def plot_header(fname, ff, iod_line): # ppgplot arrays heat_l = np.array([0.0, 0.2, 0.4, 0.6, 1.0]) heat_r = np.array([0.0, 0.5, 1.0, 1.0, 1.0]) heat_g = np.array([0.0, 0.0, 0.5, 1.0, 1.0]) heat_b = np.array([0.0, 0.0, 0.0, 0.3, 1.0]) # Plot ppg.pgopen(fname) ppg.pgpap(0.0, 1.0) ppg.pgsvp(0.1, 0.95, 0.1, 0.8) ppg.pgsch(0.8) ppg.pgmtxt("T", 6.0, 0.0, 0.0, "UT Date: %.23s COSPAR ID: %04d" % (ff.nfd, ff.site_id)) if is_calibrated(ff): ppg.pgsci(1) else: ppg.pgsci(2) ppg.pgmtxt( "T", 4.8, 0.0, 0.0, "R.A.: %10.5f (%4.1f'') Decl.: %10.5f (%4.1f'')" % (ff.crval[0], 3600.0 * ff.crres[0], ff.crval[1], 3600.0 * ff.crres[1])) ppg.pgsci(1) ppg.pgmtxt("T", 3.6, 0.0, 0.0, ("FoV: %.2f\\(2218)x%.2f\\(2218) " "Scale: %.2f''x%.2f'' pix\\u-1\\d") % (ff.wx, ff.wy, 3600.0 * ff.sx, 3600.0 * ff.sy)) ppg.pgmtxt( "T", 2.4, 0.0, 0.0, "Stat: %5.1f+-%.1f (%.1f-%.1f)" % (np.mean(ff.zmax), np.std(ff.zmax), ff.zmaxmin, ff.zmaxmax)) ppg.pgmtxt("T", 0.3, 0.0, 0.0, iod_line) ppg.pgsch(1.0) ppg.pgwnad(0.0, ff.nx, 0.0, ff.ny) ppg.pglab("x (pix)", "y (pix)", " ") ppg.pgctab(heat_l, heat_r, heat_g, heat_b, 5, 1.0, 0.5)
def plot2d(z, x=None, y=None, title=None, rangex=None, rangey=None, \ rangez=None, labx='', laby='', rangex2=None, rangey2=None, \ labx2='', laby2='', image=ppgplot_palette_, contours=None, \ logx=0, logy=0, logx2=0, logy2=0, \ line=ppgplot_linestyle_, width=ppgplot_linewidth_, \ color=ppgplot_color_, labels=ppgplot_labels_, \ labelint=ppgplot_labelint_, labelmin=ppgplot_labelmin_, \ font=ppgplot_font_, id=0, noscale=0, aspect=1, \ fontsize=ppgplot_font_size_, ticks='out', panels=[1,1], \ device=ppgplot_device_): """ plot2d(z, ...) An interface to make various 2D plots using PGPLOT. 'z' is the 2D Numpy array to be plotted. The optional entries are: x: x values (default = 0, 1, ...) y: y values (default = 0, 1, ...) title: graph title (default = None) rangex: range for the x-axis (default = automatic) rangey: range for the y-axis (default = automatic) rangez: range for the z-axis (default = automatic) labx: label for the x-axis (default = None) laby: label for the y-axis (default = None) rangex2: range for 2nd x-axis (default = None) rangey2: range for 2nd y-axis (default = None) labx2: label for the 2nd x-axis (default = None) laby2: label for the 2nd y-axis (default = None) logx: make the 1st x-axis log (default = 0 (no)) logy: make the 1st y-axis log (default = 0 (no)) logx2: make the 2nd x-axis log (default = 0 (no)) logy2: make the 2nd y-axis log (default = 0 (no)) image: color palette for image (default = 'rainbow') contours: list of contour values (default = None) line: contour line style (default = 1 (solid)) width: contour line width (default = 1 (thin)) color: contour line color (default = 'white') labels: color of contour labels (default = None) labelint: contour label spacing (default = 20) labelmin: min contour label spacing (default = 20) font: PGPLOT font to use (default = 1 (normal)) fontsize: PGPLOT font size to use (default = 1.0 (normal)) id: show ID line on plot (default = 0 (no)) noscale: turn