Exemplo n.º 1
0
def process(args, image_path):
    posenet = PoseNet(
        model_path=args.model_file,
        image_path=image_path,
    )
    person, elapsed = posenet.estimate_pose(verbose=args.verbose)

    if args.quiet:
        return elapsed

    image = Image.open(image_path)
    draw = ImageDraw.Draw(image)

    for line in JOINTS:
        if (person.key_points[line[0].value[0]].score > MIN_CONFIDENCE and
                person.key_points[line[1].value[0]].score > MIN_CONFIDENCE):
            start_point_x, start_point_y = (
                int(person.key_points[line[0].value[0]].position.x),
                int(person.key_points[line[0].value[0]].position.y),
            )
            end_point_x, end_point_y = (
                int(person.key_points[line[1].value[0]].position.x),
                int(person.key_points[line[1].value[0]].position.y),
            )
            draw.line(
                (start_point_x, start_point_y, end_point_x, end_point_y),
                fill=(255, 255, 0),
                width=3,
            )

    for key_point in person.key_points:
        if key_point.score > MIN_CONFIDENCE:
            left_top_x, left_top_y = (
                int(key_point.position.x) - 5,
                int(key_point.position.y) - 5,
            )
            right_bottom_x, right_bottom_y = (
                int(key_point.position.x) + 5,
                int(key_point.position.y) + 5,
            )
            draw.ellipse(
                (left_top_x, left_top_y, right_bottom_x, right_bottom_y),
                fill=(0, 128, 0),
                outline=(255, 255, 0),
            )

    image.save("www.jpg")
    return elapsed
Exemplo n.º 2
0
def main():
    image = tf.placeholder(tf.float32, [1, 224, 224, 30])
    net = PoseNet({'data': image})
    p3_x = net.layers['cls3_fc_pose_xyz']
    init = tf.global_variables_initializer()
    saver = tf.train.Saver()
    with tf.Session() as sess:
        sess.run(init)
        saver.restore(sess, path)
        scene_dict = {}
        id_list = list()
        images = []
        K = []
        for each in test_image_list:
            images.append(test_dir + "/" + each + '/thumbnail.jpg')
            K.append(each)
        images_val = preprocess(images)
        index = 0
        for img in images_val:
            np_image = img
            predicted_x = sess.run([p3_x], feed_dict={image: np_image})
            predicted_x = np.squeeze(predicted_x) / 100.0 * (
                max_train - min_train) + min_train
            scene_dict[K[index]] = predicted_x
            index = index + 1
        for id in scene_dict.keys():
            id_list.append(id)
        id_list1 = sorted(id_list)
    with open(result_dir, 'w') as csv_file:
        for k in id_list1:
            line = k + ',' + str('%.4f' % scene_dict[k][0]) + ',' + str(
                '%.4f' % scene_dict[k][1]) + ',' + str(
                    '%.4f' % scene_dict[k][2]) + '\n'
            print(line)
            csv_file.write(line)
Exemplo n.º 3
0
def main():
    import sys
    config_file = "/home/weihao/posenet/paranet/config.json"

    if len(sys.argv) > 1:
        config_file = sys.argv[1]

    js = Utils.load_json_file(config_file)
    location = js['directory']
    tr_dataset = js['training_dataset']
    dataset = js['testing_dataset']
    netFile = js['netFile']

    images = tf.placeholder(tf.float32, [1, 224, 224, 3])
    shift = tf.placeholder(tf.float32, [1, 1, 1, 4])

    net = PoseNet({'data': images, 'shift': shift})

    ds = []
    rds = Utils.get_raw_data(location, dataset)
    for a in range(4):
        ds.append(Utils.get_data(rds, a))
    #rds = Utils.get_raw_data(location, tr_dataset)
    #ds.append(Utils.get_data(rds, 1, False))

    for a in range(len(ds)):
        process(ds[a], netFile, net, images, shift)
Exemplo n.º 4
0
def test():
    global frames

    net = PoseNet(model_path)
    Proc = Process(net, ActionCallback)

    drawer = PoseDrawer(net.InputSize)
    queue = PoseQueue()
    pose = None

    while True:
        frames += 1

        image = read(iter, 1)
        Proc.setImage(image)

        result = Proc.getPose()
        if not result == None:
            (img, pose, score) = result

            queue.push(pose)

            drawer.Draw(img, pose)
            fps = Proc.getFPS()
            ShowFPS(img, fps, score)
            cv2.imshow("pic", img)

        ShowChart(queue)
        # PrintTimer()

        if cv2.waitKey(1) == 27:
            break

    Proc.Shutdwon()
    cv2.destroyAllWindows()
Exemplo n.º 5
0
	def __init__(self):
		rospy.init_node("PoseNet_ROS")
		self.bridge = CvBridge()
		self.predictedOdom  = Odometry()
		self.predictedOdom.header.stamp = rospy.Time.now()
		self.predictedOdom.header.frame_id = "odom"

		subprocess.call("rosparam load params.yaml",shell=True)
		self.image_tf = tf.placeholder(tf.float32, [1, 224, 224, 3])
		net = PoseNet({'data': self.image_tf})

		self.p3_x = net.layers['cls3_fc_pose_xyz']
		self.p3_q = net.layers['cls3_fc_pose_wpqr']

		init = tf.initialize_all_variables()
		
		#To make tensor flow run properly on the TX2 
		#https://devtalk.nvidia.com/default/topic/1029742/jetson-tx2/tensorflow-1-6-not-working-with-jetpack-3-2/
		config = tf.ConfigProto()
		config.gpu_options.allow_growth = True
		
		saver = tf.train.Saver()
		self.sess = tf.Session(config=config)
		self.sess.run(init)
		saver.restore(self.sess, 'PoseNet.ckpt')
		self.listener()
		self.initial = False
		self.predicted_q_init = []
		self.predicted_p_init = []
    def __init__(self, params, output_dir):
        self.strategy = tf.distribute.MirroredStrategy()
        self.params = params
        
        # Datasets
        tf_records = [os.path.join(params.data_dir,file) for file in os.listdir(params.data_dir) if file.endswith('.tfrecords')]

        self.train_dataset = self.strategy.experimental_distribute_dataset(input_fn(tf_records[:30]))
        self.val_dataset = self.strategy.experimental_distribute_dataset(input_fn(tf_records[30:]))
        num_samples = len(tf_records[:30])
        self.total_iteration = (num_samples // params.batch_size) * params.epochs
        
        with self.strategy.scope():
            # Models
            self.models = {}
            self.models['disparity'] = DisparityNet(input_shape=(params.input_h, params.input_w, 3))

            self.models['pose'] = PoseNet(input_shape=(params.input_h, params.input_w, 3 * params.num_input_frames),
                                          num_input_frames=params.num_input_frames)
        
        
            # Optimizer
            learning_rate_fn = tf.keras.optimizers.schedules.PolynomialDecay(0.0002, end_learning_rate=0.000001,
                                                                             decay_steps=self.total_iteration,
                                                                             power=0.5)
            self.optimizer = tf.keras.optimizers.Adam(learning_rate_fn)

            # Tensorboard & Meters
            train_log_dir = os.path.join(output_dir, 'train_logs')
            val_log_dir = os.path.join(output_dir, 'val_logs')
            self.train_summary_writer = tf.summary.create_file_writer(train_log_dir)
            self.test_summary_writer = tf.summary.create_file_writer(val_log_dir)

            self.train_meter = {
                'ssim': tf.keras.metrics.Mean(name='ssim'),
                'l1': tf.keras.metrics.Mean(name='l1'),
                'smooth': tf.keras.metrics.Mean(name='smooth'),
            }

            self.val_meter = {
                'ssim': tf.keras.metrics.Mean(name='ssim'),
                'l1': tf.keras.metrics.Mean(name='l1'),
                'smooth': tf.keras.metrics.Mean(name='smooth'),
            }
            

        self.step = 0
        # Load states from optimiser and model if available
        self.ckpt_disp, self.manager_disp = self.setup_logger(self.models['disparity'],
                                                              os.path.join(output_dir, 'disparity_model'))
        self.ckpt_pose, self.manager_pose = self.setup_logger(self.models['pose'],
                                                              os.path.join(output_dir, 'pose_model'))
        self.start_epoch = int(self.ckpt_disp.step) + 1 if self.manager_disp.latest_checkpoint else int(
            self.ckpt_disp.step)
        
        # Helpers
        self.pix_coords = pixel_coord(params.batch_size, params.input_h, params.input_w, True)  # [b, 3, npoints]

        print("Starting training step {}".format(self.ckpt_disp.step.numpy()))
Exemplo n.º 7
0
def inference():

    image = tf.placeholder(tf.float32, [1, 224, 224, 3])
    

    predicted_X = np.zeros([1,3])
    predicted_Q = np.zeros([1,4])

    net = PoseNet({'data': image})

    p3_x = net.layers['cls3_fc_pose_xyz']
    p3_q = net.layers['cls3_fc_pose_wpqr']

