Exemplo n.º 1
0
def main():
    config = load_config(FLAGS.config)
    merge_config(FLAGS.opt)
    char_ops = CharacterOps(config['Global'])
    config['Global']['char_num'] = char_ops.get_char_num()

    # check if set use_gpu=True in paddlepaddle cpu version
    use_gpu = config['Global']['use_gpu']
    check_gpu(use_gpu)

    place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace()
    exe = fluid.Executor(place)

    rec_model = create_module(
        config['Architecture']['function'])(params=config)

    startup_prog = fluid.Program()
    eval_prog = fluid.Program()
    with fluid.program_guard(eval_prog, startup_prog):
        with fluid.unique_name.guard():
            eval_outputs = rec_model(mode="test")
            eval_fetch_list = [v.name for v in eval_outputs]
    eval_prog = eval_prog.clone(for_test=True)
    exe.run(startup_prog)

    pretrain_weights = config['Global']['pretrain_weights']
    if pretrain_weights is not None:
        fluid.load(eval_prog, pretrain_weights)

    test_img_path = config['test_img_path']
    image_shape = config['Global']['image_shape']
    blobs = test_reader(image_shape, test_img_path)
    predict = exe.run(program=eval_prog,
                      feed={"image": blobs},
                      fetch_list=eval_fetch_list,
                      return_numpy=False)
    preds = np.array(predict[0])
    if preds.shape[1] == 1:
        preds = preds.reshape(-1)
        preds_lod = predict[0].lod()[0]
        preds_text = char_ops.decode(preds)
    else:
        end_pos = np.where(preds[0, :] == 1)[0]
        if len(end_pos) <= 1:
            preds_text = preds[0, 1:]
        else:
            preds_text = preds[0, 1:end_pos[1]]
        preds_text = preds_text.reshape(-1)
        preds_text = char_ops.decode(preds_text)

    fluid.io.save_inference_model("./output/",
                                  feeded_var_names=['image'],
                                  target_vars=eval_outputs,
                                  executor=exe,
                                  main_program=eval_prog,
                                  model_filename="model",
                                  params_filename="params")
    print(preds)
    print(preds_text)
Exemplo n.º 2
0
def test_reader():
    config = load_config(FLAGS.config)
    merge_config(FLAGS.opt)
    char_ops = CharacterOps(config['Global'])
    config['Global']['char_num'] = char_ops.get_char_num()
    print(config)
    #     tmp_reader = reader.train_eval_reader(
    #         config=cfg, char_ops=char_ops, mode="train")
    tmp_reader = reader.train_eval_reader(config=config,
                                          char_ops=char_ops,
                                          mode="eval")
    count = 0
    print_count = 0
    import time
    starttime = time.time()
    for data in tmp_reader():
        count += len(data)
        print_count += 1
        if print_count % 10 == 0:
            batch_time = (time.time() - starttime) / print_count
            print("reader:", count, len(data), batch_time)
    print("finish reader:", count)
    print("success")
Exemplo n.º 3
0
class TextRecognizer(object):
    def __init__(self, args):
        if args.use_pdserving is False:
            self.predictor, self.input_tensor, self.output_tensors =\
                utility.create_predictor(args, mode="rec")
            self.use_zero_copy_run = args.use_zero_copy_run
        self.rec_image_shape = [
            int(v) for v in args.rec_image_shape.split(",")
        ]
        self.character_type = args.rec_char_type
        self.rec_batch_num = args.rec_batch_num
        self.rec_algorithm = args.rec_algorithm
        self.text_len = args.max_text_length
        char_ops_params = {
            "character_type": args.rec_char_type,
            "character_dict_path": args.rec_char_dict_path,
            "use_space_char": args.use_space_char,
            "max_text_length": args.max_text_length
        }
        if self.rec_algorithm in ["CRNN", "Rosetta", "STAR-Net"]:
            char_ops_params['loss_type'] = 'ctc'
            self.loss_type = 'ctc'
        elif self.rec_algorithm == "RARE":
            char_ops_params['loss_type'] = 'attention'
            self.loss_type = 'attention'
        elif self.rec_algorithm == "SRN":
            char_ops_params['loss_type'] = 'srn'
            self.loss_type = 'srn'
        self.char_ops = CharacterOps(char_ops_params)

