def create_client_selector(hostports):
     clients = []
     for hostport in hostports:
         client = postman.Client(hostport)
         client.connect(3)
         clients.append(client)
     return iter(itertools.cycle(clients))
Exemplo n.º 2
0
 def run_client():
     client = postman.Client(address)
     client.connect(10)
     client.py_function(
         torch.zeros((1, 2)), torch.arange(10), (torch.empty(2, 3), torch.ones((1, 2)))
     )
     client.batched_function(torch.zeros((1, 2)))
Exemplo n.º 3
0
    def test_none_return(self):
        def get_nothing():
            # TODO(heiner): Add check on return shape.
            return torch.arange(2).reshape(1, 2)

        def return_nothing(t):
            return None

        def nothing():
            return

        server = postman.Server("127.0.0.1:0")
        server.bind("get_nothing", get_nothing, batch_size=1)
        server.bind("return_nothing", return_nothing, batch_size=1)
        server.bind("nothing", nothing, batch_size=1)
        server.run()

        client = postman.Client("127.0.0.1:%i" % server.port())
        client.connect(10)
        try:
            value = client.get_nothing()
            np.testing.assert_array_equal(value, np.arange(2))
            value = client.return_nothing(torch.tensor(10))

            # For now, "None" responses are empty tuples.
            self.assertEqual(value, ())
            self.assertEqual(client.nothing(), ())

        finally:
            server.stop()
Exemplo n.º 4
0
        def run_client(client_id):
            client = postman.Client(address)
            client.connect(10)
            arg = np.full((1, 2), client_id, dtype=np.float32)
            batched_arg = np.full((2,), client_id, dtype=np.float32)

            function_result = client.function(arg)
            batched_function_result = client.batched_function(batched_arg)

            np.testing.assert_array_equal(function_result, np.full((1, 2), client_id))
            np.testing.assert_array_equal(batched_function_result, np.full((2,), client_id))
Exemplo n.º 5
0
        def run_client():
            client = postman.Client(address)
            client.connect(10)
            local_replay_buffer = buffer.NestPrioritizedReplay(1000, 0, 0.6, 0.4, True)

            data = {}
            data["a"] = torch.Tensor(10)

            # testing, this could be a long-running c++ replay buffer adding
            local_replay_buffer.add_one(data, 1)
            local_replay_buffer.add_one(data, 2)

            size, batch, priority = local_replay_buffer.get_new_content()
            client.add_replay(batch, priority)
def main():
    client_id = random.randint(0, 10000)
    print("Client with random id", client_id)

    client = postman.Client("localhost:12345")
    client.connect(deadline_sec=3)

    output = client.pyfunc(torch.zeros(1, 2))

    client_array = torch.tensor([0, client_id, 2 * client_id])
    inputs = (torch.tensor(0), torch.tensor(1), (client_array,
                                                 torch.tensor(True)))
    client.identity(inputs)

    # Test that we get back what we expect.
    np.testing.assert_array_equal(client_array, client.identity(client_array))
    np.testing.assert_array_equal(client_array,
                                  client.batched_identity(client_array))
def main():
    client = postman.Client("%s:%d" % ("localhost", 12345))
    client.connect(deadline_sec=10)
    local_replay_buffer = buffer.NestPrioritizedReplay(1000, 0, 0.6, 0.4, True)

    data = {}
    data["a"] = torch.Tensor(10)

    # testing, this could be a long-running c++ replay buffer adding
    local_replay_buffer.add_one(data, 1)
    local_replay_buffer.add_one(data, 2)

    time.sleep(1)
    size, batch, priority = local_replay_buffer.get_new_content()
    print(batch)

    client.add_replay(batch, priority)
    model = client.query_state_dict()
    print(model)
    def __init__(
        self,
        *,
        model_path,
        max_batch_size,
        max_rollout_length=3,
        rollout_temperature,
        rollout_top_p=1.0,
        n_server_procs=1,
        n_gpu=1,
        n_rollout_procs=70,
        use_predicted_final_scores=True,
        postman_wait_till_full=False,
        use_server_addr=None,
        use_value_server_addr=None,
        device=None,
        mix_square_ratio_scoring=0,
        value_model_path=None,
        rollout_value_frac=0,
    ):
        super().__init__()
        self.n_rollout_procs = n_rollout_procs
        self.n_server_procs = n_server_procs
        self.use_predicted_final_scores = use_predicted_final_scores
        self.rollout_temperature = rollout_temperature
        self.rollout_top_p = rollout_top_p
        self.max_batch_size = max_batch_size
        self.max_rollout_length = max_rollout_length
        self.mix_square_ratio_scoring = mix_square_ratio_scoring
        self.rollout_value_frac = rollout_value_frac
        device = int(device.lstrip("cuda:")) if type(device) == str else device

