Exemplo n.º 1
0
def main_ui():
    ####################################
    # Basic Info
    # 처음 시작 UI

    # Feature
    # 3가지의 시나리오를 분리합니다.

    # Todo
    # Scene no.2, no.3 완성
    # Advanced Usage를 위한 경우를 마련해야 합니다.
    ####################################
    print("""
    ==================================================================
    CHOOSE WHAT SCENARIO YOU WANT TO USE
    1. Register Trainer
    2. Get Advice about Exercise Captured from Video
    3. Analyze Physical Data and Get Advice from it
    ------------------------------------------------------------------
    FOR DEVELOPERS
    4. Initialize DataBase (Init data folder in project root directory)
    ==================================================================
    """)

    main_option = int(input("Enter: "))

    if main_option == 1:
        trainer_ui()
    elif main_option == 2:
        diff_videos_ui()
    elif main_option == 3:
        physical_ui()
    elif main_option == 4:
        DB.initialize()
Exemplo n.º 2
0
    def __init__(self, user_id):
        super().__init__()
        self.setupUi(self)
        self.show()
        self.user_id = user_id
        self.setuserinfo()

        self.yourlist.clear()
        self.comboBox.clear()
        self.comparison.clear()

        rows = DB.get_input_list(self.user_id)
        if rows != []:
            self.input_id_list = rows[:]
            for row in rows:
                self.yourlist.addItem(f'{row[0]}.{row[1]}')

        rows = DB.get_user_list('standard')
        if rows != []:
            self.trainer_id_list = list(zip(*rows))[0]
            for row in rows:
                self.comboBox.addItem(f'{row[1]}')

            # 무조건 트레이너 한명은 있다고 가정한다.
            rows = DB.get_math_info_list(self.trainer_id_list[0])
            if rows != None:
                self.extraction_id_list = rows[:]
                for row in rows:
                    self.comparison.addItem(f'{row[0]}.{row[1]}')

        self.extraction_id = 0
        self.input_id = 0

        self.connectFunction()
Exemplo n.º 3
0
def get_feedback(standard_id, exercise_id, input_video_loc):
    # openpose를 통해서 분석
    result_numpy = Method.parse_person(input_video_loc)

    # 초기자세를 분석
    skeleton = Method.find_initial_skeleton(result_numpy)

    # 초기에 서 있는 자세를 찾을 수 없는 경우
    if skeleton == False:
        print("Error: Couldn't find initial pose. Find another one")
        return False

    # Load Math_info extraction info
    rows = DB.get_math_info(extraction_id)
    vectors = np.load(rows[0])

    # Resizing
    resized_numpy = Method.resize(exercise_id, skeleton, vectors)

    # Issue : 운동 분석을 통한 보정
    # sample, math_info = Method.analyze_exercise(result_numpy, exercise_id, skeleton)
    # Issue: 운동 분석을 통한 보정 결과물도 얻을 수 있도록 수정
    # if sample_numpy == False:
    #     print("Error: You can't use it")
    #     return False

    # 파일이름으로 사용할 값 생성
    file_name = id_generator() + '.npy'

    # Issue: Store 구현

    return True
Exemplo n.º 4
0
 def setuserinfo(self):
     user = DB.get_user_info(self.user_id)
     if user[0][0] == 'standard':
         text = f'Hello, Trainer {user[0][1]}'
     else:
         text = f'Hello, {user[0][1]}'
     self.userinfo.setText(text)
Exemplo n.º 5
0
 def change_extraction_list(self, idx):
     trainer_id = self.trainer_id_list[idx]
     self.comparison.clear()
     rows = DB.get_math_info_list(trainer_id)
     self.extraction_id_list = rows
     if rows != None:
         for row in rows:
             self.comparison.addItem(f'{row[0]}.{row[1]}')
Exemplo n.º 6
0
    def __init__(self, user_id):
        super().__init__()
        self.setupUi(self)
        self.show()
        self.user_id = user_id
        self.connectFunction()
        rows = DB.get_input_list(self.user_id)
        if rows != []:
            self.input_id_list = rows[:]
            for row in rows:
                self.user.addItem(f'{row[0]}.{row[1]}')