    def resize_norm_img(self, img, max_wh_ratio):
        imgC, imgH, imgW = self.rec_image_shape
        assert imgC == img.shape[2]
        wh_ratio = max(max_wh_ratio, imgW * 1.0 / imgH)
        if self.character_type == "ch":
            imgW = int((32 * wh_ratio))
        h, w = img.shape[:2]
        ratio = w / float(h)
        if math.ceil(imgH * ratio) > imgW:
            resized_w = imgW
        else:
            resized_w = int(math.ceil(imgH * ratio))
        resized_image = cv2.resize(img, (resized_w, imgH))
        resized_image = resized_image.astype('float32')
        resized_image = resized_image.transpose((2, 0, 1)) / 255
        resized_image -= 0.5
        resized_image /= 0.5
        padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
        padding_im[:, :, 0:resized_w] = resized_image
        return padding_im

    def resize_norm_img_srn(self, img, image_shape):
        imgC, imgH, imgW = image_shape

        img_black = np.zeros((imgH, imgW))
        im_hei = img.shape[0]
        im_wid = img.shape[1]

        if im_wid <= im_hei * 1:
            img_new = cv2.resize(img, (imgH * 1, imgH))
        elif im_wid <= im_hei * 2:
            img_new = cv2.resize(img, (imgH * 2, imgH))
        elif im_wid <= im_hei * 3:
            img_new = cv2.resize(img, (imgH * 3, imgH))
        else:
            img_new = cv2.resize(img, (imgW, imgH))

        img_np = np.asarray(img_new)
        img_np = cv2.cvtColor(img_np, cv2.COLOR_BGR2GRAY)
        img_black[:, 0:img_np.shape[1]] = img_np
        img_black = img_black[:, :, np.newaxis]

        row, col, c = img_black.shape
        c = 1

        return np.reshape(img_black, (c, row, col)).astype(np.float32)

    def srn_other_inputs(self, image_shape, num_heads, max_text_length,
                         char_num):

        imgC, imgH, imgW = image_shape
        feature_dim = int((imgH / 8) * (imgW / 8))

        encoder_word_pos = np.array(range(0, feature_dim)).reshape(
            (feature_dim, 1)).astype('int64')
        gsrm_word_pos = np.array(range(0, max_text_length)).reshape(
            (max_text_length, 1)).astype('int64')

        gsrm_attn_bias_data = np.ones((1, max_text_length, max_text_length))
        gsrm_slf_attn_bias1 = np.triu(gsrm_attn_bias_data, 1).reshape(
            [-1, 1, max_text_length, max_text_length])
        gsrm_slf_attn_bias1 = np.tile(
            gsrm_slf_attn_bias1,
            [1, num_heads, 1, 1]).astype('float32') * [-1e9]

        gsrm_slf_attn_bias2 = np.tril(gsrm_attn_bias_data, -1).reshape(
            [-1, 1, max_text_length, max_text_length])
        gsrm_slf_attn_bias2 = np.tile(
            gsrm_slf_attn_bias2,
            [1, num_heads, 1, 1]).astype('float32') * [-1e9]

        encoder_word_pos = encoder_word_pos[np.newaxis, :]
        gsrm_word_pos = gsrm_word_pos[np.newaxis, :]

        return [
            encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1,
            gsrm_slf_attn_bias2
        ]

    def process_image_srn(self,
                          img,
                          image_shape,
                          num_heads,
                          max_text_length,
                          char_ops=None):
        norm_img = self.resize_norm_img_srn(img, image_shape)
        norm_img = norm_img[np.newaxis, :]
        char_num = char_ops.get_char_num()

