Exemplo n.º 1
0
def test_a_epoch(name, data, model, result_file, label2id, lr, batch_size, en):
    model.training = False

    full_img_paths = []
    evaluator = Evaluator(name, label2id)

    for images, labels, img_paths in tqdm(data,
                                          desc=name,
                                          total=np.math.ceil(len(data))):
        inp = Variable(images.cuda())

        seq_out = model(inp)

        pred = argmax(seq_out)
        evaluator.append_data(0, pred, labels)

        # print(predicted)
        full_img_paths.extend(img_paths)

    evaluator.gen_results()
    evaluator.print_results()
    evaluator.write_results(
        result_file, "epoch = {2}; GOOGLE NET; lr={0}; batch_size={1}".format(
            lr, batch_size, en))

    return evaluator, full_img_paths
Exemplo n.º 2
0
def train_a_epoch(name, data, model, optimizer, criterion, res_file, lr,
                  batch_size, label2id, en):
    model = model.train(True)

    evaluator = Evaluator(name, label2id)
    print("evaluator loaded")
    i = 0
    pbar = tqdm(data, desc=name, total=np.math.ceil(len(data)))
    for images, labels, _ in pbar:
        # zero the parameter gradients
        sys.stdout.flush()
        optimizer.zero_grad()
        if i == 0:
            pbar.total = np.math.ceil(len(data))
        inp = Variable(images.cuda())
        seq_out = model(inp)
        pred = argmax(seq_out)

        loss = criterion(seq_out, Variable(torch.cuda.LongTensor(labels)))
        pbar.set_description("{0} loss: {1}".format(name, to_scalar(loss)))
        evaluator.append_data(to_scalar(loss), pred, labels)

        loss.backward()
        optimizer.step()
        i += 1

    print("Training Done")
    evaluator.gen_results()
    evaluator.print_results()
    evaluator.write_results(
        res_file, "epoch = {2}; GOOGLE NET; lr={0}; batch_size={1}".format(
            lr, batch_size, en))

    return model
Exemplo n.º 3
0
def test_a_epoch(name, data, model, result_file, cfg, en):
    pred_list = []
    true_list = []
    evaluator = Evaluator(name,
                          label2id=cfg['LABEL_2_ID'],
                          pure_labels=cfg['PURE_LABELS'])

    for images, labels in tqdm(data, desc=name, total=np.math.ceil(len(data))):
        seq_out = model(Variable(torch.from_numpy(images).float().cuda()))

        pred = argmax(seq_out)

        evaluator.append_data(0, pred, labels)

        # print(predicted)
        pred_list.extend(pred)
        true_list.extend(labels)

    evaluator.gen_results()
    evaluator.print_results()
    evaluator.write_results(
        result_file, "epoch = {2}; GOOGLE NET; lr={0}; batch_size={1}".format(
            cfg['LEARNING_RATE'], cfg['BATCH_SIZE'], en))

    return evaluator, pred_list, true_list
Exemplo n.º 4
0
def train_a_epoch(name, data, tag_idx, model, optimizer):
    evaluator = Evaluator(name, [0, 1],
                          main_label_name=cfg.POSITIVE_LABEL,
                          label2id=tag_idx,
                          conll_eval=True)
    t = tqdm(data, total=len(data))

    for SENT, X, Y, P in t:
        # zero the parameter gradients
        optimizer.zero_grad()
        model.zero_grad()
        np.set_printoptions(threshold=np.nan)
        nnl = model.neg_log_likelihood(X, Y)
        logger.debug("tensor X variable: {0}".format(X))
        nnl.backward()
        preds = model(X)
        for pred, x, y in zip(preds, X, Y):
            evaluator.append_data(to_scalar(nnl), pred, x, y)

        if cfg.CLIP is not None:
            clip_grad_norm(model.parameters(), cfg.CLIP)

        optimizer.step()

    evaluator.classification_report()

    return evaluator, model
Exemplo n.º 5
0
def test_a_epoch(name, data, model, result_file, label2id):
    model.training = False

    pred_list = []
    true_list = []
    evaluator = Evaluator(name, label2id)

    for images, labels in tqdm(data, desc=name, total=np.math.ceil(len(data))):
        inp = Variable(images.cuda())

        seq_out = model(inp)

        pred = argmax(seq_out)
        evaluator.append_data(0, pred, labels)