        rows = DB.load_data_list(self.user_id, 2)
        if rows != []:
            self.applied_trainer_list = rows[:]
            for row in rows:
                self.applied_trainer.addItem(f'{row[0]}.{row[1]}-{row[2]}')
        self.input_id = 0
        self.target_id = 0
Exemplo n.º 7
0
    def checkUnique(self):
        is_unique = DB.checkUnique(self.username.text())

        if is_unique == False:
            self.user_unique.setText("Duplicated!")
            self.user_unique.setStyleSheet('color: red')
            self.conditions[0] = False
        else:
            self.user_unique.setText("Unique!")
            self.user_unique.setStyleSheet('color: green')
            self.conditions[0] = True
Exemplo n.º 8
0
 def __init__(self, user_id):
     super().__init__()
     self.setupUi(self)
     font = QtGui.QFont()
     font.setFamily("MS Gothic")
     font.setPointSize(26)
     self.user_id = user_id
     self.comboBox.clear()
     for name in DB.get_exercise_names():
         self.comboBox.addItems(name)
     self.show()
     self.connectFunction()
Exemplo n.º 9
0
def regist_trainer(trainer_id, exercise_id, input_video_loc):
    # openpose를 통해서 분석
    result_numpy = Method.parse_person(input_video_loc)

    # 초기자세를 분석
    skeleton = Method.find_initial_skeleton(result_numpy)

    # 초기에 서 있는 자세를 찾을 수 없는 경우
    if skeleton == False:
        print("Error: Couldn't find initial pose. Find another one")
        return False

    # 보정 및 운동 분석
    math_info = Method.analyze_exercise(result_numpy, exercise_id, skeleton)

    # Issue: 운동 분석을 통한 보정 결과물도 얻을 수 있도록 수정
    # if sample_numpy == False:
    #     print("Error: You can't use it")
    #     return False
    if math_info == False:
        print("Error: ")  # Issue: math_info Extraction 오류 잡기
        return False

    # 파일이름으로 사용할 값 생성
    file_name = id_generator() + '.npy'

    # Store
    sample_id = DB.save_sample(trainer_id, sample_numpy, file_name,
                               exercise_id)
    skeleton_id = DB.save_skeleton(trainer_id, skeleton, file_name)
    math_info_names = [
        os.path.split(file_name)[0] + str(i) + os.path.split(file_name)[1]
        for i in range(len(math_info))
    ]
    extraction_id = DB.save_math_info_extraction(skeleton_id, exercise_id,
                                                 sample_id, math_info,
                                                 math_info_names)

    return True
Exemplo n.º 10
0
    def __init__(self, user_id):
        super().__init__()
        self.setupUi(self)
        self.show()
        self.user_id = user_id
        self.connectFunction()

        self.setuserinfo()

        rows = DB.get_input_list(self.user_id)
        if rows != []:
            for row in rows:
                self.yourlist.addItem(f'{row[0]}.{row[1]}')
            self.input_id_list = rows[:]

        rows = DB.get_math_info_list(self.user_id)
        if rows != []:
            self.extraction_id_list = rows[:]
            for row in rows:
                self.registeredlist.addItem(f'{row[0]}.{row[1]}')
        self.target_type = 0
        self.target_id = 0
Exemplo n.º 11
0
def physical_ui():
    indent = " " * 4

    # (exercise_name)
    # (applied_sample_id, exercise_id, sample_location, user_name, applied_sample_location, trainer_name)
    exercise_list = DB.get_exercise_names()
    applied_samples = DB.load_applied_skeleton_list()
    print(exercise_list)
    print("""
    ==================================================================
    CHOOSE EXERCISE DATA WHERE YOU WANT TO GET REPORT(USER)""")
    for idx, row in enumerate(applied_samples):
        print(indent + "%d. %s: %s by %s" %
              (idx + 1, exercise_list[row[1] - 1][0], row[3], row[5]))
    print(indent +
          """==================================================================
    """)

    option = int(input("Enter: "))
    args = applied_samples[option]