        [encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1, gsrm_slf_attn_bias2] = \
            self.srn_other_inputs(image_shape, num_heads, max_text_length, char_num)

        gsrm_slf_attn_bias1 = gsrm_slf_attn_bias1.astype(np.float32)
        gsrm_slf_attn_bias2 = gsrm_slf_attn_bias2.astype(np.float32)

        return (norm_img, encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1,
                gsrm_slf_attn_bias2)

    def __call__(self, img_list):
        img_num = len(img_list)
        # Calculate the aspect ratio of all text bars
        width_list = []
        for img in img_list:
            width_list.append(img.shape[1] / float(img.shape[0]))
        # Sorting can speed up the recognition process
        indices = np.argsort(np.array(width_list))

        #rec_res = []
        rec_res = [['', 0.0]] * img_num
        batch_num = self.rec_batch_num
        predict_time = 0
        for beg_img_no in range(0, img_num, batch_num):
            end_img_no = min(img_num, beg_img_no + batch_num)
            norm_img_batch = []
            max_wh_ratio = 0
            for ino in range(beg_img_no, end_img_no):
                # h, w = img_list[ino].shape[0:2]
                h, w = img_list[indices[ino]].shape[0:2]
                wh_ratio = w * 1.0 / h
                max_wh_ratio = max(max_wh_ratio, wh_ratio)
            for ino in range(beg_img_no, end_img_no):
                if self.loss_type != "srn":
                    norm_img = self.resize_norm_img(img_list[indices[ino]],
                                                    max_wh_ratio)
                    norm_img = norm_img[np.newaxis, :]
                    norm_img_batch.append(norm_img)
                else:
                    norm_img = self.process_image_srn(img_list[indices[ino]],
                                                      self.rec_image_shape, 8,
                                                      25, self.char_ops)
                    encoder_word_pos_list = []
                    gsrm_word_pos_list = []
                    gsrm_slf_attn_bias1_list = []
                    gsrm_slf_attn_bias2_list = []
                    encoder_word_pos_list.append(norm_img[1])
                    gsrm_word_pos_list.append(norm_img[2])
                    gsrm_slf_attn_bias1_list.append(norm_img[3])
                    gsrm_slf_attn_bias2_list.append(norm_img[4])
                    norm_img_batch.append(norm_img[0])

            norm_img_batch = np.concatenate(norm_img_batch, axis=0)
            norm_img_batch = norm_img_batch.copy()

            if self.loss_type == "srn":
                starttime = time.time()
                encoder_word_pos_list = np.concatenate(encoder_word_pos_list)
                gsrm_word_pos_list = np.concatenate(gsrm_word_pos_list)
                gsrm_slf_attn_bias1_list = np.concatenate(
                    gsrm_slf_attn_bias1_list)
                gsrm_slf_attn_bias2_list = np.concatenate(
                    gsrm_slf_attn_bias2_list)
                starttime = time.time()

                norm_img_batch = fluid.core.PaddleTensor(norm_img_batch)
                encoder_word_pos_list = fluid.core.PaddleTensor(
                    encoder_word_pos_list)
                gsrm_word_pos_list = fluid.core.PaddleTensor(
                    gsrm_word_pos_list)
                gsrm_slf_attn_bias1_list = fluid.core.PaddleTensor(
                    gsrm_slf_attn_bias1_list)
                gsrm_slf_attn_bias2_list = fluid.core.PaddleTensor(
                    gsrm_slf_attn_bias2_list)

                inputs = [
                    norm_img_batch, encoder_word_pos_list,
                    gsrm_slf_attn_bias1_list, gsrm_slf_attn_bias2_list,
                    gsrm_word_pos_list
                ]

                self.predictor.run(inputs)
            else:
                starttime = time.time()
                if self.use_zero_copy_run:
                    self.input_tensor.copy_from_cpu(norm_img_batch)
                    self.predictor.zero_copy_run()
                else:
                    norm_img_batch = fluid.core.PaddleTensor(norm_img_batch)
                    self.predictor.run([norm_img_batch])