off auto scaling (default = 0 (no)) aspect: Aspect ratio (default = 1 (square)) ticks: Ticks point in or out (default = 'out') panels: Number of subpanels [r,c] (default = [1,1]) device: PGPLOT device to use (default = '/XWIN') Note: Many default values are defined in global variables with names like ppgplot_font_ or ppgplot_device_. """ # Make sure the input data is a 2D array z = Num.asarray(z); if not len(z.shape)==2: print 'Input data array must be 2 dimensional.' return # Announce the global variables we will be using global ppgplot_dev_open_, ppgplot_dev_prep_, pgpalette # Define the X and Y axis limits if needed if x is None: x=Num.arange(z.shape[1], dtype='f') else: x = Num.asarray(x) if y is None: y=Num.arange(z.shape[0], dtype='f') else: y = Num.asarray(y) # Determine the scaling to use for the axes if rangex is None: rangex=[Num.minimum.reduce(x), \ Num.maximum.reduce(x)] if rangey is None: rangey=[Num.minimum.reduce(y), \ Num.maximum.reduce(y)] if rangez is None: rangez=[Num.minimum.reduce(Num.ravel(z)), \ Num.maximum.reduce(Num.ravel(z))] # Prep the plotting device... if (not ppgplot_dev_prep_): prepplot(rangex, rangey, title, labx, laby, \ rangex2, rangey2, labx2, laby2, logx, logy, \ logx2, logy2, font, fontsize, id, aspect, \ ticks, panels, device=device) if image is not None: # Set the color indices and the color table lo_col_ind, hi_col_ind = ppgplot.pgqcol() lo_col_ind = lo_col_ind + 2 ppgplot.pgscir(lo_col_ind, hi_col_ind) pgpalette.setpalette(image) ppgplot.pgctab(pgpalette.l,pgpalette.r,pgpalette.g,pgpalette.b) # Construct the image ppgplot.pgimag_s(z, 0.0, 0.0, rangex[0], rangey[0], \ rangex[1], rangey[1]) reset_colors() if contours is not None: contours = Num.asarray(contours) # Choose the line style ppgplot.pgsls(line) # Choose the line width ppgplot.pgslw(width) # Choose the line color for the contourlines if type(color) == types.StringType: ppgplot.pgsci(ppgplot_colors_[color]) else: ppgplot.pgsci(color) # Construct the contours ppgplot.pgcont_s(z, len(contours), contours, rangex[0], \ rangey[0], rangex[1], rangey[1]) # Label the contours if requested if labels is not None: # Choose the line color for the contourlines if type(labels) == types.StringType: ppgplot.pgsci(ppgplot_colors_[labels]) else: ppgplot.pgsci(labels) for i in range(len(contours)): ppgplot.pgconl_s(z, contours[i], str(contours[i]), labelint, labelmin)
def plot2d(z, x=None, y=None, title=None, rangex=None, rangey=None, \ rangez=None, labx='', laby='', rangex2=None, rangey2=None, \ labx2='', laby2='', image=ppgplot_palette_, contours=None, \ logx=0, logy=0, logx2=0, logy2=0, \ line=ppgplot_linestyle_, width=ppgplot_linewidth_, \ color=ppgplot_color_, labels=ppgplot_labels_, \ labelint=ppgplot_labelint_, labelmin=ppgplot_labelmin_, \ font=ppgplot_font_, id=0, noscale=0, aspect=1, \ fontsize=ppgplot_font_size_, ticks='out', panels=[1,1], \ device=ppgplot_device_): """ plot2d(z, ...) An interface to make various 2D plots using PGPLOT. 