    ret_val = PoseSystem.Analyze_Physical_Data(*args)
    if ret_val == True:
        print("""
    ==================================================================
    END OF ANALYZE PHYSICAL DATA PROCESS
    RESULT : SUCCESS
    ==================================================================
        """)
    else:
        print("""
    ==================================================================
    END OF ANALYZE PHYSICAL DATA PROCESS
    RESULT : FAIL
    ==================================================================
        """)
    return
Exemplo n.º 12
0
def main_function(option, *args):
    base_folder = 'temp'
    if os.path.exists(base_folder):
        shutil.rmtree(base_folder)
    time.sleep(1)
    os.mkdir(base_folder)

    # args = (address_init, address_ex, user_id, exercise_id)
    if option == 1:
        # Usage - store blob data into table
        # file_naming - ./temp/column_name+적절한 확장자
        # Store file in temp
        # insert_input_list(1, 0, "./temp/init_numpy.py", "./temp/init_video.avi", "./temp/exercise_numpy.py", "./temp/exercise_video.avi")
        # delete temp folder

        # Usage - read blob data from table
        # make temp folder
        # readBlobData(1, 1, 'temp')
        print(args)

        input_init = args[0]
        input_exercise = args[1]
        output_init_numpy = os.path.join(base_folder, 'init_numpy.npy')
        output_init_video = os.path.join(base_folder, 'init_video.avi')
        output_ex_numpy = os.path.join(base_folder, 'exercise_numpy.npy')
        output_ex_video = os.path.join(base_folder, 'exercise_video.avi')

        Method.parse_person(input_init, output_init_numpy, output_init_video)
        Method.parse_person(input_exercise, output_ex_numpy, output_ex_video)

        DB.insert_input_list(args[2], args[3], output_init_numpy,
                             output_init_video, output_ex_numpy,
                             output_ex_video)

    elif option == 2:
        DB.read_from_input_list(args[0], base_folder)
        numpy = np.load(os.path.join(base_folder, 'init_numpy.npy'))
        skeleton_numpy = 'skeleon.npy'
        graph_numpy = 'graph.npy'
        (res1, res2) = Method.find_initial_skeleton(numpy, base_folder,
                                                    args[1])
        # print(res1, res2)
        np.save(os.path.join(base_folder, skeleton_numpy), [res1, res2])
        pk = DB.save_skeleton(args[0], os.path.join(base_folder,
                                                    skeleton_numpy),
                              os.path.join(base_folder, graph_numpy))
        return (res1, res2, pk)

    elif option == 3:
        DB.read_from_input_list(args[1], base_folder)
        numpy = np.load(os.path.join(base_folder, 'exercise_numpy.npy'))
        (res1, res2) = Method.find_initial_skeleton(numpy, base_folder)
        DB.load_skeleton(args[0], base_folder)
        ex_type = 2
        time.sleep(0.5)
        numpy_array = np.load(os.path.join(base_folder, 'exercise_numpy.npy'))
        skeleton = np.load(os.path.join(base_folder, 'skeleton.npy'))[0]

        target_skeleton = skeleton

        common = bc_common.Common()
        accuracy, body_part = common.check_accuracy(numpy_array, ex_type, 0)
        input_vector = common.calculate_trainer(ex_type, skeleton,
                                                body_part[0], body_part[1])
        resized = common.apply_vector(ex_type, target_skeleton, input_vector)
        np.save(os.path.join(base_folder, 'math_info.npy'), input_vector)
        np.save(os.path.join(base_folder, 'resized.npy'), resized)
        screen = run.human_pic(resized,
                               os.path.join(base_folder, 'math_info.avi'))
        DB.save_math_info_extraction(
            args[0], os.path.join(base_folder, 'math_info.npy'),
            os.path.join(base_folder, 'math_info.avi'))

    elif option == 4:
        exercise_id = DB.get_exercise_id(args[2])[0][0]
        DB.load_skeleton(args[0], base_folder)
        DB.load_math_info_extraction(args[1], base_folder)
        ex_type = 2
        time.sleep(0.5)
        math_info = np.load(os.path.join(base_folder, 'math_info.npy'))
        skeleton = np.load(os.path.join(base_folder, 'skeleton.npy'))[0]