        # print(predicted)
        pred_list.extend(pred)
        true_list.extend(labels)

    evaluator.gen_results()
    evaluator.print_results()
    evaluator.write_results(result_file, '')

    return evaluator, pred_list, true_list
Exemplo n.º 6
0
def train_a_epoch(name, data, model, optimizer, criterion, res_file, lr,
                  batch_size, label2id, en):
    model.training = True

    evaluator = Evaluator(name, label2id)
    print("evaluator loaded")
    i = 0
    for images, labels, _ in tqdm(data,
                                  desc=name,
                                  total=np.math.ceil(len(data))):
        # zero the parameter gradients
        sys.stdout.flush()
        optimizer.zero_grad()
        model.zero_grad()
        # image = crop(sample.image, cfg.MAX_IMG_SIZE)

        inp = Variable(images.cuda())
        # inp = torch.transpose(inp, 1, 3)
        seq_out = model(inp)

        pred = argmax(seq_out)
        loss = criterion(seq_out, Variable(torch.cuda.LongTensor(labels)))

        evaluator.append_data(to_scalar(loss), pred, labels)
        loss.backward()
        optimizer.step()
        i += 1

    print("Training Done")
    evaluator.gen_results()
    evaluator.print_results()
    evaluator.write_results(
        res_file, "epoch = {2}; GOOGLE NET; lr={0}; batch_size={1}".format(
            lr, batch_size, en))

    return model
Exemplo n.º 7
0
def test(name, data, tag_idx, model):
    pred_list = []
    true_list = []
    full_eval = Evaluator(name, [0, 1],
                          main_label_name=cfg.POSITIVE_LABEL,
                          label2id=tag_idx,
                          conll_eval=True)
    only_ents_eval = Evaluator("test_ents_only", [0, 1],
                               skip_label=['B-Action', 'I-Action'],
                               main_label_name=cfg.POSITIVE_LABEL,
                               label2id=tag_idx,
                               conll_eval=True)

    for SENT, X, Y, P in tqdm(data, desc=name, total=len(data)):
        np.set_printoptions(threshold=np.nan)
        preds = model(X)

        for pred, x, y in zip(preds, X, Y):
            full_eval.append_data(0, pred, x, y)
            only_ents_eval.append_data(0, pred, x, y)
            pred_list.append(pred[1:-1])
            true_list.append(y[1:-1])

    full_eval.classification_report()
    only_ents_eval.classification_report()

    return full_eval, pred_list, true_list
Exemplo n.º 8
0
def train_a_epoch(name, data, tag_idx, is_oov, model, optimizer, seq_criterion,
                  lm_f_criterion, lm_b_criterion, att_loss, gamma):
    evaluator = Evaluator(name, [0, 1],
                          main_label_name=cfg.POSITIVE_LABEL,
                          label2id=tag_idx,
                          conll_eval=True)
    t = tqdm(data, total=len(data))

    if is_oov[0] == 1:
        print("Yes, UNKNOWN token is out of vocab")
    else:
        print("No, UNKNOWN token is not out of vocab")

    for SENT, X, C, POS, Y, P in t:
        batch_size = len(SENT)
        # zero the parameter gradients
        optimizer.zero_grad()
        model.zero_grad()
        model.init_state(len(X))

        x_var, c_var, pos_var, y_var, lm_X = to_variables(X=X,
                                                          C=C,
                                                          POS=POS,
                                                          Y=Y)

        np.set_printoptions(threshold=np.nan)

        if cfg.CHAR_LEVEL == "Attention":
            lm_f_out, lm_b_out, seq_out, seq_lengths, emb, char_emb = model(
                x_var, c_var)
            unrolled_x_var = list(chain.from_iterable(x_var))

            not_oov_seq = [-1 if is_oov[idx] else 1 for idx in unrolled_x_var]
            char_att_loss = att_loss(
                emb.detach(), char_emb,
                Variable(torch.cuda.LongTensor(not_oov_seq))) / batch_size

        else:
            lm_f_out, lm_b_out, seq_out, seq_lengths = model(x_var, c_var)

        logger.debug("lm_f_out : {0}".format(lm_f_out))
        logger.debug("lm_b_out : {0}".format(lm_b_out))
        logger.debug("seq_out : {0}".format(seq_out))

        logger.debug("tensor X variable: {0}".format(x_var))