'z' is the 2D Numpy array to be plotted. The optional entries are: x: x values (default = 0, 1, ...) y: y values (default = 0, 1, ...) title: graph title (default = None) rangex: range for the x-axis (default = automatic) rangey: range for the y-axis (default = automatic) rangez: range for the z-axis (default = automatic) labx: label for the x-axis (default = None) laby: label for the y-axis (default = None) rangex2: range for 2nd x-axis (default = None) rangey2: range for 2nd y-axis (default = None) labx2: label for the 2nd x-axis (default = None) laby2: label for the 2nd y-axis (default = None) logx: make the 1st x-axis log (default = 0 (no)) logy: make the 1st y-axis log (default = 0 (no)) logx2: make the 2nd x-axis log (default = 0 (no)) logy2: make the 2nd y-axis log (default = 0 (no)) image: color palette for image (default = 'rainbow') contours: list of contour values (default = None) line: contour line style (default = 1 (solid)) width: contour line width (default = 1 (thin)) color: contour line color (default = 'white') labels: color of contour labels (default = None) labelint: contour label spacing (default = 20) labelmin: min contour label spacing (default = 20) font: PGPLOT font to use (default = 1 (normal)) fontsize: PGPLOT font size to use (default = 1.0 (normal)) id: show ID line on plot (default = 0 (no)) noscale: turn off auto scaling (default = 0 (no)) aspect: Aspect ratio (default = 1 (square)) ticks: Ticks point in or out (default = 'out') panels: Number of subpanels [r,c] (default = [1,1]) device: PGPLOT device to use (default = '/XWIN') Note: Many default values are defined in global variables with names like ppgplot_font_ or ppgplot_device_. """ # Make sure the input data is a 2D array z = Num.asarray(z) if not len(z.shape) == 2: print 'Input data array must be 2 dimensional.' return # Announce the global variables we will be using global ppgplot_dev_open_, ppgplot_dev_prep_, pgpalette # Define the X and Y axis limits if needed if x is None: x = Num.arange(z.shape[1], dtype='f') else: x = Num.asarray(x) if y is None: y = Num.arange(z.shape[0], dtype='f') else: y = Num.asarray(y) # Determine the scaling to use for the axes if rangex is None: dx = x[-1] - x[-2] rangex = [x[0], x[-1] + dx] if rangey is None: dy = y[-1] - y[-2] rangey = [y[0], y[-1] + dy] if rangez is None: rangez=[Num.minimum.reduce(Num.ravel(z)), \ Num.maximum.reduce(Num.ravel(z))] # Prep the plotting device... if (not ppgplot_dev_prep_): prepplot(rangex, rangey, title, labx, laby, \ rangex2, rangey2, labx2, laby2, logx, logy, \ logx2, logy2, font, fontsize, id, aspect, \ ticks, panels, device=device) if image is not None: # Set the color indices and the color table lo_col_ind, hi_col_ind = ppgplot.pgqcol() lo_col_ind = lo_col_ind + 2 ppgplot.pgscir(lo_col_ind, hi_col_ind) pgpalette.setpalette(image) ppgplot.pgctab(pgpalette.l, pgpalette.r, pgpalette.g, pgpalette.b) # Construct the image ppgplot.pgimag_s(z, 0.0, 0.0, rangex[0], rangey[0], \ rangex[1], rangey[1]) reset_colors() if contours is not None: contours = Num.asarray(contours) # Choose the line style