score=False, robocentric=False):
        if close:
            if self.viewer is not None:
                self.viewer.close()
            return
        if self.lidar_scan is None:  # check that reset has been called
            return
        if mode == 'traj':
            self.soadrl_sim.render('traj')
        elif mode in ['human', 'rings']:
            # Window and viewport size
            WINDOW_W = 256
            WINDOW_H = 256
            VP_W = WINDOW_W
            VP_H = WINDOW_H
            from gym.envs.classic_control import rendering
            import pyglet
            from pyglet import gl
            # Create viewer
            if self.viewer is None:
                self.viewer = rendering.Viewer(WINDOW_W, WINDOW_H)
                self.transform = rendering.Transform()
                self.transform.set_scale(10, 10)
                self.transform.set_translation(128, 128)
                self.score_label = pyglet.text.Label(
                    '0000', font_size=12,
                    x=20, y=WINDOW_H*2.5/40.00, anchor_x='left', anchor_y='center',
                    color=(255,255,255,255))
#                 self.transform = rendering.Transform()
                self.currently_rendering_iteration = 0
                self.image_lock = threading.Lock()

            def make_circle(c, r, res=10):
                thetas = np.linspace(0, 2*np.pi, res+1)[:-1]
                verts = np.zeros((res, 2))
                verts[:,0] = c[0] + r * np.cos(thetas)
                verts[:,1] = c[1] + r * np.sin(thetas)
                return verts
            # Render in pyglet
            with self.image_lock:
                self.currently_rendering_iteration += 1
                self.viewer.draw_circle(r=10, color=(0.3,0.3,0.3))
                win = self.viewer.window
                win.switch_to()
                win.dispatch_events()
                win.clear()
                gl.glViewport(0, 0, VP_W, VP_H)
                # colors
                bgcolor = np.array([0.4, 0.8, 0.4])
                obstcolor = np.array([0.3, 0.3, 0.3])
                goalcolor = np.array([1., 1., 0.3])
                goallinecolor = 0.9 * bgcolor
                nosecolor = np.array([0.3, 0.3, 0.3])
                lidarcolor = np.array([1., 0., 0.])
                agentcolor = np.array([0., 1., 1.])
                # Green background
                gl.glBegin(gl.GL_QUADS)
                gl.glColor4f(bgcolor[0], bgcolor[1], bgcolor[2], 1.0)
                gl.glVertex3f(0, VP_H, 0)
                gl.glVertex3f(VP_W, VP_H, 0)
                gl.glVertex3f(VP_W, 0, 0)
                gl.glVertex3f(0, 0, 0)
                gl.glEnd()
                # Transform
                rx = self.soadrl_sim.robot.px
                ry = self.soadrl_sim.robot.py
                rth = self.soadrl_sim.robot.theta
                if robocentric:
                    # sets viewport = robocentric a.k.a T_sim_in_viewport = T_sim_in_robocentric
                    from pose2d import inverse_pose2d
                    T_sim_in_robot = inverse_pose2d(np.array([rx, ry, rth]))
                    # T_robot_in_robocentric is trans(128, 128), scale(10), rot(90deg)
                    # T_sim_in_robocentric = T_sim_in_robot * T_robot_in_robocentric
                    rot = np.pi / 2.
                    scale = 20
                    trans = (WINDOW_W / 2., WINDOW_H / 2.)
                    T_sim_in_robocentric = [
                        trans[0] + scale * (T_sim_in_robot[0] * np.cos(rot) - T_sim_in_robot[1] * np.sin(rot)),
                        trans[1] + scale * (T_sim_in_robot[0] * np.sin(rot) + T_sim_in_robot[1] * np.cos(rot)),
                        T_sim_in_robot[2] + rot,
                    ]
                    self.transform.set_translation(T_sim_in_robocentric[0], T_sim_in_robocentric[1])
                    self.transform.set_rotation(T_sim_in_robocentric[2])
                    self.transform.set_scale(scale, scale)
#                     self.transform.set_scale(20, 20)
                self.transform.enable()  # applies T_sim_in_viewport to below coords (all in sim frame)
                # Map closed obstacles ---
                for poly in self.soadrl_sim.obstacle_vertices:
                    gl.glBegin(gl.GL_LINE_LOOP)
                    gl.glColor4f(obstcolor[0], obstcolor[1], obstcolor[2], 1)
                    for vert in poly:
                        gl.glVertex3f(vert[0], vert[1], 0)
                    gl.glEnd()
                # LIDAR
                if RENDER_LIDAR:
                    px = self.soadrl_sim.robot.px
                    py = self.soadrl_sim.robot.py
                    angle = self.soadrl_sim.robot.theta
                    # LIDAR rays
                    scan = lidar_scan_override
                    if scan is None:
                        scan = self.lidar_scan
                    lidar_angles = self.lidar_angles
                    x_ray_ends = px + scan * np.cos(lidar_angles)
                    y_ray_ends = py + scan * np.sin(lidar_angles)
                    is_in_fov = np.cos(lidar_angles - angle) >= 0.78
                    for ray_idx in range(len(scan)):
                        end_x = x_ray_ends[ray_idx]
                        end_y = y_ray_ends[ray_idx]
                        gl.glBegin(gl.GL_LINE_LOOP)
                        if is_in_fov[ray_idx]:
                            gl.glColor4f(1., 1., 0., 0.1)
                        else:
                            gl.glColor4f(lidarcolor[0], lidarcolor[1], lidarcolor[2], 0.1)
                        gl.glVertex3f(px, py, 0)
                        gl.glVertex3f(end_x, end_y, 0)
                        gl.glEnd()
                # Agent body
                for n, agent in enumerate([self.soadrl_sim.robot] + self.soadrl_sim.humans):
                    px = agent.px
                    py = agent.py
                    angle = agent.theta
                    r = agent.radius
                    # Agent as Circle
                    poly = make_circle((px, py), r)
                    gl.glBegin(gl.GL_POLYGON)
                    if n == 0:
                        color = np.array([1., 1., 1.])
                    else:
                        color = agentcolor
                    gl.glColor4f(color[0], color[1], color[2], 1)
                    for vert in poly:
                        gl.glVertex3f(vert[0], vert[1], 0)
                    gl.glEnd()
                    # Direction triangle
                    xnose = px + r * np.cos(angle)
                    ynose = py + r * np.sin(angle)
                    xright = px + 0.3 * r * -np.sin(angle)
                    yright = py + 0.3 * r * np.cos(angle)
                    xleft = px - 0.3 * r * -np.sin(angle)
                    yleft = py - 0.3 * r * np.cos(angle)
                    gl.glBegin(gl.GL_TRIANGLES)
                    gl.glColor4f(nosecolor[0], nosecolor[1], nosecolor[2], 1)
                    gl.glVertex3f(xnose, ynose, 0)
                    gl.glVertex3f(xright, yright, 0)
                    gl.glVertex3f(xleft, yleft, 0)
                    gl.glEnd()
                # Goal
                xgoal = self.soadrl_sim.robot.gx
                ygoal = self.soadrl_sim.robot.gy
                r = self.soadrl_sim.robot.radius
                if goal_override is not None:
                    xgoal, ygoal = goal_override
                # Goal markers
                gl.glBegin(gl.GL_TRIANGLES)
                gl.glColor4f(goalcolor[0], goalcolor[1], goalcolor[2], 1)
                triangle = make_circle((xgoal, ygoal), r, res=3)
                for vert in triangle:
                    gl.glVertex3f(vert[0], vert[1], 0)
                gl.glEnd()
                # Goal line
                gl.glBegin(gl.GL_LINE_LOOP)
                gl.glColor4f(goallinecolor[0], goallinecolor[1], goallinecolor[2], 1)
                gl.glVertex3f(rx, ry, 0)
                gl.glVertex3f(xgoal, ygoal, 0)
                gl.glEnd()
                # --
                self.transform.disable()
                # Text
                self.score_label.text = ""
                if show_score:
                    self.score_label.text = "R {}".format(self.episode_reward)
                self.score_label.draw()
                win.flip()
                if save_to_file:
                    pyglet.image.get_buffer_manager().get_color_buffer().save(
                        "/tmp/navreptrainenv{:05}.png".format(self.total_steps))
                return self.viewer.isopen
        else:
            raise NotImplementedError
Exemplo n.º 8
0
    def scan_callback(self, msg):
        atic = timer()
        # edge case: first callback
        if self.msg_prev is None:
            self.msg_prev = msg
            return
        if self.odom is None:
            print("odom not received yet")
            return
        if self.tf_rob_in_fix is None:
            print("tf_rob_in_fix not found yet")
            return
        if self.tf_goal_in_fix is None:
            self.tf_goal_in_fix = self.tf_rob_in_fix
            print("goal set")
        # TODO check that odom and tf are not old