        logging.info("Launching servers")
        assert n_gpu <= n_server_procs and n_server_procs % n_gpu == 0
        try:
            mp.set_start_method("spawn")
        except RuntimeError:
            logging.warning("Failed mp.set_start_method")

        if use_server_addr is not None:
            assert value_model_path is None, "Not implemented"
            if n_server_procs != 1:
                raise ValueError(
                    f"Bad args use_server_addr={use_server_addr} n_server_procs={n_server_procs}"
                )
            self.hostports = [use_server_addr]
            self.value_hostport = use_value_server_addr
        else:
            _servers, _qs, self.hostports = zip(*[
                make_server_process(
                    model_path=model_path,
                    device=i % n_gpu if device is None else device,
                    max_batch_size=max_batch_size,
                    wait_till_full=postman_wait_till_full,
                    # if torch's seed is set, then we want the server seed to be a deterministic
                    # function of that. Yet we don't want it to be the same for each agent.
                    # So pick a random number from the torch rng
                    seed=int(torch.randint(1000000000, (1, ))),
                ) for i in range(n_server_procs)
            ])

            if value_model_path is not None:
                _, _, self.value_hostport = make_server_process(
                    model_path=value_model_path,
                    device=n_server_procs %
                    n_gpu if device is None else device,
                    max_batch_size=max_batch_size,
                    wait_till_full=postman_wait_till_full,
                    seed=int(torch.randint(1000000000, (1, ))),
                )
            else:
                self.value_hostport = None

        self.client = postman.Client(self.hostports[0])
        logging.info(
            f"Connecting to {self.hostports[0]} [{os.uname().nodename}]")
        self.client.connect(20)
        logging.info(f"Connected to {self.hostports[0]}")

        if n_rollout_procs > 0:
            self.proc_pool = mp.Pool(n_rollout_procs)
            logging.info("Warming up pool")
            self.proc_pool.map(float, range(n_rollout_procs))
            logging.info("Done warming up pool")
        else:
            logging.info("Debug mode: using fake process poll")
            fake_pool_class = type("FakePool", (), {
                "map": lambda self, *a, **k: map(*a, **k)
            })
            self.proc_pool = fake_pool_class()
    def do_rollout(
        cls,
        *,
        game_json,
        hostport,
        set_orders_dict={},
        temperature,
        top_p,
        max_rollout_length,
        batch_size=1,
        use_predicted_final_scores,
        mix_square_ratio_scoring=0,
        value_hostport=None,
        rollout_value_frac=0,
    ) -> Tuple[Tuple[Dict, List[Dict]], TimingCtx]:
        """Complete game, optionally setting orders for the current turn

        This method can safely be called in a subprocess

        Arguments:
        - game_json: json-formatted game string, e.g. output of to_saved_game_format(game)
        - hostport: string, "{host}:{port}" of model server
        - set_orders_dict: Dict[power, orders] to set for current turn
        - temperature: model softmax temperature for rollout policy
        - top_p: probability mass to samples from for rollout policy
        - max_rollout_length: return SC count after at most # steps
        - batch_size: rollout # of games in parallel
        - use_predicted_final_scores: if True, use model's value head for final SC predictions

        Returns a 2-tuple:
        - results, a 2-tuple:
          - set_orders_dict: Dict[power, orders]
          - list of Dict[power, final_score], len=batch_size
        - timings: a TimingCtx
        """
        timings = TimingCtx()

        with timings("postman.client"):
            client = postman.Client(hostport)
            client.connect(3)
            if value_hostport is not None:
                value_client = postman.Client(value_hostport)
                value_client.connect(3)
            else:
                value_client = client

        with timings("setup"):
            faulthandler.register(signal.SIGUSR2)
            torch.set_num_threads(1)

            games = [
                pydipcc.Game.from_json(game_json) for _ in range(batch_size)
            ]
            for i in range(len(games)):
                games[i].game_id += f"_{i}"

            est_final_scores = {}  # game id -> np.array len=7

            # set orders if specified
            for power, orders in set_orders_dict.items():
                for game in games:
                    game.set_orders(power, list(orders))

            other_powers = [p for p in POWERS if p not in set_orders_dict]

        rollout_start_phase = games[0].current_short_phase
        rollout_end_phase = n_move_phases_later(rollout_start_phase,
                                                max_rollout_length)
        while True:
            if max_rollout_length == 0:
                # Handled separately.
                break

            # exit loop if all games are done before max_rollout_length
            ongoing_game_phases = [
                game.current_short_phase for game in games
                if not game.is_game_done
            ]
            if len(ongoing_game_phases) == 0:
                break