            if self.loss_type == "ctc":
                rec_idx_batch = self.output_tensors[0].copy_to_cpu()
                rec_idx_lod = self.output_tensors[0].lod()[0]
                predict_batch = self.output_tensors[1].copy_to_cpu()
                predict_lod = self.output_tensors[1].lod()[0]
                elapse = time.time() - starttime
                predict_time += elapse
                for rno in range(len(rec_idx_lod) - 1):
                    beg = rec_idx_lod[rno]
                    end = rec_idx_lod[rno + 1]
                    rec_idx_tmp = rec_idx_batch[beg:end, 0]
                    preds_text = self.char_ops.decode(rec_idx_tmp)
                    beg = predict_lod[rno]
                    end = predict_lod[rno + 1]
                    probs = predict_batch[beg:end, :]
                    ind = np.argmax(probs, axis=1)
                    blank = probs.shape[1]
                    valid_ind = np.where(ind != (blank - 1))[0]
                    if len(valid_ind) == 0:
                        continue
                    score = np.mean(probs[valid_ind, ind[valid_ind]])
                    # rec_res.append([preds_text, score])
                    rec_res[indices[beg_img_no + rno]] = [preds_text, score]
            elif self.loss_type == 'srn':
                rec_idx_batch = self.output_tensors[0].copy_to_cpu()
                probs = self.output_tensors[1].copy_to_cpu()
                char_num = self.char_ops.get_char_num()
                preds = rec_idx_batch.reshape(-1)
                elapse = time.time() - starttime
                predict_time += elapse
                total_preds = preds.copy()
                for ino in range(int(len(rec_idx_batch) / self.text_len)):
                    preds = total_preds[ino * self.text_len:(ino + 1) *
                                        self.text_len]
                    ind = np.argmax(probs, axis=1)
                    valid_ind = np.where(preds != int(char_num - 1))[0]
                    if len(valid_ind) == 0:
                        continue
                    score = np.mean(probs[valid_ind, ind[valid_ind]])
                    preds = preds[:valid_ind[-1] + 1]
                    preds_text = self.char_ops.decode(preds)

                    rec_res[indices[beg_img_no + ino]] = [preds_text, score]
            else:
                rec_idx_batch = self.output_tensors[0].copy_to_cpu()
                predict_batch = self.output_tensors[1].copy_to_cpu()
                elapse = time.time() - starttime
                predict_time += elapse
                for rno in range(len(rec_idx_batch)):
                    end_pos = np.where(rec_idx_batch[rno, :] == 1)[0]
                    if len(end_pos) <= 1:
                        preds = rec_idx_batch[rno, 1:]
                        score = np.mean(predict_batch[rno, 1:])
                    else:
                        preds = rec_idx_batch[rno, 1:end_pos[1]]
                        score = np.mean(predict_batch[rno, 1:end_pos[1]])
                    preds_text = self.char_ops.decode(preds)
                    # rec_res.append([preds_text, score])
                    rec_res[indices[beg_img_no + rno]] = [preds_text, score]

        return rec_res, predict_time
Exemplo n.º 4
0
def main():
    config = program.load_config(FLAGS.config)
    program.merge_config(FLAGS.opt)
    logger.info(config)
    char_ops = CharacterOps(config['Global'])
    loss_type = config['Global']['loss_type']
    config['Global']['char_ops'] = char_ops

    # check if set use_gpu=True in paddlepaddle cpu version
    use_gpu = config['Global']['use_gpu']
    #     check_gpu(use_gpu)

    place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace()
    exe = fluid.Executor(place)

    rec_model = create_module(
        config['Architecture']['function'])(params=config)
    startup_prog = fluid.Program()
    eval_prog = fluid.Program()
    with fluid.program_guard(eval_prog, startup_prog):
        with fluid.unique_name.guard():
            _, outputs = rec_model(mode="test")
            fetch_name_list = list(outputs.keys())
            fetch_varname_list = [outputs[v].name for v in fetch_name_list]
    eval_prog = eval_prog.clone(for_test=True)
    exe.run(startup_prog)

    init_model(config, eval_prog, exe)