        # measure rotation TODO
        s = np.array(msg.ranges)

        # prediction
        dt = (msg.header.stamp - self.msg_prev.header.stamp).to_sec()
        s_prev = np.array(self.msg_prev.ranges)
        ds = (s - s_prev)
        max_ds = self.kMaxObstacleVel_ms * dt
        ds_capped = ds
        ds_capped[np.abs(ds) > max_ds] = 0
        s_next = np.maximum(0, s + ds_capped).astype(np.float32)

        # cluster
        EUCLIDEAN_CLUSTERING_THRESH_M = 0.05
        angles = np.linspace(0,
                             2 * np.pi,
                             s_next.shape[0] + 1,
                             dtype=np.float32)[:-1]
        clusters, x, y = clustering.euclidean_clustering(
            s_next, angles, EUCLIDEAN_CLUSTERING_THRESH_M)
        cluster_sizes = clustering.cluster_sizes(len(s_next), clusters)
        s_next[cluster_sizes <= 3] = 25

        # dwa
        # Get state
        # goal in robot frame
        goal_in_robot_frame = apply_tf_to_pose(
            Pose2D(self.tf_goal_in_fix),
            inverse_pose2d(Pose2D(self.tf_rob_in_fix)))
        gx = goal_in_robot_frame[0]
        gy = goal_in_robot_frame[1]