        common = bc_common.Common()
        resized = common.apply_vector(ex_type, skeleton, math_info)
        (res1, res2) = Method.find_initial_skeleton(resized, base_folder)
        np.save(os.path.join(base_folder, 'resized.npy'), resized)
        screen = run.human_pic(resized, os.path.join(base_folder,
                                                     'resized.avi'))
        DB.save_applied_sample(args[0], args[1], exercise_id,
                               os.path.join(base_folder, 'resized.npy'),
                               os.path.join(base_folder, 'resized.avi'))

    elif option == 5:
        pass
    # args = (input_id, sample_id)
    elif option == 6:
        video_name = os.path.join(base_folder, 'output.avi')
        numpy_name = os.path.join(base_folder, 'graph.npy')
        DB.load_applied_skeleton_file(args[1], base_folder)
        DB.read_from_input_list(args[0], base_folder)
        input1 = os.path.join(base_folder, 'upgraded.npy')
        input2 = os.path.join(base_folder, 'exercise_numpy.npy')
        run.Video(input1, input2, video_name)
        DB.save_diff(args[1], args[0], video_name, numpy_name)

    elif option == 7:
        input2 = 'data/result.avi'
        input1 = 'data/user/exercise/raw/output_video/result.avi'
        selected = 'user'
        file_names = [
            'data/%s/exercise/exercise_left_elbow.npy' % (selected, ),
            'data/%s/exercise/exercise_right_elbow.npy' % (selected, ),
            'data/%s/exercise/exercise_left_knee.npy' % (selected, ),
            'data/%s/exercise/exercise_right_knee.npy' % (selected, )
        ]
        plot_titles = [
            'left_elbow angle', "right_elbow angle", "left_knee angle",
            "right_knee angle"
        ]

        get_result.debugger(0,
                            isImage=False,
                            video=input1,
                            video2=input2,
                            file_name=file_names,
                            plot_title=plot_titles,
                            title1='pose difference algorithm',
                            title='original user exercise',
                            title2='graph data for main angle')

    elif option == 8:
        # DB.load_applied_skeleton_file(args[1], base_folder)
        # DB.read_from_input_list(args[0], base_folder)
        # input1 = np.load(os.path.join(base_folder, 'upgraded.npy'))
        # input2 = np.load(os.path.join(base_folder, 'exercise_numpy.npy'))
        user_info = DB.get_user_info_full(args[0])
        other_info = DB.get_diff_info(args[2])
        DB.load_skeleton(args[1], base_folder)
        DB.load_diff(args[2], base_folder)
        input = os.path.join(base_folder, 'graph.npy')
        input2 = np.load(os.path.join(base_folder, 'skeleton.npy'))[0]
        input3 = os.path.join(base_folder, 'skeleton.png')
        info = user_info[0] + other_info[0]
        run.make_skeleton_image(input2, input3, 2)
        report.make_graph(input, base_folder)
        paragraph = report.make_paragraph(input)
        report.insert_image_and_pictures(info, paragraph)
    elif option == 10:
        PoseDifference.main_ui()
Exemplo n.º 13
0
 def change_ucs(self, i):
     self.ids.clear()
     self.data = []
     for row in DB.load_data_list(self.user_id, i):
         self.ids.addItem(str(row[0]) + "-" + row[1])
         self.data.append(row)
Exemplo n.º 14
0
    def loading(self):
        if self.cpt != None or self.cpt2 != None:
            self.cpt.release()
            self.cpt2.release()
        self.play = False
        index = self.ucs.currentIndex()
        datas = self.data[self.ids.currentIndex()]
        self.graph_title = self.graph_titles[index]
        base_folder = 'temp'
        if os.path.exists(base_folder):
            shutil.rmtree(base_folder)
        time.sleep(1)
        os.mkdir(base_folder)