    blobs = reader_main(config, 'test')()
    infer_img = config['Global']['infer_img']
    infer_list = get_image_file_list(infer_img)
    max_img_num = len(infer_list)
    if len(infer_list) == 0:
        logger.info("Can not find img in infer_img dir.")
    for i in range(max_img_num):
        logger.info("infer_img:%s" % infer_list[i])
        img = next(blobs)
        if loss_type != "srn":
            predict = exe.run(program=eval_prog,
                              feed={"image": img},
                              fetch_list=fetch_varname_list,
                              return_numpy=False)
        else:
            encoder_word_pos_list = []
            gsrm_word_pos_list = []
            gsrm_slf_attn_bias1_list = []
            gsrm_slf_attn_bias2_list = []
            encoder_word_pos_list.append(img[1])
            gsrm_word_pos_list.append(img[2])
            gsrm_slf_attn_bias1_list.append(img[3])
            gsrm_slf_attn_bias2_list.append(img[4])

            encoder_word_pos_list = np.concatenate(encoder_word_pos_list,
                                                   axis=0).astype(np.int64)
            gsrm_word_pos_list = np.concatenate(gsrm_word_pos_list,
                                                axis=0).astype(np.int64)
            gsrm_slf_attn_bias1_list = np.concatenate(gsrm_slf_attn_bias1_list,
                                                      axis=0).astype(
                                                          np.float32)
            gsrm_slf_attn_bias2_list = np.concatenate(gsrm_slf_attn_bias2_list,
                                                      axis=0).astype(
                                                          np.float32)

            predict = exe.run(program=eval_prog, \
                       feed={'image': img[0], 'encoder_word_pos': encoder_word_pos_list,
                             'gsrm_word_pos': gsrm_word_pos_list, 'gsrm_slf_attn_bias1': gsrm_slf_attn_bias1_list,
                             'gsrm_slf_attn_bias2': gsrm_slf_attn_bias2_list}, \
                       fetch_list=fetch_varname_list, \
                       return_numpy=False)
        if loss_type == "ctc":
            preds = np.array(predict[0])
            preds = preds.reshape(-1)
            preds_lod = predict[0].lod()[0]
            preds_text = char_ops.decode(preds)
            probs = np.array(predict[1])
            ind = np.argmax(probs, axis=1)
            blank = probs.shape[1]
            valid_ind = np.where(ind != (blank - 1))[0]
            if len(valid_ind) == 0:
                continue
            score = np.mean(probs[valid_ind, ind[valid_ind]])
        elif loss_type == "attention":
            preds = np.array(predict[0])
            probs = np.array(predict[1])
            end_pos = np.where(preds[0, :] == 1)[0]
            if len(end_pos) <= 1:
                preds = preds[0, 1:]
                score = np.mean(probs[0, 1:])
            else:
                preds = preds[0, 1:end_pos[1]]
                score = np.mean(probs[0, 1:end_pos[1]])
            preds = preds.reshape(-1)
            preds_text = char_ops.decode(preds)
        elif loss_type == "srn":
            char_num = char_ops.get_char_num()
            preds = np.array(predict[0])
            preds = preds.reshape(-1)
            probs = np.array(predict[1])
            ind = np.argmax(probs, axis=1)
            valid_ind = np.where(preds != int(char_num - 1))[0]
            if len(valid_ind) == 0:
                continue
            score = np.mean(probs[valid_ind, ind[valid_ind]])
            preds = preds[:valid_ind[-1] + 1]
            preds_text = char_ops.decode(preds)
        logger.info("\t index: {}".format(preds))
        logger.info("\t word : {}".format(preds_text))
        logger.info("\t score: {}".format(score))

    # save for inference model
    target_var = []
    for key, values in outputs.items():
        target_var.append(values)

    fluid.io.save_inference_model("./output/",
                                  feeded_var_names=['image'],
                                  target_vars=target_var,
                                  executor=exe,
                                  main_program=eval_prog,
                                  model_filename="model",
                                  params_filename="params")
def main():
    config = load_config(FLAGS.config)
    merge_config(FLAGS.opt)
    char_ops = CharacterOps(config['Global'])
    config['Global']['char_num'] = char_ops.get_char_num()