ppgplot.pgsls(line) # Choose the line width ppgplot.pgslw(width) # Choose the line color for the contourlines if type(color) == types.StringType: ppgplot.pgsci(ppgplot_colors_[color]) else: ppgplot.pgsci(color) # Construct the contours ppgplot.pgcont_s(z, len(contours), contours, rangex[0], \ rangey[0], rangex[1], rangey[1]) # Label the contours if requested if labels is not None: # Choose the line color for the contourlines if type(labels) == types.StringType: ppgplot.pgsci(ppgplot_colors_[labels]) else: ppgplot.pgsci(labels) for i in range(len(contours)): ppgplot.pgconl_s(z, contours[i], str(contours[i]), labelint, labelmin)
ppgplot.pgsvp(margin + imfract, 1.0 - margin / 2, margin, margin + imfract) ppgplot.pgswin(-0.1, 1.1, min(zs), max(zs)) ppgplot.pgbox("BCNST", 0.0, 0, "BCST", 0.0, 0) ppgplot.pgline(fdotcut, zs) ppgplot.pgmtxt("B", 2.4, 0.5, 0.5, "Relative Power") # f-fdot image ppgplot.pgsvp(margin, margin + imfract, margin, margin + imfract) ppgplot.pgswin(min(rs), max(rs), min(zs), max(zs)) ppgplot.pgmtxt("B", 2.4, 0.5, 0.5, labx) ppgplot.pgmtxt("L", 2.0, 0.5, 0.5, laby) lo_col_ind, hi_col_ind = ppgplot.pgqcol() lo_col_ind = lo_col_ind + 2 ppgplot.pgscir(lo_col_ind, hi_col_ind) pgpalette.setpalette(image) ppgplot.pgctab(pgpalette.l, pgpalette.r, pgpalette.g, pgpalette.b) ppgplot.pgimag_s(pffdot, 0.0, 0.0, rgx[0], rgy[0], rgx[1], rgy[1]) ppgplot.pgsci(1) ppgplot.pgcont_s(pffdot, len(contours), contours, rgx[0], rgy[0], rgx[1], rgy[1]) ppgplot.pgbox("BCST", 0.0, 0, "BCST", 0.0, 0) ppgplot.pgsci(1) ppgplot.pgbox("N", 0.0, 0, "N", 0.0, 0) # gray axes ppgplot.pgscr(1, 0.5, 0.5, 0.5) ppgplot.pgsci(1) ppgplot.pgslw(2) ppgplot.pgline(rgx, num.asarray([0.0, 0.0])) ppgplot.pgline(num.asarray([0.0, 0.0]), rgy)
ppgplot.pgsvp(margin+imfract, 1.0-margin/2, margin, margin+imfract) ppgplot.pgswin(-0.1, 1.1, min(zs), max(zs)) ppgplot.pgbox("BCNST", 0.0, 0, "BCST", 0.0, 0) ppgplot.pgline(fdotcut, zs) ppgplot.pgmtxt("B", 2.4, 0.5, 0.5, "Relative Power"); # f-fdot image ppgplot.pgsvp(margin, margin+imfract, margin, margin+imfract) ppgplot.pgswin(min(rs), max(rs), min(zs), max(zs)) ppgplot.pgmtxt("B", 2.4, 0.5, 0.5, labx); ppgplot.pgmtxt("L", 2.0, 0.5, 0.5, laby); lo_col_ind, hi_col_ind = ppgplot.pgqcol() lo_col_ind = lo_col_ind + 2 ppgplot.pgscir(lo_col_ind, hi_col_ind) pgpalette.setpalette(image) ppgplot.pgctab(pgpalette.l, pgpalette.r, pgpalette.g, pgpalette.b) ppgplot.pgimag_s(pffdot, 0.0, 0.0, rgx[0], rgy[0], rgx[1], rgy[1]) ppgplot.pgsci(1) ppgplot.pgcont_s(pffdot, len(contours), contours, rgx[0], rgy[0], rgx[1], rgy[1]) ppgplot.pgbox("BCST", 0.0, 0, "BCST", 0.0, 0) ppgplot.pgsci(1) ppgplot.pgbox("N", 0.0, 0, "N", 0.0, 0) # gray axes ppgplot.pgscr(1, 0.5, 0.5, 0.5) ppgplot.pgsci(1) ppgplot.pgslw(2) ppgplot.pgline(rgx, num.asarray([0.0, 0.0])) ppgplot.pgline(num.asarray([0.0, 0.0]), rgy) ppgplot.pgclos()
