np.savetxt("datasets//predictions//VGG19_" + ver + "_predictions.csv", pred, fmt='%1.18f', delimiter=',') def round_nearest(x, a): return np.round(x / a) * a round_pred = round_nearest(pred, 0.05) #Check the mse or tau-b score ###Write code here to evaluate the classifier #The predprob function comes directly from the challenge organizers pred_prob = predprob(cellularity, pred) print("Prediction probability score: " + str(pred_prob)) tau_b, p_value = stats.kendalltau(pred[valind], cellularity[valind]) np.savetxt("SPIE_truth_val.csv", cellularity, fmt='%1.18f', delimiter=',') #Plot plt.scatter(cellularity[valind], pred[valind]) plt.xlabel("Ground truth") plt.ylabel("Model prediction") plt.savefig("datasets//predictions//VGG19_" + ver + "_val_graph.png", dpi=150) plt.show() ##Make nice results table #plain = pd.DataFrame() #plain['slide'] = image_slide #plain['image'] = image_region
spearArray = [] msqArray = [] predprobArray = [] for j in range(1, 5): pred1 = np.array( pd.read_csv( pathPrefix + "OneDrive - TU Eindhoven\\Vakken\\2018-2019\\Kwart 4\\BEP\\datasets\\predictions\\" + name + "_" + str(j) + "_predictions.csv", header=None)) pred = [] for i, val in enumerate(pred1): pred.append(val[0]) pred = np.array(pred) pred_prob = predprob(cellularity[testind], pred[testind]) print("Prediction probability score for {0}_{2}: {1}".format( name, pred_prob, j)) tau_b, p_value_tau_b = stats.kendalltau(pred[testind], cellularity[testind]) spearman_correlation, p_value_spcor = stats.spearmanr( pred[testind], cellularity[testind]) msq = mean_squared_error( cellularity[testind], pred[testind]) #Determine standard deviation as well print("Tau: {0}\nSpearman Correlation: {1}\nMean Squared Error: {2}". format(tau_b, spearman_correlation, msq)) tauArray.append(tau_b) spearArray.append(spearman_correlation) msqArray.append(msq)