            # step games together at the pace of the slowest game, e.g. process
            # games with retreat phases alone before moving on to the next move phase
            min_phase = min(ongoing_game_phases, key=sort_phase_key)

            batch_data = []
            for game in games:
                if not game.is_game_done and game.current_short_phase == min_phase:
                    with timings("encode.all_poss_orders"):
                        all_possible_orders = game.get_all_possible_orders()
                    with timings("encode.inputs"):
                        inputs = FeatureEncoder().encode_inputs([game])
                    batch_data.append((game, inputs))

            with timings("cat_pad"):
                xs: List[Tuple] = [b[1] for b in batch_data]
                batch_inputs = cls.cat_pad_inputs(xs)

            with timings("model"):
                if client != value_client:
                    assert (
                        rollout_value_frac == 0
                    ), "If separate value model, you can't add in value each step (slow)"

                cur_client = value_client if min_phase == rollout_end_phase else client

                batch_orders, _, batch_est_final_scores = self.do_model_request(
                    batch_inputs, temperature, top_p, client=cur_client)

            if min_phase == rollout_end_phase:
                with timings("score.accumulate"):
                    for game_idx, (game, _) in enumerate(batch_data):
                        est_final_scores[game.game_id] = np.array(
                            batch_est_final_scores[game_idx])

                # skip env step and exit loop once we've accumulated the estimated
                # scores for all games up to max_rollout_length
                break

            with timings("env"):
                assert len(batch_data) == len(batch_orders), "{} != {}".format(
                    len(batch_data), len(batch_orders))

                # set_orders and process
                assert len(batch_data) == len(batch_orders)
                for (game, _), power_orders in zip(batch_data, batch_orders):
                    if game.is_game_done:
                        continue
                    power_orders = dict(zip(POWERS, power_orders))
                    for other_power in other_powers:
                        game.set_orders(other_power,
                                        list(power_orders[other_power]))

                    assert game.current_short_phase == min_phase
                    game.process()

            for (game, _) in batch_data:
                if game.is_game_done:
                    with timings("score.gameover"):
                        final_scores = np.array(
                            get_square_scores_from_game(game))
                        est_final_scores[game.game_id] = final_scores

            other_powers = POWERS  # no set orders on subsequent turns

        # out of rollout loop

        if max_rollout_length > 0:
            assert len(est_final_scores) == len(games)
        else:
            assert (
                not other_powers
            ), "If max_rollout_length=0 it's assumed that all orders are pre-defined."
            # All orders are set. Step env. Now only need to get values.
            game.process()

            batch_data = []
            for game in games:
                if not game.is_game_done:
                    with timings("encode.inputs"):
                        inputs = FeatureEncoder().encode_inputs([game])
                    batch_data.append((game, inputs))
                else:
                    est_final_scores[
                        game.game_id] = get_square_scores_from_game(game)

            if batch_data:
                with timings("cat_pad"):
                    xs: List[Tuple] = [b[1] for b in batch_data]
                    batch_inputs = self.cat_pad_inputs(xs)

                with timings("model"):
                    _, _, batch_est_final_scores = self.do_model_request(
                        batch_inputs, temperature, top_p, client=value_client)
                    assert batch_est_final_scores.shape[0] == len(batch_data)
                    assert batch_est_final_scores.shape[1] == len(POWERS)
                    for game_idx, (game, _) in enumerate(batch_data):
                        est_final_scores[
                            game.game_id] = batch_est_final_scores[game_idx]

        with timings("final_scores"):
            # get GameScores objects for current game state
            current_game_scores = [{
                p: compute_game_scores_from_state(i, game.get_state())
                for i, p in enumerate(POWERS)
            } for game in games]

            # get estimated or current sum of squares scoring
            final_game_scores = [
                dict(zip(POWERS, est_final_scores[game.game_id]))
                for game, current_scores in zip(games, current_game_scores)
            ]

            # mix in current sum of squares ratio to encourage losing powers to try hard
            if mix_square_ratio_scoring > 0:
                for game, final_scores, current_scores in zip(
                        games, final_game_scores, current_game_scores):
                    for p in POWERS:
                        final_scores[p] = (
                            1 - mix_square_ratio_scoring) * final_scores[p] + (
                                mix_square_ratio_scoring *
                                current_scores[p].square_ratio)
            result = (set_orders_dict, final_game_scores)

        return result, timings
Exemplo n.º 10
0
 def run_client():
     client = postman.Client(address)
     client.connect(10)
     model = client.query_state_dict()
     self.assertEqual(model["fc.weight"].size, 100)
     self.assertEqual(model["fc.bias"].size, 10)
Exemplo n.º 11
0
 def run_client(port):
     client = postman.Client("%s:%i" % (address, port))
     client.connect(10)
     client.foo(torch.Tensor(init_batch_size, 2, 2))
     client.foo(torch.Tensor(final_batch_size, 2, 2))