def extract_tracks(fname, trkrmin, drdtmin, trksig, ntrkmin): # Read four frame ff = fourframe(fname) # Skip saturated frames if np.sum(ff.zavg > 240.0) / float(ff.nx * ff.ny) > 0.95: return # Read satelite IDs try: f = open(fname + ".id") except OSError: print("Cannot open", fname + ".id") else: lines = f.readlines() f.close() # ppgplot arrays tr = np.array([-0.5, 1.0, 0.0, -0.5, 0.0, 1.0]) heat_l = np.array([0.0, 0.2, 0.4, 0.6, 1.0]) heat_r = np.array([0.0, 0.5, 1.0, 1.0, 1.0]) heat_g = np.array([0.0, 0.0, 0.5, 1.0, 1.0]) heat_b = np.array([0.0, 0.0, 0.0, 0.3, 1.0]) # Loop over identifications for line in lines: # Decode id = satid(line) # Skip slow moving objects drdt = np.sqrt(id.dxdt**2 + id.dydt**2) if drdt < drdtmin: continue # Extract significant pixels x, y, t, sig = ff.significant(trksig, id.x0, id.y0, id.dxdt, id.dydt, trkrmin) # Fit tracks if len(t) > ntrkmin: # Get times tmin = np.min(t) tmax = np.max(t) tmid = 0.5 * (tmax + tmin) mjd = ff.mjd + tmid / 86400.0 # Skip if no variance in time if np.std(t - tmid) == 0.0: continue # Very simple polynomial fit; no weighting, no cleaning px = np.polyfit(t - tmid, x, 1) py = np.polyfit(t - tmid, y, 1) # Extract results x0, y0 = px[1], py[1] dxdt, dydt = px[0], py[0] xmin = x0 + dxdt * (tmin - tmid) ymin = y0 + dydt * (tmin - tmid) xmax = x0 + dxdt * (tmax - tmid) ymax = y0 + dydt * (tmax - tmid) cospar = get_cospar(id.norad) obs = observation(ff, mjd, x0, y0) iod_line = "%s" % format_iod_line(id.norad, cospar, ff.site_id, obs.nfd, obs.ra, obs.de) print(iod_line) if id.catalog.find("classfd.tle") > 0: outfname = "classfd.dat" elif id.catalog.find("inttles.tle") > 0: outfname = "inttles.dat" else: outfname = "catalog.dat" f = open(outfname, "a") f.write("%s\n" % iod_line) f.close() # Plot ppgplot.pgopen( fname.replace(".fits", "") + "_%05d.png/png" % id.norad) #ppgplot.pgopen("/xs") ppgplot.pgpap(0.0, 1.0) ppgplot.pgsvp(0.1, 0.95, 0.1, 0.8) ppgplot.pgsch(0.8) ppgplot.pgmtxt( "T", 6.0, 0.0, 0.0, "UT Date: %.23s COSPAR ID: %04d" % (ff.nfd, ff.site_id)) if (3600.0 * ff.crres[0] < 1e-3 ) | (3600.0 * ff.crres[1] < 1e-3) | ( ff.crres[0] / ff.sx > 2.0) | (ff.crres[1] / ff.sy > 2.0): ppgplot.pgsci(2) else: ppgplot.pgsci(1) ppgplot.pgmtxt( "T", 4.8, 0.0, 0.0, "R.A.: %10.5f (%4.1f'') Decl.: %10.5f (%4.1f'')" % (ff.crval[0], 3600.0 * ff.crres[0], ff.crval[1], 3600.0 * ff.crres[1])) ppgplot.pgsci(1) ppgplot.pgmtxt( "T", 3.6, 0.0, 0.0, "FoV: %.2f\\(2218)x%.2f\\(2218) Scale: %.2f''x%.2f'' pix\\u-1\\d" % (ff.wx, ff.wy, 3600.0 * ff.sx, 3600.0 * ff.sy)) ppgplot.pgmtxt( "T", 2.4, 0.0, 0.0, "Stat: %5.1f+-%.1f (%.1f-%.1f)" % (np.mean(ff.zmax), np.std(ff.zmax), ff.vmin, ff.vmax)) ppgplot.pgmtxt("T", 0.3, 0.0, 0.0, iod_line) ppgplot.pgsch(1.0) ppgplot.pgwnad(0.0, ff.nx, 0.0, ff.ny) ppgplot.pglab("x (pix)", "y (pix)", " ") ppgplot.pgctab(heat_l, heat_r, heat_g, heat_b, 5, 1.0, 0.5) ppgplot.pgimag(ff.zmax, ff.nx, ff.ny, 0, ff.nx - 1, 0, ff.ny - 1, ff.vmax, ff.vmin, tr) ppgplot.pgbox("BCTSNI", 0., 0, "BCTSNI", 0., 0) ppgplot.pgstbg(1) ppgplot.pgsci(0) if id.catalog.find("classfd.tle") > 0: ppgplot.pgsci(4) elif id.catalog.find("inttles.tle") > 0: ppgplot.pgsci(3) ppgplot.pgpt(np.array([x0]), np.array([y0]), 