    #init = tf.initialize_all_variables()
    init = tf.global_variables_initializer()
    outputFile = "PoseNet.ckpt"

    saver = tf.train.Saver()

    with tf.Session() as sess:
        # Load the data
        sess.run(init)
        saver.restore(sess, directory + "PoseNet.ckpt")#path + 'PoseNet.ckpt')

        for index in range(len(dataset)):

            f = open(directory + dataset[index][:-4] + dataset_predict,'w')
            f.write('Visual Landmark Dataset V1\nImageFile, Camera Position [X Y Z W P Q R]\n')

            datasource = get_data(directory + dataset[index])
            results = np.zeros((len(datasource.images),2))

            #data_gen = gen_data_batch(datasource)
            for i in range(len(datasource.images)):
                np_image = datasource.images[i]
                feed = {image: np_image}
                pose_q= np.asarray(datasource.poses[i][3:7])
                pose_x= np.asarray(datasource.poses[i][0:3])
                predicted_x, predicted_q = sess.run([p3_x, p3_q], feed_dict=feed)
                predicted_q = np.squeeze(predicted_q).reshape([1,4])
                predicted_x = np.squeeze(predicted_x).reshape([1,3])

                #Compute Individual Sample Error
                q1 = pose_q / np.linalg.norm(pose_q)
                q2 = predicted_q / np.linalg.norm(predicted_q)
                d = abs(np.sum(np.multiply(q1,q2)))
                theta = 2 * np.arccos(d) * 180/math.pi
                error_x = np.linalg.norm(pose_x-predicted_x)
                results[i,:] = [error_x,theta]
                f.write('\n%s %s %s %s %s %s %s %s %s %s' % 
                    (datasource.fname[i],predicted_x[0,0],predicted_x[0,1],predicted_x[0,2],predicted_q[0,0],predicted_q[0,1],predicted_q[0,2],predicted_q[0,3], error_x, theta))
            
            f.close()

            median_result = np.median(results,axis=0)
            print ('Median error ', median_result[0], 'm  and ', median_result[1], 'degrees.')
Exemplo n.º 8
0
def main():
    images = tf.placeholder(tf.float32, [batch_size, 224, 224, 30])
    poses_x = tf.placeholder(tf.float32, [batch_size, 3])

    datasource = get_data()
    net = PoseNet({'data': images})
    p1_x = net.layers['cls1_fc_pose_xyz']

    p2_x = net.layers['cls2_fc_pose_xyz']

    p3_x = net.layers['cls3_fc_pose_xyz']

    l1_x = tf.reduce_mean(tf.square(tf.subtract(p1_x, poses_x))) * 0.3
    l2_x = tf.reduce_mean(tf.square(tf.subtract(p2_x, poses_x))) * 0.3
    l3_x = tf.reduce_mean(tf.square(tf.subtract(p3_x, poses_x))) * 1
    loss = l1_x + l2_x + l3_x

    global_ = tf.Variable(tf.constant(0))
    lr = tf.train.exponential_decay(0.0001, global_, 500, 0.1, staircase=False)
    opt = tf.train.AdamOptimizer(learning_rate=lr, beta1=0.9, beta2=0.999, epsilon=0.00000001, use_locking=False,
                                 name='Adam').minimize(loss)

    init = tf.global_variables_initializer()
    saver = tf.train.Saver()
    gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.7)
    with tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) as sess:
        sess.run(init)
        min_loss = 100

        data_gen = gen_data_batch(datasource)
        for i in range(max_iterations):
            sess.run(lr, feed_dict={global_: i})
            np_images, np_poses_x = next(data_gen)
            feed = {images: np_images, poses_x: np_poses_x}

            sess.run(opt, feed_dict=feed)
            np_loss = sess.run(loss, feed_dict=feed)
            if i % 20 == 0:
                print("iteration: " + str(i) + "\n\t" + "Loss is: " + str(np_loss))

            if np_loss < min_loss:
                min_loss = np_loss
                saver.save(sess, outputFile + 'PoseNet_best.ckpt')
                print("loss minest model saved: " + outputFile + 'PoseNet_best.ckpt')

            if i % 1000 == 0 or i == max_iterations:
                saver.save(sess, outputFile + 'PoseNet'+'_'+str(i) +'.ckpt')
                print("Intermediate file saved at: " + outputFile + 'PoseNet'+'_'+str(i) +'.ckpt')
        saver.save(sess, outputFile + 'PoseNet' + '_' + str(i) + '.ckpt')
        print("Intermediate file saved at: " + outputFile + 'PoseNet' + '_' + str(i) + '.ckpt')
    time_end=time.time()
    print('totally cost', time_end-time_start)
Exemplo n.º 9
0
def main():
  images = tf.placeholder(tf.float32, [batch_size, 224, 224, 3])
  poses_x = tf.placeholder(tf.float32, [batch_size, 3])
  poses_q = tf.placeholder(tf.float32, [batch_size, 4])
  datasource = get_data()

  net = PoseNet({'data': images})

  p1_x = net.layers['cls1_fc_pose_xyz']
  p1_q = net.layers['cls1_fc_pose_wpqr']
  p2_x = net.layers['cls2_fc_pose_xyz']
  p2_q = net.layers['cls2_fc_pose_wpqr']
  p3_x = net.layers['cls3_fc_pose_xyz']
  p3_q = net.layers['cls3_fc_pose_wpqr']

  l1_x = tf.sqrt(tf.reduce_sum(tf.square(tf.subtract(p1_x, poses_x)))) * 0.3
  l1_q = tf.sqrt(tf.reduce_sum(tf.square(tf.subtract(p1_q, poses_q)))) * 150
  l2_x = tf.sqrt(tf.reduce_sum(tf.square(tf.subtract(p2_x, poses_x)))) * 0.3
  l2_q = tf.sqrt(tf.reduce_sum(tf.square(tf.subtract(p2_q, poses_q)))) * 150
  l3_x = tf.sqrt(tf.reduce_sum(tf.square(tf.subtract(p3_x, poses_x)))) * 1
  l3_q = tf.sqrt(tf.reduce_sum(tf.square(tf.subtract(p3_q, poses_q)))) * 500

  loss = l1_x + l1_q + l2_x + l2_q + l3_x + l3_q
  opt = tf.train.AdamOptimizer(learning_rate=0.0001, beta1=0.9, beta2=0.999, epsilon=0.00000001, use_locking=False, name='Adam').minimize(loss)

  # Set GPU options
  gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.6833)

  init = tf.global_variables_initializer()
  saver = tf.train.Saver()
  outputFile = "/home/prasenjit/posenet/trainingresult/PoseNet.ckpt"

  with tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) as sess:
    # Load the data
    sess.run(init)
    net.load('posenet.npy', sess)

    data_gen = gen_data_batch(datasource)
    for i in range(max_iterations):
      np_images, np_poses_x, np_poses_q = next(data_gen)
      feed = {images: np_images, poses_x: np_poses_x, poses_q: np_poses_q}

      sess.run(opt, feed_dict=feed)
      np_loss = sess.run(loss, feed_dict=feed)
      if i % 20 == 0:
        print("iteration: " + str(i) + "\n\t" + "Loss is: " + str(np_loss))
      if i % 5000 == 0:
        saver.save(sess, outputFile)
        print("Intermediate file saved at: " + outputFile)
    saver.save(sess, outputFile)
    print("Intermediate file saved at: " + outputFile)
Exemplo n.º 10
0
def main():
    image = tf.placeholder(tf.float32, [1, 224, 224, 3])
    datasource = get_data()
    results = np.zeros((len(datasource.images), 2))

    net = PoseNet({'data': image})

    p3_x = net.layers['cls3_fc_pose_xyz']
    p3_q = net.layers['cls3_fc_pose_wpqr']

    init = tf.initialize_all_variables()
    outputFile = "PoseNet.ckpt"

    saver = tf.train.Saver()

    with tf.Session() as sess:
        # Load the data
        sess.run(init)
        saver.restore(sess, path + 'PoseNet_2019-01-30_60000.ckpt')

        data_gen = gen_data_batch(datasource)
        for i in range(len(datasource.images)):
            np_image = datasource.images[i]
            feed = {image: np_image}

            pose_q = np.asarray(datasource.poses[i][3:7])
            pose_x = np.asarray(datasource.poses[i][0:3])
            predicted_x, predicted_q = sess.run([p3_x, p3_q], feed_dict=feed)

            pose_q = np.squeeze(pose_q)
            pose_x = np.squeeze(pose_x)
            predicted_q = np.squeeze(predicted_q)
            predicted_x = np.squeeze(predicted_x)

