Exemplo n.º 1
0
def index():
    upload = request.files.get("files")
    path = "uploads/" + hashlib.sha256(
        os.urandom(16)).hexdigest()[:16] + ".png"
    upload.save(path)
    print("yes")
    return prediction.run()
Exemplo n.º 2
0
def run(argv=None):
    if argv is None or argv[1] == 'prediction':
        prediction.run(argv[1:])
    elif argv[1] == 'select':
        selection.run(argv[1:])
    elif argv[1] == 'extract':
        extraction.run(argv[1:])
    elif argv[1] == 'extract_UKBB_v1':
        extraction.run_UKBB_v1(argv[1:])
    elif argv[1] == 'extract_UKBB_v2':
        extraction.run_UKBB_v2(argv[1:])
    elif argv[1] == 'test_fit_time':
        test_fit_time.run(argv[1:])
    elif argv[1] == 'stats':
        statistics.run(argv[1:])
    else:
        raise ValueError(f'Unrecognized argument {argv[1]}')
Exemplo n.º 3
0
    def run_one(task, T):
        argv = {
            'action': 'prediction',
            'task_name': task,
            'strategy_name': '0',
            'T': str(T),
            'RS': '0',
            'dump_idx_only': True,
            'n_top_pvals': 100,
        }

        # Only one trial for task having features manually selected (not _pvals)
        if '_pvals' not in task and T != 0:
            return

        args = Namespace(**argv)
        prediction.run(args)
Exemplo n.º 4
0
def build_model(tech_list):
    run(tech_list)
Exemplo n.º 5
0
 def test_run(self):
   print "Test prediction required run TestServerMonitor.py and TestUserMonitor.py first"
   pr.run("MONITOR_TEST")
Exemplo n.º 6
0
def stats(model, dataset):
    print(performance(model))
    for i in range(2100):
        img, p, pose = dataset.__getitem__(i)
        run(model, img, i)
Exemplo n.º 7
0
import torch
import os
from prediction import load, run, performance


def stats(model, dataset):
    print(performance(model))
    for i in range(2100):
        img, p, pose = dataset.__getitem__(i)
        run(model, img, i)


# model, dataset = load("boxClassifier")
# stats(model, dataset)

model, dataset = load("boxClassifier")
for i in range(20):
    img, p, pose = dataset.__getitem__(i)
    run(model, img, i)