Exemplo n.º 1
0
Arquivo: train.py Projeto: chicm/salt
def generate_preds_softmax(outputs, target_size, threshold=0.5):
    preds = []

    for output in outputs:
        cropped = crop_image_softmax(output, target_size=target_size)
        pred = binarize(cropped, threshold)
        preds.append(pred)

    return preds
Exemplo n.º 2
0
def generate_preds(outputs, target_size):
    preds = []

    for output in outputs:
        cropped = crop_image(output, target_size=target_size)
        pred = binarize(cropped, 0.5)
        preds.append(pred)

    return preds
Exemplo n.º 3
0
Arquivo: train.py Projeto: chicm/rsna
def generate_preds(args, outputs, cls_preds, target_size, threshold=0.5):
    preds = []

    for i, output in enumerate(outputs):
        resized_img = resize_image(output, target_size=target_size)
        pred = binarize(resized_img, threshold)
        if args.train_cls:
            pred = pred * cls_preds[i]
        preds.append(pred)

    return preds
Exemplo n.º 4
0
def generate_preds(args, outputs, target_size, threshold=0.5):
    preds = []

    for output in outputs:
        if args.pad_mode == 'resize':
            cropped = resize_image(output, target_size=target_size)
        else:
            cropped = crop_image(output, target_size=target_size)
        pred = binarize(cropped, threshold)
        preds.append(pred)

    return preds
Exemplo n.º 5
0
def generate_preds(outputs, target_size, pad_mode, threshold=0.5):
    preds = []

    for output in outputs:
        #print(output.shape)
        if pad_mode == 'resize':
            cropped = resize_image(output, target_size=target_size)
        else:
            cropped = crop_image_softmax(output, target_size=target_size)
        pred = binarize(cropped, threshold)
        preds.append(pred)

    return preds
def predict(seed: int, porosity_request: float):

    noise = generate_noise(seed, z_dim)
    porosity_request = porosity_format(porosity_request)
    global graph
    global session

    try:
        with session.as_default():
            with graph.as_default():
                image = generator.predict([noise, porosity_request])
    except BaseException as e:
        print(e.args)

    image = postprocessing.binarize(image[0, :, :, :, 0]).astype(np.uint8)

    image = (image * 255).astype(np.uint8)

    return image