            #Compute Individual Sample Error
            q1 = pose_q / np.linalg.norm(pose_q)
            q2 = predicted_q / np.linalg.norm(predicted_q)
            d = abs(np.sum(np.multiply(q1, q2)))
            theta = 2 * np.arccos(d) * 180 / math.pi
            error_x = np.linalg.norm(pose_x - predicted_x)
            results[i, :] = [error_x, theta]
            print 'Iteration:  ', i, '  Error XYZ (m):  ', error_x, '  Error Q (degrees):  ', theta, '  predicted_x: ', predicted_x, '   predicted_q: ', predicted_q

    median_result = np.median(results, axis=0)
    mean_result = np.mean(results, axis=0)
    max_result = np.max(results, axis=0)
    print 'Median error ', median_result[0], 'm  and ', median_result[
        1], 'degrees.'
    print 'Mean error ', mean_result[0], 'm  and ', mean_result[1], 'degrees.'
    print 'Maximum error ', max_result[0], 'm  and ', max_result[1], 'degrees.'
Exemplo n.º 11
0
def main():
    import sys
    config_file = "config.json"

    if len(sys.argv) > 1:
        config_file = sys.argv[1]

    rep = None
    if len(sys.argv) > 2:
        rep = int(sys.argv[2])

    test_data = True
    if len(sys.argv) > 3:
        test_data = int(sys.argv[3]) == 0

    js = Utils.load_json_file(config_file)
    location = js['directory']
    if test_data:
        dataset = js['testing_dataset']
    else:
        dataset = js['training_dataset']

    netFile = js['netFile']
    if rep is None:
        rep = int(js['rep'])
    if rep > -1:
        netFile = '{}/Net_{}/PNet'.format(netFile, rep)
    else:
        netFile = '{}/Net/PNet'.format(netFile)

    if len(sys.argv) > 4:
        netFile = sys.argv[4]

    classes = glob.glob(os.path.join(location, '*'))
    num_class = len(classes)

    images = tf.placeholder(tf.float32, [1, 224, 224, 3])
    shift = tf.placeholder(tf.float32, [1, 1, 1, num_class])

    net = PoseNet({'data': images, 'shift': shift})

    for a in range(num_class):
        if rep == -1 or rep == a:
            rds = Utils.get_raw_data_indoor(location, dataset, a)
            ds = Utils.get_data(rds, a, 2.0, ss=480)

            process(ds, netFile, net, images, shift)
Exemplo n.º 12
0
def main():
    global args
    args = parser.parse_args()
    os.makedirs(args.output, exist_ok=True)

    # if don't call torch.cuda.current_device(), fails later with
    #   "RuntimeError: cuda runtime error (30) : unknown error at ..\aten\src\THC\THCGeneral.cpp:87"
    torch.cuda.current_device()
    use_cuda = torch.cuda.is_available() and True
    device = torch.device("cuda:0" if use_cuda else "cpu")

    # try to get consistent results across runs
    #   => currently still fails, however, makes runs a bit more consistent
    _set_random_seed()

    # create model
    model = PoseNet(arch=args.arch, num_features=args.features, dropout=args.dropout,
                    pretrained=True, cache_dir=args.cache, loss=args.loss, excl_bn_affine=args.excl_bn,
                    beta=args.beta, sx=args.sx, sq=args.sq)

    # create optimizer
    #  - currently only Adam supported
    if args.optimizer == 'adam':
        eps = 0.1
        if args.split_opt_params:
            new_biases, new_weights, biases, weights, others = model.params_to_optimize(split=True, excl_batch_norm=args.excl_bn)
            optimizer = torch.optim.Adam([
                {'params': new_biases, 'lr': args.lr * 2, 'weight_decay': 0.0, 'eps': eps},
                {'params': new_weights, 'lr': args.lr, 'weight_decay': args.weight_decay, 'eps': eps},
                {'params': biases, 'lr': args.lr * 2, 'weight_decay': 0.0, 'eps': eps},
                {'params': weights, 'lr': args.lr, 'weight_decay': args.weight_decay, 'eps': eps},
                {'params': others, 'lr': 0, 'weight_decay': 0, 'eps': eps},
            ])
        else:
            params = model.params_to_optimize(excl_batch_norm=args.excl_bn)
            optimizer = torch.optim.Adam(params, lr=args.lr, weight_decay=args.weight_decay, eps=eps)
    else:
        assert False, 'Invalid optimizer: %s' % args.optimizer

    # optionally resume from a checkpoint
    best_loss = float('inf')
    best_epoch = -1
    if args.resume:
        if os.path.isfile(args.resume):
            print("=> loading checkpoint '{}'".format(args.resume))
            checkpoint = torch.load(args.resume)
            args.start_epoch = checkpoint['epoch']
            best_epoch = checkpoint['best_epoch']
            best_loss = checkpoint['best_loss']
            model.load_state_dict(checkpoint['model'])
            optimizer.load_state_dict(checkpoint['optimizer'])
            print("=> loaded checkpoint '{}' (epoch {})"
                  .format(args.resume, checkpoint['epoch']))
        else:
            print("=> no checkpoint found at '{}'".format(args.resume))
            quit()

    # define overall training dataset, set output normalization, load model to gpu
    all_tr_data = PoseDataset(args.data, 'dataset_train.txt', random_crop=not args.center_crop)
    model.set_target_transform(all_tr_data.target_mean, all_tr_data.target_std)
    model.to(device)

    # split overall training data to training and validation sets
    # validation set is used for early stopping, or possibly in future for hyper parameter optimization
    lengths = [round(len(all_tr_data) * 0.75), round(len(all_tr_data) * 0.25)]
    tr_data, val_data = torch.utils.data.random_split(all_tr_data, lengths)

    # define data loaders
    train_loader = DataLoader(tr_data, batch_size=args.batch_size, num_workers=args.workers,
                              shuffle=True, pin_memory=True, worker_init_fn=_worker_init_fn)

    val_loader = DataLoader(val_data, batch_size=args.batch_size, num_workers=args.workers,
                            shuffle=False, pin_memory=True, worker_init_fn=_worker_init_fn)

    test_loader = DataLoader(PoseDataset(args.data, 'dataset_test.txt', random_crop=False),
                             batch_size=args.batch_size, num_workers=args.workers,
                             shuffle=False, pin_memory=True, worker_init_fn=_worker_init_fn)

    # evaluate model only
    if args.evaluate:
        validate(test_loader, model)
        return

    # training loop
    for epoch in range(args.start_epoch, args.epochs):
        # train for one epoch
        lss, pos, ori = process(train_loader, model, optimizer, epoch, device, adv_tr_eps=args.adv_tr_eps)
        stats = np.zeros(16)
        stats[:6] = [epoch, lss.avg, pos.avg, pos.median, ori.avg, ori.median]

        # evaluate on validation set
        if (epoch+1) % args.test_freq == 0:
            lss, pos, ori = validate(val_loader, model, device)
            stats[6:11] = [lss.avg, pos.avg, pos.median, ori.avg, ori.median]

            # remember best loss and save checkpoint
            is_best = lss.avg < best_loss
            best_epoch = epoch if is_best else best_epoch
            best_loss = lss.avg if is_best else best_loss

            # save best model
            if is_best:
                _save_checkpoint({
                    'epoch': epoch + 1,
                    'best_epoch': best_epoch,
                    'best_loss': best_loss,
                    'arch': args.arch,
                    'model': model.state_dict(),
                    'optimizer': optimizer.state_dict(),
                }, True)
        else:
            is_best = False

        # maybe save a checkpoint even if not best model
        if (epoch+1) % args.save_freq == 0 and not is_best:
            _save_checkpoint({
                'epoch': epoch + 1,
                'best_epoch': best_epoch,
                'best_loss': best_loss,
                'arch': args.arch,
                'model': model.state_dict(),
                'optimizer': optimizer.state_dict(),
            }, False)

        # evaluate on test set if best yet result on validation set
        if is_best:
            lss, pos, ori = validate(test_loader, model, device)
            stats[11:] = [lss.avg, pos.avg, pos.median, ori.avg, ori.median]

        # add row to log file
        _save_log(stats, epoch == 0)

        # early stopping
        if args.early_stopping > 0 and epoch - best_epoch >= args.early_stopping:
            print('=====\nEARLY STOPPING CRITERION MET (%d epochs since best validation loss)' % args.early_stopping)
            break

        print('=====\n')

    if epoch+1 == args.epochs:
        print('MAX EPOCHS (%d) REACHED' % args.epochs)
    print('BEST VALIDATION LOSS: %.3f' % best_loss)
Exemplo n.º 13
0
def optimization_run(optparams, debug=True):
    # create a plot for all results:
    nrow = settings.nModels
    ncol = 8
    # figure
    plt.ioff()
    f1, axs = plt.subplots(nrows=nrow, ncols=ncol)
    # distance between subplots
    f1.subplots_adjust(wspace=0, hspace=0.1)
    # rownames names
    for i in xrange(nrow):
        for j in xrange(ncol):
            # axs[i, j].set_xticklabels([])
            # axs[i, j].set_yticklabels([])
            plt.sca(axs[i, j])
            plt.axis('off')