    # check if set use_gpu=True in paddlepaddle cpu version
    use_gpu = config['Global']['use_gpu']
    check_gpu(use_gpu)

    if use_gpu:
        devices_num = fluid.core.get_cuda_device_count()
    else:
        devices_num = int(
            os.environ.get('CPU_NUM', multiprocessing.cpu_count()))

    place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace()
    exe = fluid.Executor(place)

    rec_model = create_module(
        config['Architecture']['function'])(params=config)

    startup_prog = fluid.Program()
    eval_prog = fluid.Program()
    with fluid.program_guard(eval_prog, startup_prog):
        with fluid.unique_name.guard():
            eval_loader, eval_outputs = rec_model(mode="eval")
            eval_fetch_list = [v.name for v in eval_outputs]
    eval_prog = eval_prog.clone(for_test=True)

    exe.run(startup_prog)
    pretrain_weights = config['Global']['pretrain_weights']
    if pretrain_weights is not None:
        fluid.load(eval_prog, pretrain_weights)

    eval_data_list = ['IIIT5k_3000', 'SVT', 'IC03_860', 'IC03_867',\
        'IC13_857', 'IC13_1015', 'IC15_1811', 'IC15_2077', 'SVTP', 'CUTE80']
    eval_data_dir = config['TestReader']['lmdb_sets_dir']
    total_forward_time = 0
    total_evaluation_data_number = 0
    total_correct_number = 0
    eval_data_acc_info = {}
    for eval_data in eval_data_list:
        config['TestReader']['lmdb_sets_dir'] = \
            eval_data_dir + "/" + eval_data
        eval_reader = reader.train_eval_reader(config=config,
                                               char_ops=char_ops,
                                               mode="test")
        eval_loader.set_sample_list_generator(eval_reader, places=place)

        start_time = time.time()
        outs = eval_run(exe, eval_prog, eval_loader, eval_fetch_list, char_ops,
                        "best", "test")
        infer_time = time.time() - start_time
        eval_acc, acc_num, sample_num = outs
        total_forward_time += infer_time
        total_evaluation_data_number += sample_num
        total_correct_number += acc_num
        eval_data_acc_info[eval_data] = outs

    avg_forward_time = total_forward_time / total_evaluation_data_number
    avg_acc = total_correct_number * 1.0 / total_evaluation_data_number
    logger.info('-' * 50)
    strs = ""
    for eval_data in eval_data_list:
        eval_acc, acc_num, sample_num = eval_data_acc_info[eval_data]
        strs += "\n {}, accuracy:{:.6f}".format(eval_data, eval_acc)
    strs += "\n average, accuracy:{:.6f}, time:{:.6f}".format(
        avg_acc, avg_forward_time)
    logger.info(strs)
    logger.info('-' * 50)
Exemplo n.º 6
0
def main():
    config = load_config(FLAGS.config)
    merge_config(FLAGS.opt)
    char_ops = CharacterOps(config['Global'])
    config['Global']['char_num'] = char_ops.get_char_num()
    print(config)

    # check if set use_gpu=True in paddlepaddle cpu version
    use_gpu = config['Global']['use_gpu']
    check_gpu(use_gpu)

    place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace()
    exe = fluid.Executor(place)

    rec_model = create_module(
        config['Architecture']['function'])(params=config)

    startup_prog = fluid.Program()
    train_prog = fluid.Program()
    with fluid.program_guard(train_prog, startup_prog):
        with fluid.unique_name.guard():
            train_loader, train_outputs = rec_model(mode="train")
            save_var = train_outputs[1]

            if "gradient_clip" in config['Global']:
                gradient_clip = config['Global']['gradient_clip']
                clip = fluid.clip.GradientClipByGlobalNorm(gradient_clip)
                fluid.clip.set_gradient_clip(clip, program=train_prog)