4) ppgplot.pgmove(xmin, ymin) ppgplot.pgdraw(xmax, ymax) ppgplot.pgsch(0.65) ppgplot.pgtext(np.array([x0]), np.array([y0]), " %05d" % id.norad) ppgplot.pgsch(1.0) ppgplot.pgsci(1) ppgplot.pgend() elif id.catalog.find("classfd.tle") > 0: # Track and stack t = np.linspace(0.0, ff.texp) x, y = id.x0 + id.dxdt * t, id.y0 + id.dydt * t c = (x > 0) & (x < ff.nx) & (y > 0) & (y < ff.ny) # Skip if no points selected if np.sum(c) == 0: continue # Compute track tmid = np.mean(t[c]) mjd = ff.mjd + tmid / 86400.0 xmid = id.x0 + id.dxdt * tmid ymid = id.y0 + id.dydt * tmid ztrk = ndimage.gaussian_filter(ff.track(id.dxdt, id.dydt, tmid), 1.0) vmin = np.mean(ztrk) - 2.0 * np.std(ztrk) vmax = np.mean(ztrk) + 6.0 * np.std(ztrk) # Select region xmin = int(xmid - 100) xmax = int(xmid + 100) ymin = int(ymid - 100) ymax = int(ymid + 100) if xmin < 0: xmin = 0 if ymin < 0: ymin = 0 if xmax > ff.nx: xmax = ff.nx - 1 if ymax > ff.ny: ymax = ff.ny - 1 # Find peak x0, y0, w, sigma = peakfind(ztrk[ymin:ymax, xmin:xmax]) x0 += xmin y0 += ymin # Skip if peak is not significant if sigma < trksig: continue # Skip if point is outside selection area if inside_selection(id, xmid, ymid, x0, y0) == False: continue # Format IOD line cospar = get_cospar(id.norad) obs = observation(ff, mjd, x0, y0) iod_line = "%s" % format_iod_line(id.norad, cospar, ff.site_id, obs.nfd, obs.ra, obs.de) print(iod_line) if id.catalog.find("classfd.tle") > 0: outfname = "classfd.dat" elif id.catalog.find("inttles.tle") > 0: outfname = "inttles.dat" else: outfname = "catalog.dat" f = open(outfname, "a") f.write("%s\n" % iod_line) f.close() # Plot ppgplot.pgopen( fname.replace(".fits", "") + "_%05d.png/png" % id.norad) ppgplot.pgpap(0.0, 1.0) ppgplot.pgsvp(0.1, 0.95, 0.1, 0.8) ppgplot.pgsch(0.8) ppgplot.pgmtxt( "T", 6.0, 0.0, 0.0, "UT Date: %.23s COSPAR ID: %04d" % (ff.nfd, ff.site_id)) ppgplot.pgmtxt( "T", 4.8, 0.0, 0.0, "R.A.: %10.5f (%4.1f'') Decl.: %10.5f (%4.1f'')" % (ff.crval[0], 3600.0 * ff.crres[0], ff.crval[1], 3600.0 * ff.crres[1])) ppgplot.pgmtxt( "T", 3.6, 0.0, 0.0, "FoV: %.2f\\(2218)x%.2f\\(2218) Scale: %.2f''x%.2f'' pix\\u-1\\d" % (ff.wx, ff.wy, 3600.0 * ff.sx, 3600.0 * ff.sy)) ppgplot.pgmtxt( "T", 2.4, 0.0, 0.0, "Stat: %5.1f+-%.1f (%.1f-%.1f)" % (np.mean(ff.zmax), np.std(ff.zmax), ff.vmin, ff.vmax)) ppgplot.pgmtxt("T", 0.3, 0.0, 0.0, iod_line) ppgplot.pgsch(1.0) ppgplot.pgwnad(0.0, ff.nx, 0.0, ff.ny) ppgplot.pglab("x (pix)", "y (pix)", " ") ppgplot.pgctab(heat_l, heat_r, heat_g, heat_b, 5, 1.0, 0.5) ppgplot.pgimag(ztrk, ff.nx, ff.ny, 0, ff.nx - 1, 0, ff.ny - 1, vmax, vmin, tr) ppgplot.pgbox("BCTSNI", 0., 0, "BCTSNI", 0., 0) ppgplot.pgstbg(1) plot_selection(id, xmid, ymid) ppgplot.pgsci(0) if id.catalog.find("classfd.tle") > 0: ppgplot.pgsci(4) elif id.catalog.find("inttles.tle") > 0: ppgplot.pgsci(3) ppgplot.pgpt(np.array([id.x0]), np.array([id.y0]), 17) ppgplot.pgmove(id.x0, id.y0) ppgplot.pgdraw(id.x1, id.y1) ppgplot.pgpt(np.array([x0]), np.array([y0]), 4) ppgplot.pgsch(0.65) ppgplot.pgtext(np.array([id.x0]), np.array([id.y0]), " %05d" % id.norad) ppgplot.pgsch(1.0) ppgplot.pgsci(1) ppgplot.pgend()