    # columns names
    cols = ['conv1', 'conv2', 'conv3', 'conv4', 'conv5', 'pool5', 'fc6', 'fc7']
    for ax, col in zip(axs[0], cols):
        ax.set_title(col)
    # for m in range(settings.nModels):
# axs[m,0].set_ylabel(settings.model[m]['name'], rotation=0)

# iterate over all models
    for m in range(settings.nModels):

        if settings.model[m] is None:
            continue

        # =============== MODEL m ====================================

        # models means
        mean = np.load(settings.model[m]['mean'])
        mean = mean.squeeze()
        transformer.set_mean('data', mean.mean(1).mean(1))

        # Load reference network which one want to investigate
        net = caffe.Classifier(settings.model[m]['prototxt'],
                               settings.model[m]['weights'], caffe.TEST)

        print net.blobs.keys()
        if 'X' in net.blobs.keys():
            net.blobs['data'] = net.blobs['X']
            net.blobs.pop('X')

        # get original input size of network
        original_w = net.blobs['data'].width
        original_h = net.blobs['data'].height

        # setup the output path
        if not os.path.isdir(settings.model[m]['vis2folder']):
            os.mkdir(settings.model[m]['vis2folder'])

        output_folder = settings.model[m]['vis2folder'] + '/img_inv_' + \
                        os.path.splitext(settings.refimage_name)[0] + '/'
        if not os.path.isdir(output_folder):
            os.mkdir(output_folder)

        # which class to visualize
        nLayers = len(settings.model[m]['layers'])
        for l in xrange(nLayers):
            layer = settings.model[m]['layers'][l].name
            filename = 'layer_' + layer
            refimage_path = settings.refimage_path + settings.refimage_name

            print "----------"
            print "layer: %s\tref_image: %s\tfilename: %s" % (
                layer, refimage_path, filename)
            print "----------"

            # if a specific output folder is provided
            if len(sys.argv) == 4:
                output_folder = str(sys.argv[3])

            print "Output dir: %s" % output_folder
            print "-----------"

            # if os.path.isfile("%s/%s.jpg" % (output_folder, filename)):
            #     print 'Inversion is already computed. Skipping the layer...'
            #     continue

            # get the reference image
            ref_image = np.float32(PIL.Image.open(refimage_path))
            image = transformer.preprocess('data', ref_image)
            net.blobs['data'].data[0] = image.copy()
            acts = net.forward(end=layer)
            phi_x0 = acts[layer][0]  # reference representation

            print 'shape of the reference layer: ', phi_x0.shape

            if not os.path.isdir('./models/' + settings.model[m]['name']):
                os.mkdir('./models/' + settings.model[m]['name'])

            # initialize a new network
            params = {
                'path2net':
                os.getcwd() + '/models/' + settings.model[m]['name'] +
                '/test_' + layer + '.prototxt',
                'path2solver':
                os.getcwd() + '/models/' + settings.model[m]['name'] +
                '/solver_' + layer + '.prototxt',
                'useGPU':
                settings.gpu,
                'DEVICE_ID':
                0
            }

            # if not os.path.isfile(params['path2net']):
            # caffenet
            if settings.model[m]['name'] == 'alexnet':
                AlexNet(net.blobs['data'].data.shape,
                        net.blobs[layer].data.shape,
                        last_layer=layer,
                        params=params)
            # cliqueCNN
            if settings.model[m]['name'] == 'cliqueCNN_long_jump':
                CliqueCNN(net.blobs['data'].data.shape,
                          net.blobs[layer].data.shape,
                          num_classes=settings.model[m]['nLabels'],
                          last_layer=layer,
                          params=params)
            # posenet
            if settings.model[m]['name'] == 'posenet':
                PoseNet(net.blobs['data'].data.shape,
                        net.blobs[layer].data.shape,
                        last_layer=layer,
                        params=params)

            # videonet
            if settings.model[m]['name'] == 'videonet':
                VideoNet(net.blobs['data'].data.shape,
                         net.blobs[layer].data.shape,
                         last_layer=layer,
                         params=params)

            # CNN_LSTM-Net
            if settings.model[m]['name'] == 'cnn_lstm':
                CNN_LSTN_Net(net.blobs['data'].data.shape,
                             net.blobs[layer].data.shape,
                             last_layer=layer,
                             params=params)

            new_net = caffe.Net(params['path2net'],
                                settings.model[m]['weights'], caffe.TEST)

            # !!!!! Adaptive jitter range
            receptiveFieldStride = np.load(
                str.split(params['path2net'], '.')[0] + '_stride.npy')
            optparams[0]['jitterT'] = np.max(
                [1, int(round(receptiveFieldStride[-1] / 4))]) - 1

            # !!!! Adaptive weight factor
            optparams[0]['C'] = settings.model[m]['layers'][l].C
            optparams[1]['C'] = settings.model[m]['layers'][l].C

            assert new_net.blobs['data'].data.shape[2] == original_h
            assert new_net.blobs['data'].data.shape[3] == original_w

            # generate class visualization via octavewise gradient ascent
            output_image = inversion(new_net, phi_x0, optparams, debug=debug)
            # normalize image = vl_imsc
            output_image = output_image - output_image.min()
            output_image = output_image / output_image.max()
            output_image = 255 * np.clip(output_image, 0, 1)

            # save result image
            path = save_image(output_folder, filename, output_image)
            print "Saved to %s" % path

            # add result image to the common plot
            plt.sca(axs[m, l])
            plt.imshow(np.uint8(output_image))
            # plt.axis('off')
        print '----------------------------------------------------------------------------------------------------'

        # for i in range(ncol - nLayers):
        #    plt.sca(axs[m, nLayers+i])
        #     plt.axis('off')

    if not os.path.isdir('./results/'):
        os.mkdir('./results/')

    f1.savefig('results/results_all_' + settings.refimage_name.split('.')[0] +
               '.png',
               dpi=600)
Exemplo n.º 14
0
def main():
    today = datetime.date.today()
    formatted_today = today.strftime('%y%m%d')
    outputFoldPath = path + formatted_today + '/'
    folder = os.path.exists(outputFoldPath)
    if not folder:
        os.makedirs(outputFoldPath)
    curFoldPath = os.getcwd()
    formatted_today_1 = today.strftime('%m%d')
    resFile = curFoldPath + '/' + formatted_today_1
    #	print curFoldPath

    images = tf.placeholder(tf.float32, [batch_size, 224, 224, 3])
    poses_x = tf.placeholder(tf.float32, [batch_size, 3])
    poses_q = tf.placeholder(tf.float32, [batch_size, 4])
    datasource = get_data()

    net = PoseNet({'data': images})

    p1_x = net.layers['cls1_fc_pose_xyz']
    p1_q = net.layers['cls1_fc_pose_wpqr']
    p2_x = net.layers['cls2_fc_pose_xyz']
    p2_q = net.layers['cls2_fc_pose_wpqr']
    p3_x = net.layers['cls3_fc_pose_xyz']
    p3_q = net.layers['cls3_fc_pose_wpqr']

    l1_x = tf.sqrt(tf.reduce_sum(tf.square(tf.subtract(p1_x, poses_x)))) * 0.3
    l1_q = tf.sqrt(tf.reduce_sum(tf.square(tf.subtract(p1_q, poses_q)))) * 150
    l2_x = tf.sqrt(tf.reduce_sum(tf.square(tf.subtract(p2_x, poses_x)))) * 0.3
    l2_q = tf.sqrt(tf.reduce_sum(tf.square(tf.subtract(p2_q, poses_q)))) * 150
    l3_x = tf.sqrt(tf.reduce_sum(tf.square(tf.subtract(p3_x, poses_x)))) * 1
    l3_q = tf.sqrt(tf.reduce_sum(tf.square(tf.subtract(p3_q, poses_q)))) * 500

    loss = l1_x + l1_q + l2_x + l2_q + l3_x + l3_q
    opt = tf.train.AdamOptimizer(learning_rate=0.0001,
                                 beta1=0.9,
                                 beta2=0.999,
                                 epsilon=0.00000001,
                                 use_locking=False,
                                 name='Adam').minimize(loss)

    # Set GPU options
    gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.6833)

    init = tf.global_variables_initializer()
    saver = tf.train.Saver(max_to_keep=5, keep_checkpoint_every_n_hours=2)

    # #saver=tf.train.import_meta_graph(preResPath+preTrainModelFile+'.meta')
    # #saver.restore(preResPath)
    # # Set GPU options
    # gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.6833)
    #
    # graph=tf.get_default_graph()
    # p1_x_w=graph.get_tensor_by_name("cls1_fc_pose_xyz/weights:0")
    #
    # #p1_x=graph.get_tensor_by_name('cls1_fc_pose_xyz:0')
    #
    # net = PoseNet({'data': images})