            train_fetch_list = [v.name for v in train_outputs]
            train_loss = train_outputs[0]
            opt_params = config['Optimizer']
            optimizer = create_module(opt_params['function'])(opt_params)
            optimizer.minimize(train_loss)
            global_lr = optimizer._global_learning_rate()
            global_lr.persistable = True
            train_fetch_list.append(global_lr.name)

    train_reader = reader.train_eval_reader(config=config,
                                            char_ops=char_ops,
                                            mode="train")
    train_loader.set_sample_list_generator(train_reader, places=place)

    eval_prog = fluid.Program()
    with fluid.program_guard(eval_prog, startup_prog):
        with fluid.unique_name.guard():
            eval_loader, eval_outputs = rec_model(mode="eval")
            eval_fetch_list = [v.name for v in eval_outputs]

    eval_prog = eval_prog.clone(for_test=True)
    exe.run(startup_prog)

    eval_reader = reader.train_eval_reader(config=config,
                                           char_ops=char_ops,
                                           mode="eval")
    eval_loader.set_sample_list_generator(eval_reader, places=place)

    # compile program for multi-devices
    train_compile_program = create_multi_devices_program(
        train_prog, train_loss.name)

    pretrain_weights = config['Global']['pretrain_weights']
    if pretrain_weights is not None:
        load_pretrain(exe, train_prog, pretrain_weights)

    train_batch_id = 0
    train_log_keys = ['loss', 'acc']
    log_smooth_window = config['Global']['log_smooth_window']
    epoch_num = config['Global']['epoch_num']
    loss_type = config['Global']['loss_type']
    print_step = config['Global']['print_step']
    eval_step = config['Global']['eval_step']
    save_epoch_step = config['Global']['save_epoch_step']
    save_dir = config['Global']['save_dir']
    train_stats = TrainingStats(log_smooth_window, train_log_keys)
    best_eval_acc = -1
    best_batch_id = 0
    best_epoch = 0
    for epoch in range(epoch_num):
        train_loader.start()
        try:
            while True:
                t1 = time.time()
                train_outs = exe.run(program=train_compile_program,
                                     fetch_list=train_fetch_list,
                                     return_numpy=False)
                loss = np.mean(np.array(train_outs[0]))
                lr = np.mean(np.array(train_outs[-1]))

                preds = np.array(train_outs[1])
                preds_lod = train_outs[1].lod()[0]
                labels = np.array(train_outs[2])
                labels_lod = train_outs[2].lod()[0]

                acc, acc_num, img_num = cal_predicts_accuracy(
                    char_ops, preds, preds_lod, labels, labels_lod)

                t2 = time.time()
                train_batch_elapse = t2 - t1

                stats = {'loss': loss, 'acc': acc}
                train_stats.update(stats)
                if train_batch_id > 0 and train_batch_id % print_step == 0:
                    logs = train_stats.log()
                    strs = 'epoch: {}, iter: {}, lr: {:.6f}, {}, time: {:.3f}'.format(
                        epoch, train_batch_id, lr, logs, train_batch_elapse)
                    logger.info(strs)

                if train_batch_id > 0 and train_batch_id % eval_step == 0:
                    outs = eval_run(exe, eval_prog, eval_loader,
                                    eval_fetch_list, char_ops, train_batch_id,
                                    "eval")
                    eval_acc, acc_num, sample_num = outs
                    if eval_acc > best_eval_acc:
                        best_eval_acc = eval_acc
                        best_batch_id = train_batch_id
                        best_epoch = epoch
                        save_path = save_dir + "/best_accuracy"
                        save_model(train_prog, save_path)

                    strs = 'Test iter: {}, acc:{:.6f}, best_acc:{:.6f}, best_epoch:{}, best_batch_id:{}, sample_num:{}'.format(
                        train_batch_id, eval_acc, best_eval_acc, best_epoch,
                        best_batch_id, sample_num)
                    logger.info(strs)
                train_batch_id += 1

        except fluid.core.EOFException:
            train_loader.reset()

        if epoch > 0 and epoch % save_epoch_step == 0:
            save_path = save_dir + "/iter_epoch_%d" % (epoch)
            save_model(train_prog, save_path)