        # remove start and stop tags
        pred = argmax(seq_out)

        logger.debug("Predicted output {0}".format(pred))
        seq_loss = seq_criterion(
            seq_out,
            Variable(torch.LongTensor(y_var)).cuda()) / batch_size

        # to limit the vocab size of the sample sentence ( trick used to improve lm model)
        # TODO make sure that start and end symbol of sentence gets through this filtering.
        logger.debug("Sample input {0}".format(lm_X))
        if gamma != 0:
            lm_X_f = [x1d[1:] for x1d in lm_X]
            lm_X_b = [x1d[:-1] for x1d in lm_X]
            lm_X_f = list(chain.from_iterable(lm_X_f))
            lm_X_b = list(chain.from_iterable(lm_X_b))
            lm_f_loss = lm_f_criterion(
                lm_f_out.squeeze(),
                Variable(cuda.LongTensor(lm_X_f)).squeeze()) / batch_size
            lm_b_loss = lm_b_criterion(
                lm_b_out.squeeze(),
                Variable(cuda.LongTensor(lm_X_b)).squeeze()) / batch_size

            if cfg.CHAR_LEVEL == "Attention":
                total_loss = seq_loss + Variable(cuda.FloatTensor(
                    [gamma])) * (lm_f_loss + lm_b_loss) + char_att_loss
            else:
                total_loss = seq_loss + Variable(cuda.FloatTensor(
                    [gamma])) * (lm_f_loss + lm_b_loss)

        else:
            if cfg.CHAR_LEVEL == "Attention":
                total_loss = seq_loss + char_att_loss
            else:
                total_loss = seq_loss

        desc = "total_loss: {0:.4f} = seq_loss: {1:.4f}".format(
            to_scalar(total_loss), to_scalar(seq_loss))
        if gamma != 0:
            desc += " + gamma: {0} * (lm_f_loss: {1:.4f} + lm_b_loss: {2:.4f})".format(
                gamma, to_scalar(lm_f_loss), to_scalar(lm_b_loss))

        if cfg.CHAR_LEVEL == "Attention":
            desc += " + char_att_loss: {0:.4f}".format(
                to_scalar(char_att_loss))

        t.set_description(desc)

        preds = roll(pred, seq_lengths)
        for pred, x, y in zip(preds, X, Y):
            evaluator.append_data(to_scalar(total_loss), pred, x, y)

        total_loss.backward()
        if cfg.CLIP is not None:
            clip_grad_norm(model.parameters(), cfg.CLIP)

        optimizer.step()

    evaluator.classification_report()

    return evaluator, model
Exemplo n.º 9
0
def test(name, data, tag_idx, model):
    correct = 0
    total = 0
    pred_list = []
    true_list = []
    full_eval = Evaluator(name, [0, 1],
                          main_label_name=cfg.POSITIVE_LABEL,
                          label2id=tag_idx,
                          conll_eval=True)
    only_ents_eval = Evaluator("test_ents_only", [0, 1],
                               skip_label=['B-Action', 'I-Action'],
                               main_label_name=cfg.POSITIVE_LABEL,
                               label2id=tag_idx,
                               conll_eval=True)
    for SENT, X, C, POS, Y, P in tqdm(data, desc=name, total=len(data)):
        np.set_printoptions(threshold=np.nan)
        model.init_state(len(X))
        x_var, c_var, pos_var, y_var, lm_X = to_variables(X=X,
                                                          C=C,
                                                          POS=POS,
                                                          Y=Y)

        if cfg.CHAR_LEVEL == "Attention":
            lm_f_out, lm_b_out, seq_out, seq_lengths, emb, char_emb = model(
                x_var, c_var)
        else:
            lm_f_out, lm_b_out, seq_out, seq_lengths = model(x_var, c_var)

        pred = argmax(seq_out)
        preds = roll(pred, seq_lengths)
        for pred, x, y in zip(preds, X, Y):
            full_eval.append_data(0, pred, x, y)
            only_ents_eval.append_data(0, pred, x, y)
            pred_list.append(pred[1:-1])
            true_list.append(y[1:-1])

    full_eval.classification_report()
    only_ents_eval.classification_report()