    # p1_x = net.layers['cls1_fc_pose_xyz']
    # p1_q = net.layers['cls1_fc_pose_wpqr']
    # p2_x = net.layers['cls2_fc_pose_xyz']
    # p2_q = net.layers['cls2_fc_pose_wpqr']
    # p3_x = net.layers['cls3_fc_pose_xyz']
    # p3_q = net.layers['cls3_fc_pose_wpqr']
    #
    # l1_x = tf.sqrt(tf.reduce_sum(tf.square(tf.subtract(p1_x, poses_x)))) * 0.3
    # l1_q = tf.sqrt(tf.reduce_sum(tf.square(tf.subtract(p1_q, poses_q)))) * 150
    # l2_x = tf.sqrt(tf.reduce_sum(tf.square(tf.subtract(p2_x, poses_x)))) * 0.3
    # l2_q = tf.sqrt(tf.reduce_sum(tf.square(tf.subtract(p2_q, poses_q)))) * 150
    # l3_x = tf.sqrt(tf.reduce_sum(tf.square(tf.subtract(p3_x, poses_x)))) * 1
    # l3_q = tf.sqrt(tf.reduce_sum(tf.square(tf.subtract(p3_q, poses_q)))) * 500

    with tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) as sess:
        sess.run(init)
        saver.restore(sess, tf.train.latest_checkpoint(preResPath))

        resfo = open(resFile, 'w')
        resfo.write('load previous training weight file:' + path + '\n')
        resfo.close()

        data_gen = gen_data_batch(datasource)
        for i in range(max_iterations):
            np_images, np_poses_x, np_poses_q = next(data_gen)
            feed = {
                images: np_images,
                poses_x: np_poses_x,
                poses_q: np_poses_q
            }

            sess.run(opt, feed_dict=feed)
            np_loss = sess.run(loss, feed_dict=feed)

            #			outputFile = outputFoldPath + 'PoseNet_' + str(i) + '.ckpt'
            time_str = time.strftime('%m-%d %H:%M:%S',
                                     time.localtime(time.time()))
            if i % 20 == 0:
                resfo = open(resFile, 'a')
                print(time_str + "\titeration: " + str(i) + "\n\t" +
                      "Loss is: " + str(np_loss))
                resfo.write(time_str + "\titeration: " + str(i) + "\n\t" +
                            "Loss is: " + str(np_loss) + '\n')
                resfo.close()
            if i > 0 and i % 5000 == 0:
                #if i % 5000 == 0:
                resfo = open(resFile, 'a')
                outputFile = outputFoldPath + 'PoseNet_' + str(i) + '.ckpt'
                saver.save(sess, outputFile, write_meta_graph=False)
                print("Intermediate file saved at: " + outputFile)
                resfo.write("Intermediate file saved at: " + outputFile + '\n')
                resfo.close()

    liu = 0
Exemplo n.º 15
0
    def __init__(self, params, output_dir):
        self.params = params

        # Models
        self.models = {}
        self.models['disparity'] = DisparityNet(input_shape=(params.input_h,
                                                             params.input_w,
                                                             3))

        self.models['pose'] = PoseNet(
            input_shape=(params.input_h, params.input_w,
                         3 * params.num_input_frames),
            num_input_frames=params.num_input_frames)

        # Datasets
        train_dataset = KittiSFMDataset(params.data_dir,
                                        'train',
                                        (params.input_h, params.input_w),
                                        batch_size=params.batch_size,
                                        frame_idx=params.frame_ids)
        val_dataset = KittiSFMDataset(params.data_dir,
                                      'val', (params.input_h, params.input_w),
                                      frame_idx=params.frame_ids,
                                      batch_size=params.batch_size)

        self.train_dataset = train_dataset.load_tfdataset()
        self.val_dataset = val_dataset.load_tfdataset()

        # Optimizer
        self.total_iteration = (train_dataset.num_samples //
                                params.batch_size) * params.epochs
        learning_rate_fn = tf.keras.optimizers.schedules.PolynomialDecay(
            0.0002,
            end_learning_rate=0.000001,
            decay_steps=self.total_iteration,
            power=0.5)
        self.optimizer = tf.keras.optimizers.Adam(learning_rate_fn)

        # Tensorboard & Meters
        train_log_dir = os.path.join(output_dir, 'train_logs')
        val_log_dir = os.path.join(output_dir, 'val_logs')
        self.train_summary_writer = tf.summary.create_file_writer(
            train_log_dir)
        self.test_summary_writer = tf.summary.create_file_writer(val_log_dir)

        self.train_meter = {
            'ssim': tf.keras.metrics.Mean(name='ssim'),
            'l1': tf.keras.metrics.Mean(name='l1'),
            'smooth': tf.keras.metrics.Mean(name='smooth'),
        }

        self.val_meter = {
            'ssim': tf.keras.metrics.Mean(name='ssim'),
            'l1': tf.keras.metrics.Mean(name='l1'),
            'smooth': tf.keras.metrics.Mean(name='smooth'),
        }

        self.step = 0
        # Load states from optimiser and model if available
        self.ckpt_disp, self.manager_disp = self.setup_logger(
            self.models['disparity'],
            os.path.join(output_dir, 'disparity_model'))
        self.ckpt_pose, self.manager_pose = self.setup_logger(
            self.models['pose'], os.path.join(output_dir, 'pose_model'))
        self.start_epoch = int(
            self.ckpt_disp.step
        ) + 1 if self.manager_disp.latest_checkpoint else int(
            self.ckpt_disp.step)

        print("Starting training step {}".format(self.ckpt_disp.step.numpy()))

        # Helpers
        self.pix_coords = pixel_coord(params.batch_size, params.input_h,
                                      params.input_w, True)  # [b, 3, npoints]
Exemplo n.º 16
0
def process(config_file, rep):
    sys.path.append('/home/weihao/posenet/my_nets')

    from posenet import GoogLeNet as PoseNet
    from utils import Utils

    js = Utils.load_json_file(config_file)
    location = js['directory']
    batch_size = int(js['batch_size'])
    dataset = js['training_dataset']
    netFile_base = js['netFile']
    retrain = None
    if 'retrain' in js:
        retrain = js['retrain']

    if rep is None:
        rep = int(js['rep'])
    lr = 1e-3
    rg = 3
    classes = glob.glob(os.path.join(location, '*'))
    num_class = len(classes)

    images = tf.placeholder(tf.float32, [batch_size, 224, 224, 3])
    poses_x = tf.placeholder(tf.float32, [batch_size, 3])
    poses_q = tf.placeholder(tf.float32, [batch_size, 4])
    shift = tf.placeholder(tf.float32, [batch_size, 1, 1, num_class])

    net = PoseNet({'data': images, 'shift': shift})

    # p1_x = net.layers['cls1_fc_pose_xyz']
    # p1_q = net.layers['cls1_fc_pose_wpqr']
    # p2_x = net.layers['cls2_fc_pose_xyz']
    # p2_q = net.layers['cls2_fc_pose_wpqr']
    p3_x = net.layers['cls3_fc_pose_xyz']
    p3_q = net.layers['cls3_fc_pose_wpqr']

    # l1_x = tf.sqrt(tf.reduce_sum(tf.square(tf.subtract(p1_x, poses_x)))) * 0.3
    # l1_q = tf.sqrt(tf.reduce_sum(tf.square(tf.subtract(p1_q, poses_q)))) * 150
    # l2_x = tf.sqrt(tf.reduce_sum(tf.square(tf.subtract(p2_x, poses_x)))) * 0.3
    # l2_q = tf.sqrt(tf.reduce_sum(tf.square(tf.subtract(p2_q, poses_q)))) * 150
    l3_x = tf.sqrt(tf.reduce_sum(tf.square(tf.subtract(p3_x, poses_x)))) * 1
    l3_q = tf.sqrt(tf.reduce_sum(tf.square(tf.subtract(p3_q,
                                                       poses_q)))) * 500.0

    loss = l3_x  # + l3_q  # l1_x + l1_q + l2_x + l2_q + l3_x + l3_q

    opts = []
    for A in range(rg):
        ao = tf.train.AdamOptimizer(learning_rate=lr,
                                    beta1=0.9,
                                    beta2=0.999,
                                    epsilon=0.00000001,
                                    use_locking=False,
                                    name='Adam')
        opts.append(ao.minimize(loss))
        lr /= 10

    # learning_rate = tf.placeholder(tf.float32, shape=[])
    # opt = tf.train.GradientDescentOptimizer(
    #    learning_rate=learning_rate).minimize(loss)
    # Set GPU options
    # gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.6833)
    gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.5)
    config_g = tf.ConfigProto(gpu_options=gpu_options)

    # device_count = {'CPU': 4},
    config = tf.ConfigProto(inter_op_parallelism_threads=6,
                            intra_op_parallelism_threads=6)

    init = tf.global_variables_initializer()
    saver = tf.train.Saver()

    rds = Utils.get_raw_data_indoor(location, dataset, rep)

    with tf.Session(config=config) as sess:

        # Load the data
        sess.run(init)
        if retrain:
            saver.restore(sess, retrain)

        ds = Utils.get_data(rds, rep)
        data_gen = Utils.gen_data_batch(ds, batch_size)
        reload = len(ds.images) / batch_size

        epoch = 50.0
        if rep == -1:
            epoch = 3000.0

        iterations = int(len(ds.images) * epoch / batch_size)

        print("Total images {}, rep {}, iter {}, reload {}".format(
            len(ds.images), rep, iterations, reload))

        for A in range(rg):
            import datetime
            if rep > -1:
                netFile = '{}/Net{}_{}/PNet'.format(netFile_base, A, rep)
            else:
                netFile = '{}/Net{}/PNet'.format(netFile_base, A)

            t0 = datetime.datetime.now()
            for i in range(iterations):
                np_images, np_poses_x, np_poses_q, np_shift = next(data_gen)
                feed = {
                    images: np_images,
                    poses_x: np_poses_x,
                    poses_q: np_poses_q,
                    shift: np_shift
                }  # , learning_rate: lr}

                sess.run(opts[A], feed_dict=feed)
                np_loss = sess.run(loss, feed_dict=feed)
                if (i + 1) % reload == 0:
                    if (i + 1) % (reload * 20) == 0:
                        t1 = datetime.datetime.now()
                        print("iteration: {} loss {} time {} lr {}".format(
                            i, np_loss, t1 - t0, A))
                        t0 = t1
                        saver.save(sess, netFile)
                    ds = Utils.get_data(rds, rep)
                    data_gen = Utils.gen_data_batch(ds, batch_size)

            if rep > -1:
                netFile = '{}/Net_{}/PNet'.format(netFile_base, rep)
            else:
                netFile = '{}/Net/PNet'.format(netFile_base)

            saver.save(sess, netFile)
            print("Intermediate file saved at: " + netFile)
Exemplo n.º 17
0
def main():
    today = datetime.date.today()
    formatted_today = today.strftime('%y%m%d')
    outputFoldPath = path + formatted_today + '/'
    folder = os.path.exists(outputFoldPath)
    if not folder:
        os.makedirs(outputFoldPath)
    curFoldPath = os.getcwd()
    formatted_today_1 = today.strftime('%m%d')
    resFile = curFoldPath + '/' + formatted_today_1
    #	print curFoldPath

    images = tf.placeholder(tf.float32, [batch_size, 224, 224, 3])
    poses_x = tf.placeholder(tf.float32, [batch_size, 3])
    poses_q = tf.placeholder(tf.float32, [batch_size, 4])
    datasource = get_data()

    net = PoseNet({'data': images})

    #	p1_x = net.layers['cls1_fc_pose_xyz']
    p1_q = net.layers['cls1_fc_pose_wpqr']
    #	p2_x = net.layers['cls2_fc_pose_xyz']
    p2_q = net.layers['cls2_fc_pose_wpqr']
    #	p3_x = net.layers['cls3_fc_pose_xyz']
    p3_q = net.layers['cls3_fc_pose_wpqr']

    #	l1_x = tf.sqrt(tf.reduce_sum(tf.square(tf.subtract(p1_x, poses_x)))) * 0.3
    l1_q = tf.sqrt(tf.reduce_sum(tf.square(tf.subtract(p1_q, poses_q)))) * 0.3
    #	l2_x = tf.sqrt(tf.reduce_sum(tf.square(tf.subtract(p2_x, poses_x)))) * 0.3
    l2_q = tf.sqrt(tf.reduce_sum(tf.square(tf.subtract(p2_q, poses_q)))) * 0.3
    #	l3_x = tf.sqrt(tf.reduce_sum(tf.square(tf.subtract(p3_x, poses_x)))) * 1
    l3_q = tf.sqrt(tf.reduce_sum(tf.square(tf.subtract(p3_q, poses_q))))

    #	loss = l1_x + l1_q + l2_x + l2_q + l3_x + l3_q
    loss = l1_q + l2_q + l3_q
    opt = tf.train.AdamOptimizer(learning_rate=0.0001,
                                 beta1=0.9,
                                 beta2=0.999,
                                 epsilon=0.00000001,
                                 use_locking=False,
                                 name='Adam').minimize(loss)

    # Set GPU options
    gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.6833)

    init = tf.global_variables_initializer()
    saver = tf.train.Saver()
    #outputFile = path+'PoseNet.ckpt'

    with tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) as sess:
        # Load the data
        sess.run(init)
        net.load(path + 'posenet.npy', sess)

        resfo = open(resFile, 'w')
        resfo.write('load initial weight file:' + path + 'posenet.npy\n')
        resfo.close()

        data_gen = gen_data_batch(datasource)
        for i in range(max_iterations):
            np_images, np_poses_x, np_poses_q = next(data_gen)
            feed = {
                images: np_images,
                poses_x: np_poses_x,
                poses_q: np_poses_q
            }

            sess.run(opt, feed_dict=feed)
            np_loss = sess.run(loss, feed_dict=feed)

            #			outputFile = outputFoldPath + 'PoseNet_' + str(i) + '.ckpt'
            time_str = time.strftime('%m-%d %H:%M:%S',
                                     time.localtime(time.time()))
            if i % 20 == 0:
                resfo = open(resFile, 'a')
                print(time_str + "\titeration: " + str(i) + "\n\t" +
                      "Loss is: " + str(np_loss))
                resfo.write(time_str + "\titeration: " + str(i) + "\n\t" +
                            "Loss is: " + str(np_loss) + '\n')
                resfo.close()
            if i > 0 and i % 5000 == 0:
                resfo = open(resFile, 'a')
                outputFile = outputFoldPath + 'PoseNet_' + str(i) + '.ckpt'
                saver.save(sess, outputFile)
                print("Intermediate file saved at: " + outputFile)
                resfo.write("Intermediate file saved at: " + outputFile + '\n')
                resfo.close()

        saver.save(sess, outputFile)
        print("Intermediate file saved at: " + outputFile)
Exemplo n.º 18
0
import os
import cv2
import csv
import numpy as np
from posenet import PoseNet
import utils

predictor = PoseNet.Predictor('models\\posenet101.pkl', 0)


def load(path):
    with open(path) as f:
        rows = [rows.strip() for rows in f]

    head = rows.index('{') + 1
    tail = rows.index('}')

    raw_points = rows[head:tail]
    coords_set = [point.split() for point in raw_points]

    points = np.array(
        [tuple([float(point) for point in coords]) for coords in coords_set])
    return points


thetas = []

with open('Data\\RAW\\valid_set\\validation_set.csv', newline='') as csvfile:
    spamreader = csv.reader(csvfile, delimiter=',', quotechar='|')
    for row in spamreader:
        filename = row[0]
Exemplo n.º 19
0
def loadModel() -> typing.Dict[str, typing.Union[
    torch.nn.Module, torch.optim.Optimizer, typing.List, float, float, int,
    typing.Tuple[float, float], typing.Tuple[float, float], typing.Tuple[
        float, float], typing.Tuple[float, float], typing.Tuple[float,
                                                                float]]]:
    """
	Loads the model from file. If any keys mismatch, it'll wrap the network in a nn.DataParallel. If it gets any other errors
	it will initiate the network from the default GoogLeNet model found in pretrained-models. Also loads epochs, training
	and validation differences, and a plethora of other stuff. See util.saveModel for more information on what is loaded.

	:return: Everything that was in the file.
	"""
    # Create the network.
    network: torch.nn.Module = PoseNet(input_nc=3)

    # Default network should be placed on the GPU so that the other default things
    # can expect that to be the case.
    if Config.useCuda():
        network = network.cuda()

    Logger.log("Creating learning objects.", logger="main")

    optimizer: torch.optim.Optimizer = torch.optim.Adam(
        network.parameters(), lr=Config.getArgs().learning_rate)

    scheduler1: torch.optim.lr_scheduler.ReduceLROnPlateau = torch.optim.lr_scheduler.ReduceLROnPlateau(
        optimizer=optimizer,
        threshold=Config.getArgs().beta,
        verbose=Logger.shouldLog(),
        threshold_mode="abs",
        factor=Config.getArgs().factor)

    scheduler2: torch.optim.lr_scheduler.StepLR = torch.optim.lr_scheduler.StepLR(
        optimizer=optimizer, step_size=80, gamma=Config.getArgs().factor)
    trainingLoss: typing.List[float] = []
    validationLoss: typing.List[float] = []
    trainingDiff: typing.List[float] = []
    validationDiff: typing.List[float] = []
    testingDiff: typing.List[float] = []
    uncertainty: typing.List[float] = []
    anees: typing.List[float] = []

    starting_epoch: int = 0

    hasParallelilized: bool = False

    defaultPretrainedModel: str = "pretrained-models/places-googlenet.pickle"

