Exemplo n.º 1
0
    def __init__(self, model: Model, clf):
        self.model = model
        self.get_accuracy = Get_Accuracy()
        self.processing = Processing_DB_Files()
        self.clf = clf

        super().__init__()
Exemplo n.º 2
0
# -*- coding: utf-8 -*-
# IMPORTS #
from utils.debug import Debug
from models.arcma_model import ARCMA_Model
from tsfresh import extract_relevant_features
from pre_processing.processing_db_files import Processing_DB_Files
from utils.project import Project, slash
from scripts.save_workspace import save

#===INITIALIZATION===#
Debug.DEBUG = 0
arcma = ARCMA_Model()
processing = Processing_DB_Files()
project = Project()
s = save()
#window = 26 # Janela Fixa
window = 50  # Melhor Janela
persons = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]

for p in persons:

    data = arcma.load_training_data_by_people(p)
    print("Slicing Window....")
    data_tsfresh, y = arcma.slice_by_window_tsfresh(data, window)
    y.index += 1
    del data_tsfresh["activity"]

    classes_counts = y.value_counts()
    if len(classes_counts) > 1:
        relevant_features = extract_relevant_features(data_tsfresh,
                                                      y,
 def outlier_prepare(self, model:Model, people:str, windows_size:int, activity_outlier:str):
     processing = Processing_DB_Files()
     model.load_training_data_by_window_by_people(people, windows_size)
     training, training_labels, test, test_labels = processing.calculating_features(model)
     return self.generate_outliers(training, training_labels, test, test_labels, activity_outlier)
from tsfresh import extract_features
from tsfresh import extract_relevant_features
from tsfresh.utilities.dataframe_functions import impute
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from pre_processing.processing_db_files import Processing_DB_Files
import itertools
from sklearn.metrics import accuracy_score
from utils.project import Project
import time

#===INITIALIZATION===#
Debug.DEBUG = 0
hmp = HMP_Model()
processing = Processing_DB_Files()
project = Project()
extra_trees = ExtraTreesClassifier(n_estimators=1000,
                                   max_depth=1000,
                                   random_state=0)  #Good performer
base_classification = Base_Classification(hmp, extra_trees)
_, _, _ = base_classification.predict_outliers_for_list_people_with_proba(
    36, ["f1", "m1", "m2"], "eat_soup", 0.55, remove_outliers=0.05)

#===Extract TsFresh Features===#
dataframe_1 = hmp.data_with_window["f1"]["training"]
dataframe_2 = pd.DataFrame()
labels = []
id = 1
for d in dataframe_1:
    if len(np.unique(d[hmp.label_tag])) < 2:
Exemplo n.º 5
0
class Base_Classification(object):
    def __init__(self, model: Model, clf):
        self.model = model
        self.get_accuracy = Get_Accuracy()
        self.processing = Processing_DB_Files()
        self.clf = clf

        super().__init__()

    #Finding the best window to improve the accuracy
    def find_best_window(self, interval, list_people):
        accuracies = []
        for w in interval:
            Debug.print_debug("WINDOWS SIZE: {}".format(w))
            data_all_people = self.model.load_training_data_from_list_people(
                w, list_people)
            features_all_people = self.processing.calculating_features_to_each_person(
                data_all_people, self.model)
            accuracies_dict = self.get_accuracy.simple_accuracy_mean_to_each_person(
                features_all_people, self.model, self.clf)
            accuracy_mean = mean(accuracies_dict.values())
            accuracies.append({'window': w, 'accuracy': accuracy_mean})
        return accuracies

    def predict_for_all_people_with_proba(self, window, threshold):
        data_all_people = self.model.load_training_data_from_all_people(window)
        features_all_people = self.processing.calculating_features_to_each_person(
            data_all_people, self.model)
        accuracies_proba = self.get_accuracy.simple_accuracy_mean_to_each_person_with_proba(
            features_all_people, self.model, self.clf, threshold)
        accuracies = self.get_accuracy.simple_accuracy_mean_to_each_person(
            features_all_people, self.model, self.clf)
        return accuracies, accuracies_proba

    def predict_for_list_people_with_proba(self, window, list_people,
                                           threshold):
        data_list_people = self.model.load_training_data_from_list_people(
            window, list_people)
        features_all_people = self.processing.calculating_features_to_each_person(
            data_list_people, self.model)
        accuracies_proba = self.get_accuracy.simple_accuracy_mean_to_each_person_with_proba(
            features_all_people, self.model, self.clf, threshold)
        accuracies = self.get_accuracy.simple_accuracy_mean_to_each_person(
            features_all_people, self.model, self.clf)
        return accuracies, accuracies_proba

    def predict_outliers_for_list_people_with_proba(self,
                                                    window,
                                                    list_people,
                                                    activity,
                                                    threshold,
                                                    remove_outliers=0):
        data_list_people = self.model.load_training_data_from_list_people(
            window, list_people, remove_outliers)
        features_all_people = self.processing.calculating_features_to_each_person(
            data_list_people, self.model)
        #return self.get_accuracy.simple_accuracy_outlier_activity(features_all_people, self.model, self.clf, activity,threshold)
        return self.get_accuracy.get_outliers_confused_with_activities(
            features_all_people, self.model, self.clf, threshold)
        training, training_labels, test, test_labels, outlier, outlier_labels = self.get_accuracy.simple_accuracy_outlier_activity(
            features_all_people, self.model, self.clf, activity, threshold)
Exemplo n.º 6
0
# -*- coding: utf-8 -*-
from utils.debug import Debug
from models.hmp_model import HMP_Model
from pre_processing.processing_db_files import Processing_DB_Files
from outlier.outlier_commons import Outlier_Commons

# INITIALIZATION #
Debug.DEBUG = 1
hmp = HMP_Model()
outlier = Outlier_Commons()

# PROCESSING #
processing = Processing_DB_Files()
hmp.load_training_data_by_window_by_people('f1', 50)
training, training_labels, test, test_labels = processing.calculating_features(
    hmp)
training_outlier, training_labels_outlier, test_outlier, test_labels_outlier, \
outlier, outlier_labels = outlier.generate_outliers(training, training_labels, test, test_labels, "drink_glass")