    return full_eval, only_ents_eval, pred_list, true_list
Exemplo n.º 10
0
def main():
    dataset = dataset_prep(loadfile=cfg.DB_MAXENT)
    dataset.tag_idx['<s>'] = len(dataset.tag_idx.keys())
    dataset.tag_idx['</s>'] = len(dataset.tag_idx.keys())
    total = len(dataset.tokens2d)
    print(dataset.tag_idx)
    print(total)
    print(len(dataset.cut_list))
    ntrain = int(total * .60)
    ndev = int(total * .80)
    ntest = total

    ablation = [
        ['pos', 'ng0', 'bg', 'rel', 'dep', 'gov', 'lm'],  # FULL
        ['ng0', 'bg', 'rel', 'dep', 'gov', 'lm'],  # -POS
        ['pos', 'rel', 'dep', 'gov', 'lm'],  # -UNIGRAM/BIGRAM
        ['pos', 'ng0', 'bg', 'lm'],  # -DEPs
        ['pos', 'ng0', 'bg', 'rel', 'dep', 'gov'],  # -LEMMA
    ]

    addition = [['pos'], ['ng0', 'bg'], ['ng0', 'bg', 'lm'],
                ['pos', 'ng0', 'bg'], ['pos', 'ng0', 'bg', 'lm'],
                ['pos', 'ng0', 'bg', 'rel', 'dep', 'gov', 'lm']]
    for feat in addition:
        x_train, w_train, y_train = extract_data(0, ntrain, dataset, feat)

        # print(list(dataset.f_df.columns.values))

        x_test, w_test, y_test = extract_data(ndev, ntest, dataset, feat)

        model = LogisticRegression(solver='lbfgs',
                                   multi_class='multinomial',
                                   n_jobs=8)

        model.fit(x_train, y_train)

        pred = model.predict(x_test)
        print("ALL!")
        evaluator = Evaluator("test_all", [0, 1],
                              main_label_name=cfg.POSITIVE_LABEL,
                              label2id=dataset.tag_idx,
                              conll_eval=True)
        evaluator.append_data(0, pred, w_test, y_test)
        evaluator.classification_report()
        print("ONLY ENTITIES!")
        evaluator = Evaluator("test_ents_only", [0, 1],
                              skip_label=['B-Action', 'I-Action'],
                              main_label_name=cfg.POSITIVE_LABEL,
                              label2id=dataset.tag_idx,
                              conll_eval=True)
        evaluator.append_data(0, pred, w_test, y_test)
        evaluator.classification_report()
Exemplo n.º 11
0
def pos():
    dataset = dataset_prep(loadfile=cfg.DB_MAXENT)
    dataset.tag_idx['<s>'] = len(dataset.tag_idx.keys())
    dataset.tag_idx['</s>'] = len(dataset.tag_idx.keys())
    # dataset.pos_table(["B-Action", "I-Action"], ['VB', 'VBD', 'VBG', 'VBN', 'VBP', 'VBZ', 'NN', 'NNP', 'NNS', 'JJ'])
    dataset.ent_table()
    total = len(dataset.tokens2d)
    print(dataset.tag_idx)
    print(total)
    print(len(dataset.cut_list))
    ntrain = int(total * .60)
    ndev = int(total * .80)
    ntest = total

    x_train, w_train, y_train = pos_verb_only(
        0, ntrain, dataset, ['VB', 'VBD', 'VBG', 'VBN', 'VBP', 'VBZ'])

    # print(list(dataset.f_df.columns.values))

    x_test, w_test, y_test = pos_verb_only(
        ndev, ntest, dataset, ['VB', 'VBD', 'VBG', 'VBN', 'VBP', 'VBZ'])

    model = LogisticRegression(solver='lbfgs',
                               multi_class='multinomial',
                               n_jobs=8)

    model.fit(x_train, y_train)

    pred = model.predict(x_test)
    print("ALL!")
    evaluator = Evaluator("test_all", [0, 1],
                          main_label_name=cfg.POSITIVE_LABEL,
                          label2id=dataset.tag_idx,
                          conll_eval=True)
    evaluator.append_data(0, pred, w_test, y_test)
    evaluator.classification_report()
    print("ONLY ENTITIES!")
    evaluator = Evaluator("test_ents_only", [0, 1],
                          skip_label=['B-Action', 'I-Action'],
                          main_label_name=cfg.POSITIVE_LABEL,
                          label2id=dataset.tag_idx,
                          conll_eval=True)
    evaluator.append_data(0, pred, w_test, y_test)
    evaluator.classification_report()