        # robot speed in robot frame
        u = self.odom.twist.twist.linear.x
        v = self.odom.twist.twist.linear.y
        w = self.odom.twist.twist.angular.z

        DWA_DT = 0.5
        COMFORT_RADIUS_M = self.kRobotComfortRadius_m
        MAX_XY_VEL = 0.5
        tic = timer()
        best_u, best_v, best_score = dynamic_window.linear_dwa(
            s_next,
            angles,
            u,
            v,
            gx,
            gy,
            DWA_DT,
            DV=0.05,
            UMIN=0 if self.args.forward_only else -MAX_XY_VEL,
            UMAX=MAX_XY_VEL,
            VMIN=-MAX_XY_VEL,
            VMAX=MAX_XY_VEL,
            AMAX=10.,
            COMFORT_RADIUS_M=COMFORT_RADIUS_M,
        )
        toc = timer()
        #         print(best_u * DWA_DT, best_v * DWA_DT, best_score)
        #         print("DWA: {:.2f} Hz".format(1/(toc-tic)))

        # Slow turn towards goal
        # TODO
        best_w = 0
        WMAX = 0.5
        angle_to_goal = np.arctan2(gy, gx)  # [-pi, pi]
        if np.sqrt(gx * gx + gy * gy) > 0.5:  # turn only if goal is far away
            if np.abs(angle_to_goal) > (np.pi / 4 / 10):  # deadzone
                best_w = np.clip(angle_to_goal, -WMAX, WMAX)  # linear ramp

        if not self.STOP:
            # publish cmd_vel
            cmd_vel_msg = Twist()
            SIDEWAYS_FACTOR = 0.3 if self.args.forward_only else 1.
            cmd_vel_msg.linear.x = np.clip(best_u * 0.5, -0.3, 0.3)
            cmd_vel_msg.linear.y = np.clip(best_v * 0.5 * SIDEWAYS_FACTOR,
                                           -0.3, 0.3)
            cmd_vel_msg.angular.z = best_w
            self.cmd_vel_pub.publish(cmd_vel_msg)

        # publish cmd_vel vis
        pub = rospy.Publisher("/dwa_cmd_vel", Marker, queue_size=1)
        mk = Marker()
        mk.header.frame_id = self.kRobotFrame
        mk.ns = "arrows"
        mk.id = 0
        mk.type = 0
        mk.action = 0
        mk.scale.x = 0.02
        mk.scale.y = 0.02
        mk.color.b = 1
        mk.color.a = 1
        mk.frame_locked = True
        pt = Point()
        pt.x = 0
        pt.y = 0
        pt.z = 0.03
        mk.points.append(pt)
        pt = Point()
        pt.x = 0 + best_u * DWA_DT
        pt.y = 0 + best_v * DWA_DT
        pt.z = 0.03
        mk.points.append(pt)
        pub.publish(mk)
        pub = rospy.Publisher("/dwa_goal", Marker, queue_size=1)
        mk = Marker()
        mk.header.frame_id = self.kRobotFrame
        mk.ns = "arrows"
        mk.id = 0
        mk.type = 0
        mk.action = 0
        mk.scale.x = 0.02
        mk.scale.y = 0.02
        mk.color.g = 1
        mk.color.a = 1
        mk.frame_locked = True
        pt = Point()
        pt.x = 0
        pt.y = 0
        pt.z = 0.03
        mk.points.append(pt)
        pt = Point()
        pt.x = 0 + gx
        pt.y = 0 + gy
        pt.z = 0.03
        mk.points.append(pt)
        pub.publish(mk)
        pub = rospy.Publisher("/dwa_radius", Marker, queue_size=1)
        mk = Marker()
        mk.header.frame_id = self.kRobotFrame
        mk.ns = "radius"
        mk.id = 0
        mk.type = 3
        mk.action = 0
        mk.pose.position.z = -0.1
        mk.scale.x = COMFORT_RADIUS_M * 2
        mk.scale.y = COMFORT_RADIUS_M * 2
        mk.scale.z = 0.01
        mk.color.b = 1
        mk.color.g = 1
        mk.color.r = 1
        mk.color.a = 1
        mk.frame_locked = True
        pub.publish(mk)

        # publish scan prediction
        msg_next = deepcopy(msg)
        msg_next.ranges = s_next
        # for pretty colors
        cluster_ids = clustering.cluster_ids(len(x), clusters)
        random_map = np.arange(len(cluster_ids))
        np.random.shuffle(random_map)
        cluster_ids = random_map[cluster_ids]
        msg_next.intensities = cluster_ids
        self.pubs[0].publish(msg_next)

        # publish past
        msg_prev = deepcopy(msg)
        msg_prev.ranges = self.msg_prev.ranges
        self.pubs[1].publish(msg_prev)

        # ...

        # finally, set up for next callback
        self.msg_prev = msg

        atoc = timer()
        if self.args.hz:
            print("DWA callback: {:.2f} Hz".format(1 / (atoc - atic)))