        if index == 0:
            # file load
            DB.read_from_input_list(datas[2], base_folder)
            DB.load_skeleton(datas[0], base_folder)
            # video
            self.origin_file = 'temp/init_video.avi'
            self.copy_file = 'temp/init_video.avi'

        elif index == 1:
            # file load
            DB.load_skeleton(datas[3], base_folder)  # N
            DB.load_math_info_extraction(datas[2], base_folder)
            DB.load_applied_skeleton_file(datas[0], base_folder)
            # video
            self.origin_file = 'temp/math_info.avi'
            self.copy_file = 'temp/upgraded.avi'

        elif index == 2:
            # file load
            DB.read_from_input_list(datas[2], base_folder)
            DB.load_diff(datas[0], base_folder)
            # video
            self.origin_file = 'temp/exercise_video.avi'
            self.copy_file = 'temp/diff.avi'

        elif index == 3:
            # file load
            DB.load_skeleton(datas[3], base_folder)  # N
            DB.read_from_input_list(datas[2], base_folder)
            DB.load_math_info_extraction(datas[0], base_folder)
            # video
            self.origin_file = 'temp/exercise_video.avi'
            self.copy_file = 'temp/math_info.avi'

        self.graph()
        self.Video()
Exemplo n.º 15
0
def diff_videos_ui():
    ####################################
    # Basic Info
    # Scene No.2 유저가 비디오 분석을 받기 위한 UI이다.
    # Console Based UI가 기본이고 INPUT에 대한 exception을 처리한다.

    # Feature
    # 유저로부터 Input을 받고 적절한 함수를 호출합니다.

    # Todo
    # 결과창 띄우기 (A+)
    # 비디오 분석 건너 뛰기 옵션 적용 (A)
    # Video 조건 영어로 번역
    ####################################
    # For Print Format
    indent = " " * 4

    # Get the number of math_info for exercise
    exercise_list = DB.get_exercise_list()
    for idx, exercise in enumerate(exercise_list):
        exercise_list[idx] = list(exercise) + [
            len(DB.get_math_info_list_per_exercise(exercise[0]))
        ]

    # Select Exercise
    print("""
    ==================================================================
    CHOOSE WHICH EXERCISE YOU WANT TO GET ADVICE FOR""")
    for idx, row in enumerate(exercise_list):
        print(indent + "%d. %s [%d]" % (idx + 1, row[1], row[2]))
    print(indent +
          """==================================================================
    """)

    option = int(input("Enter: "))
    if exercise_list[option - 1][2] == 0:
        print("""
    ==================================================================
    END OF GET ADVICE PROCESS
    RESULT : FAIL
    ERROR : Select Exercise Which Trainer Registered Before
    ==================================================================
        """)
        return

    exercise_id = exercise_list[option - 1][0]

    # Select Math Info
    rows = DB.get_math_info_list_per_exercise(exercise_id)
    print("""
    ==================================================================
    CHOOSE TRAINER WHO YOU WANT TO GET ADVICE FROM""")
    for idx, row in enumerate(rows):
        print(indent + "%d. %s: %s" % (idx + 1, row[3], row[2]))
    print(indent +
          """==================================================================
    """)

    option = int(input("Enter: "))
    standard_id = rows[option - 1][0]

    print("""
    ==================================================================
    ENTER LOCATION OF INPUT VIDEO FILE (PLEASE CHECK VIDEO CONDITION)
    1. Stand Upright Still at Least 1 Sec
    2. 카메라로부터 운동하는 사람과의 거리는 해당 사람이 똑바로 서있을때와 동일해야 합니다.
    3. The Maximum number of people in Video is 1
    4. Cam should not Move
    ==================================================================
    """)

    input_video_loc = input("Enter (relative path): ")
    ret_val = False
    try:
        if os.path.exists(input_video_loc):
            ret_val = PoseSystem.get_feedback(standard_id, exercise_id,
                                              input_video_loc)
        else:
            raise Exception()
    except Exception:
        traceback.print_exc()
        return

    if ret_val == True:
        print("""
    ==================================================================
    END OF GET ADVICE PROCESS
    RESULT : SUCCESS
    ==================================================================
        """)
    else:
        print("""
    ==================================================================
    END OF GET ADVICE PROCESS
    RESULT : FAIL
    ==================================================================
        """)
    return
Exemplo n.º 16
0
def trainer_ui():
    ####################################
    # Basic Info
    # Scene No.1 트레이너 등록을 위한 UI 이다.
    # Console Based UI가 기본이고 INPUT에 대한 exception을 처리한다.