    Logger.log("Loading from pretrained model {}".format(
        Config.getArgs().pretrained_model),
               logger="main")
    # Load from pretrained model.
    path: str = Config.getArgs().pretrained_model
    if path is not None or Config.getArgs().resume:
        try:
            # Load checkpoint from file
            checkpoint: typing.Dict[str, typing.Any] = util.getPretrainedModel(
                path=path)
            # If we have version in the data of checkpoint
            if "version" in checkpoint:
                # But it's not the current version...
                if checkpoint["version"] != Config.version:
                    # Load in GoogLeNet
                    Logger.warn("User wants to load outdated model file!")
                # If the version matches, load in the posenet model

                try:
                    # We can't load in from googlenet here because googlenet doesn't have a version key
                    network.load_state_dict(checkpoint["model"])
                except RuntimeError:
                    # If we get a RuntimeError it's probably because we're trying to load something
                    # that was wrapped in the nn.DataParallel layer.
                    # We could prewrap it all beforehand, but that would mean we would need to
                    # circumnavigate GoogLeNet and its keys.
                    network = torch.nn.DataParallel(network)
                    hasParallelilized = True
                    try:
                        network.load_state_dict(checkpoint["model"])
                    except RuntimeError:
                        # if we still get an error message, that means we changed the architecture.
                        Logger.warn(
                            "Trying to load from version that has different architecture than current version."
                        )
                        Logger.log("Loading from default model.", logger="min")
                        network = torch.nn.DataParallel(
                            PoseNet(input_nc=3,
                                    weights=util.getPretrainedModel(
                                        defaultPretrainedModel)))
                if checkpoint["version"] == Config.version:
                    # We wouldn't want to load in these things from a different version.
                    optimizer.load_state_dict(checkpoint["optimizer"])
                    scheduler1 = checkpoint["schedulers"][0]
                    scheduler2.load_state_dict(checkpoint["schedulers"][1])
                    trainingLoss = checkpoint["trainingLoss"]
                    validationLoss = checkpoint["validationLoss"]
                    trainingDiff = checkpoint["trainingDifference"]
                    validationDiff = checkpoint["validationDifference"]
                    starting_epoch = checkpoint["epoch"] + 1
                    testingDiff = checkpoint["testingDifference"]
                    uncertainty = checkpoint["uncertainty"]
                    anees = checkpoint["anees"]
            else:  # If we don't have a version in the model file, we'll load GoogLeNet.
                Logger.log("Loading network from default pretrained model.")
                network = PoseNet(
                    input_nc=3,
                    weights=util.getPretrainedModel(defaultPretrainedModel))
        except FileNotFoundError:
            Logger.error("Cannot find pretrained model file!")
            Logger.log("Loading from default pretrained model.")
            # Load from googleNet
            network = PoseNet(
                input_nc=3,
                weights=util.getPretrainedModel(defaultPretrainedModel))
    else:
        Logger.log("Loading from default pretrained model.")
        # Load from googleNet
        network = PoseNet(
            input_nc=3,
            weights=util.getPretrainedModel(defaultPretrainedModel))

    # This will be the same on GPU or CPU so don't you worry baby.
    # Don't you worry OHHHH-OHOH
    if not hasParallelilized:
        network = torch.nn.DataParallel(network)

    # If we have access to GPUs, put PoseNet on them.
    if Config.useCuda():
        network = network.cuda()

    return {
        "network": network,
        "optimizer": optimizer,
        "schedulers": [scheduler1, scheduler2],
        "trainingLoss": trainingLoss,
        "validationLoss": validationLoss,
        "startingEpoch": starting_epoch,
        "validationDifference": validationDiff,
        "trainingDifference": trainingDiff,
        "testingDifference": testingDiff,
        "uncertainty": uncertainty,
        "anees": anees
    }
Exemplo n.º 20
0
# save the longitude binarizer to disk
print("[INFO] serializing longitude label binarizer...")
f = open(args["longitudebin"], "wb")
f.write(pickle.dumps(longitudeLB))
f.close()

# partition the data into training and testing splits using 80% of
# the data for training and the remaining 20% for testing
split = train_test_split(data, latitudeLabels, longitudeLabels, test_size=0.2)
(trainX, testX, trainLatitudeY, testLatitudeY, trainLongitudeY,
 testLongitudeY) = split

# initialize VGG multi-output network
model = PoseNet.VGG16_mod(128,
                          128,
                          numLatitudes=len(latitudeLB.classes_),
                          numLongitudes=len(longitudeLB.classes_),
                          finalAct="softmax")

# define two dictionaries: one that specifies the loss method for
# each output of the network along with a second dictionary that
# specifies the weight per loss
losses = {
    "latitude_output": "categorical_crossentropy",
    "longitude_output": "categorical_crossentropy",
}
lossWeights = {"latitude_output": 1.0, "longitude_output": 1.0}

# initialize the optimizer and compile the model
print("[INFO] compiling model...")
opt = Adam(lr=INIT_LR, decay=INIT_LR / EPOCHS)
Exemplo n.º 21
0
def train():
    layers = [PoolAE(3, 40, 7, stride=3, padding=6),
              PoolAE(40, 80, 5),
              PoolAE(80, 160, 3),
              AE(160, 256, 1),
              AE(256, 256, 1)]
    
    voc_data = np.load('data/pretrain_data.npy')
    pose_data = np.load('data/pose_data.npy')
    google_data = np.load('data/google_data.npy')
    
    data = np.concatenate((voc_data, pose_data, google_data)) / 255
    data = np.concatenate((data, np.flip(data, 2)))
    np.random.shuffle(data)
    
    data_cv = data[-10:]
    #data = data[:30000]     # posenet_00
    data = data[10000:-10] # posenet_01
    
    print(data.shape)
    
    epochs = 15
    
    learning_graphs = pretrain_layers(layers, epochs, data)
    
    deep_net = DeepAE(layers)
    deep_net.cuda()
    deep_net.train()
    
    training_loss = finetune(deep_net, 30, data)
    
    learning_graphs.append(np.array(training_loss))
    
    plt.figure(0)
    for index, graph in enumerate(learning_graphs):
        plt.subplot(2, 4, index+1)
        plt.plot(graph)
    
    X = torch.from_numpy(data_cv.transpose(0,3,1,2)).type(dtype)
    X = Variable(X, requires_grad=False)
    print(X.size())
    
    h = X
    for layer in layers:
        h = layer.encode(h)
        
    print(h.size()) 
    
    for layer in reversed(layers):
        h = layer.decode(h)
    
    y = h.data.cpu().numpy().transpose(0,2,3,1)
    X = X.data.cpu().numpy().transpose(0,2,3,1)
    
    plt.figure(1)
    for i in range(10):
        plt.subplot(2,10,i+1)
        plt.imshow(X[i])
        plt.axis('off')
        
        plt.subplot(2,10,i+1+10)
        plt.imshow((y[i] - y[i].min()) / (y[i].max() - y[i].min()))
        plt.axis('off')
        
    params = list(layers[0].parameters())[0].data.cpu().numpy().transpose(0,2,3,1)
    params = (params - params.min()) / (params.max() - params.min())
    
    plt.figure(2)
    for i in range(40):
        plt.subplot(8,5,i+1)
        plt.imshow(params[i])
        plt.axis('off')
        
    posenet = PoseNet(deep_net)
    #print(posenet)
    
    torch.save(posenet, 'models/posenet_01.model')
Exemplo n.º 22
0
import tensorflow as tf
import numpy as np
import cv2

from posenet import PoseNet, detect_pose, draw_pose, draw_keypoints

# itialize posenet from the package
model_path = 'posenet_resnet50float_stride16'
posenet = PoseNet(model_path)
# SET UP WEBCAM
# -------------
cap = cv2.VideoCapture(0)

# Set VideoCaptureProperties 
cap.set(3, 1280)    # width = 1280
cap.set(4, 720)     # height = 720
CAMERA_RESOLUTION_WIDTH = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
CAMERA_RESOLUTION_HEIGHT = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
CENTER_X = CAMERA_RESOLUTION_WIDTH//2
CENTER_Y = CAMERA_RESOLUTION_HEIGHT//2
# MAIN LOOP
# ---------
while True:
    success, img = cap.read()   # read webcam capture

    # get keypoints for single pose estimation. it is a list of 17 keypoints
    keypoints = posenet.predict_singlepose(img)

    # track nose
    nose_pos = keypoints[0]['position']
    nose_x = nose_pos[0] - CENTER_X
Exemplo n.º 23
0
def main():
    random.seed(27)

    images = tf.placeholder(tf.float32, [batch_size, 224, 224, 3])
    poses_x = tf.placeholder(tf.float32, [batch_size, 3])
    poses_q = tf.placeholder(tf.float32, [batch_size, 4])

    net = PoseNet({'data': images})

    p1_x = net.layers['cls1_fc_pose_xyz']
    p1_q = net.layers['cls1_fc_pose_wpqr']
    p2_x = net.layers['cls2_fc_pose_xyz']
    p2_q = net.layers['cls2_fc_pose_wpqr']
    p3_x = net.layers['cls3_fc_pose_xyz']
    p3_q = net.layers['cls3_fc_pose_wpqr']

    l1_x = tf.sqrt(tf.reduce_sum(tf.square(tf.subtract(p1_x, poses_x)))) * 0.3
    l1_q = tf.sqrt(tf.reduce_sum(tf.square(tf.subtract(p1_q, poses_q)))) * 225
    l2_x = tf.sqrt(tf.reduce_sum(tf.square(tf.subtract(p2_x, poses_x)))) * 0.3
    l2_q = tf.sqrt(tf.reduce_sum(tf.square(tf.subtract(p2_q, poses_q)))) * 225
    l3_x = tf.sqrt(tf.reduce_sum(tf.square(tf.subtract(p3_x, poses_x)))) * 1
    l3_q = tf.sqrt(tf.reduce_sum(tf.square(tf.subtract(p3_q, poses_q)))) * 500