    # Feature
    # 유저로부터 Input을 받고 적절한 함수를 호출합니다.

    # Todo
    # 결과창 띄우기 (A+)
    # 비디오 분석을 건너뛰고 등록된 sample을 이용할 수 있는 옵션 추가(A)
    # Exercise 추가 기능 (B)
    # Video 조건 영어로 번역 (A)
    ####################################
    # For Print Format
    indent = " " * 4

    # Select Exercise
    rows = DB.get_user_list('standard')
    rows.append([])
    print("""
    ==================================================================
    CHOOSE WHICH TRAINER YOU WANT TO REGISTER EXERCISE FOR""")
    for idx, row in enumerate(rows):
        if idx != len(rows) - 1:
            print(indent + "%d. %s" % (idx + 1, row[1]))
        else:
            print(indent + "%d. Register New Trainer" % (idx + 1, ))
    print(indent +
          """==================================================================
    """)

    option = int(input("Enter: "))

    # Get PK for table of user_list
    trainer_id = 0
    if option == len(rows):
        print("""
        ==================================================================
        Register New Trainer
        1. Name (English)
        2. Weight (kg)
        3. Stature (cm)
        4. Other Info
        5. Sex (men or women)
        ==================================================================
        """)
        # Regist New Trainer
        register_form = ['standard']
        try:
            register_form.append(input("Enter Name: "))
            register_form.append(int(input("Enter Weight(kg): ")))
            register_form.append(int(input("Enter Height(cm): ")))
            register_form.append(input("Enter Other Info: "))
            register_form.append(input("Enter Sex: "))
            if register_form[5] not in ('men', 'women', ''):
                raise Exception()
        except ValueError:
            print('Please enter an integer')
            return
        except Exception:
            print("Please enter men or women for your sex")
            return

        trainer_id = DB.create_user(*register_form)
    else:
        trainer_id = rows[option - 1][0]

    # Get the number of Exercise for trainer
    exercise_list = DB.get_exercise_list()
    for idx, exercise in enumerate(exercise_list):
        exercise_list[idx] = list(exercise) + [
            len(
                DB.get_registered_exercise_for_one_user(
                    trainer_id, exercise[0]))
        ]

    # Select Exercise Type
    print("""
    ==================================================================
    CHOOSE WHICH EXERCISE YOU WANT TO REGISTER EXERCISE FOR""")
    for idx, row in enumerate(exercise_list):
        print(indent + "%d. %s [%d]" % (idx + 1, row[1], row[2]))
    print(indent +
          """==================================================================
    """)

    option = int(input("Enter: "))
    exercise_id = exercise_list[option - 1][0]

    print("""
    ==================================================================
    ENTER LOCATION OF INPUT VIDEO FILE (PLEASE CHECK VIDEO CONDITION)
    1. Stand Upright Still at Least 1 Sec
    2. 카메라로부터 운동하는 사람과의 거리는 해당 사람이 똑바로 서있을때와 동일해야 합니다.
    3. The Maximum number of people in Video is 1
    4. Cam should not Move
    ==================================================================
    """)

    input_video_loc = input("Enter (relative path): ")
    ret_val = False
    try:
        if os.path.exists(input_video_loc):
            ret_val = PoseSystem.regist_trainer(trainer_id, exercise_id,
                                                input_video_loc)
        else:
            raise Exception()
    except Exception:
        traceback.print_exc()
        return

    if ret_val == True:
        print("""
        ==================================================================
        END OF TRAINER REGISTER PROCESS
        RESULT : SUCCESS
        ==================================================================
        """)
    else:
        print("""
        ==================================================================
        END OF TRAINER REGISTER PROCESS
        RESULT : FAIL
        ==================================================================
        """)
    return