    WEIGHT_DECAY_FACTOR = 0.005

    # Create your variables
    #weights = tf.get_variable('weights', collections=['variables'])

    with tf.variable_scope('weights_norm') as scope:
        weights_norm = tf.reduce_sum(
            input_tensor=WEIGHT_DECAY_FACTOR *
            tf.stack([tf.nn.l2_loss(i) for i in tf.get_collection('weights')]),
            name='weights_norm')

    # Add the weight decay loss to another collection called losses
    #tf.add_to_collection('losses', weights_norm)

    # To calculate your total loss
    #tf.add_n(tf.get_collection('losses'), name='total_loss')

    loss = l1_x + l1_q + l2_x + l2_q + l3_x + l3_q
    losses = loss + weights_norm
    opt = tf.train.AdamOptimizer(learning_rate=0.0001,
                                 beta1=0.9,
                                 beta2=0.999,
                                 epsilon=0.00000001,
                                 use_locking=False,
                                 name='Adam').minimize(losses)

    # Set GPU options
    gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.6833)

    init = tf.global_variables_initializer()
    saver = tf.train.Saver()
    outputFile = directory + "PoseNet.ckpt"

    #f = open('D:/PythonWorkSpace/posenet/PoseNet_AllDatasets_Closer/practiceCurves.txt','w')

    with tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) as sess:
        # Load the data
        sess.run(init)
        net.load('.../weights/posenet.npy', sess)
        #saver.restore(sess, directory + "PoseNet.ckpt")

        datasource = get_data(directory + dataset)
        datasource_test = get_data(directory + dataset_test)

        data_gen = gen_data_batch(datasource)
        data_gen_test = gen_data_batch(datasource_test)

        for i in range(max_iterations):
            np_images, np_poses_x, np_poses_q = next(data_gen)
            feed = {
                images: np_images,
                poses_x: np_poses_x,
                poses_q: np_poses_q
            }

            sess.run(opt, feed_dict=feed)

            if i % 500 == 0:
                np_loss = sess.run(loss, feed_dict=feed)

                np_images_test, np_poses_x_test, np_poses_q_test = next(
                    data_gen_test)
                feed_test = {
                    images: np_images_test,
                    poses_x: np_poses_x_test,
                    poses_q: np_poses_q_test
                }

                np_loss_test = sess.run(loss, feed_dict=feed_test)

                print("iteration: " + str(i) + "\n\t" + "Loss is: " +
                      str(np_loss) + "\n\t" + "test Loss is: " +
                      str(np_loss_test))
                f = open(directory + 'practiceCurves.txt', 'a')
                f.write(
                    str(i) + " " + str(np_loss) + " " + str(np_loss_test) +
                    "\n")
                f.close()
            if i % 2000 == 0:
                saver.save(sess, outputFile, global_step=i)
                print("Intermediate file saved at: " + outputFile)
        saver.save(sess, outputFile)
        print("Intermediate file saved at: " + outputFile)
Exemplo n.º 24
0
def train():
    batch_size = 75
    max_iterations = 3000

    images = tf.placeholder(tf.float32, [batch_size, 224, 224, 3])
    poses_x = tf.placeholder(tf.float32, [batch_size, 3])
    poses_q = tf.placeholder(tf.float32, [batch_size, 4])
    datasource = utils.get_data("train")

    net = PoseNet({'data': images})

    p1_x = net.layers['cls1_fc_pose_xyz']
    p1_q = net.layers['cls1_fc_pose_wpqr']
    p2_x = net.layers['cls2_fc_pose_xyz']
    p2_q = net.layers['cls2_fc_pose_wpqr']
    p3_x = net.layers['cls3_fc_pose_xyz']
    p3_q = net.layers['cls3_fc_pose_wpqr']

    l1_x = tf.sqrt(tf.reduce_sum(tf.square(tf.subtract(p1_x, poses_x)))) * 0.3
    l1_q = tf.sqrt(tf.reduce_sum(tf.square(tf.subtract(p1_q, poses_q)))) * 150
    l2_x = tf.sqrt(tf.reduce_sum(tf.square(tf.subtract(p2_x, poses_x)))) * 0.3
    l2_q = tf.sqrt(tf.reduce_sum(tf.square(tf.subtract(p2_q, poses_q)))) * 150
    l3_x = tf.sqrt(tf.reduce_sum(tf.square(tf.subtract(p3_x, poses_x)))) * 1
    l3_q = tf.sqrt(tf.reduce_sum(tf.square(tf.subtract(p3_q, poses_q)))) * 500

    loss = l1_x + l1_q + l2_x + l2_q + l3_x + l3_q
    opt = tf.train.AdamOptimizer(learning_rate=0.0001,
                                 beta1=0.9,
                                 beta2=0.999,
                                 epsilon=0.00000001,
                                 use_locking=False,
                                 name='Adam').minimize(loss)

    # ---- create a summary to monitor cost tensor
    tf.summary.scalar("loss", loss)
    merged_summary_op = tf.summary.merge_all(
    )  # merge all summaries into a single op
    logs_path = './logs'  # op to write logs to Tensorboard
    summary_writer = tf.summary.FileWriter(logs_path,
                                           graph=tf.get_default_graph())
    print("Run the command line: --> tensorboard --logdir=./logs " \
      "\nThen open http://0.0.0.0:6006/ into your web browser")

    # ---- Set GPU options
    gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.6833)

    init = tf.global_variables_initializer()
    saver = tf.train.Saver()

    with tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) as sess:
        # Load the data
        sess.run(init)
        net.load('posenet.npy', sess)

        data_gen = utils.gen_data_batch(datasource, batch_size)
        for i in range(max_iterations):
            np_images, np_poses_x, np_poses_q = next(data_gen)
            feed = {
                images: np_images,
                poses_x: np_poses_x,
                poses_q: np_poses_q
            }

            sess.run(opt, feed_dict=feed)  # run the optimizer
            np_loss = sess.run(loss, feed_dict=feed)  #get the loss

            # ---- print the logs
            if i % 20 == 0:
                print("iteration: " + str(i) + "\n\t" + "Loss is: " +
                      str(np_loss))
            if i % 100 == 0:
                saver.save(sess, path_ckpt)
                print("Intermediate file saved at: " + path_ckpt)

            # ---- write logs at every iteration
            summary = merged_summary_op.eval(feed_dict=feed)
            summary_writer.add_summary(summary, i)

        saver.save(sess, path_ckpt)
        print("Intermediate file saved at: " + path_ckpt)
Exemplo n.º 25
0
from config import Config
from posenet import PoseNet
from torch import save
from logger import Logger

fileName = Config.getArgs ().model_file.format ( "test", 0 )
network = PoseNet (input_nc = 3)
try:
	save ( obj = { "model": network.state_dict () }, f = fileName )
except FileNotFoundError:
	Logger.log ( "ERROR: Can not find file.", logger = "min" )
	Logger.log ( "\tCould it be that your working directory doesn't have the directory you specified?",
	      logger = "min" )
Logger.log ( "Saving was successful.", logger = "min" )
Exemplo n.º 26
0
## LOAD DATASETS
print('\nDATASET INFO.')
train_data = MPII('../data/mpii_poses.npy')
print('Train size: {} x {}'.format(len(train_data), train_data[0].size()))

## LOAD MODEL
print('\nLOADING GAN.')


def weights_init(m):
    if type(m) == torch.nn.Linear:
        torch.nn.init.xavier_uniform_(m.weight)
        torch.nn.init.constant_(m.bias, 0.0)


netG = PoseNet(n_hidden=N_HIDDEN, mode='generator').to(device)
netD = PoseNet(n_hidden=N_HIDDEN, mode='discriminator').to(device)
if args.model:
    netG.load_state_dict(torch.load(args.model)['netG'])
    netD.load_state_dict(torch.load(args.model)['netD'])
    print('=> Loaded models from {:s}'.format(args.model))
else:
    netG.apply(weights_init)
    netD.apply(weights_init)
print('Model params: {:.2f}M'.format(
    sum(p.numel() for p in netG.parameters()) / 1e6))

## TRAINING
print('\nTRAINING.')
data_loader = torch.utils.data.DataLoader(train_data,
                                          batch_size=args.batch_size,