Exemplo n.º 1
0
def test_mod02_mix_order(
    tmp_dir_path,
    input_rows_lst,
    df_expected_tests,
    idx_ordered,
    expected_label,
):
    """
    Check the results are as expected for various alternative ordering
    and repetitions of the input rows
    """
    # Setup
    in_filepath = tmp_dir_path / 'tmp_input.csv'
    out_filepath = tmp_dir_path / 't11_output.csv'

    # Given: Input data consisting of certain rows in a different order
    _ = generate_input_data_csv([input_rows_lst[i] for i in idx_ordered],
                                in_filepath)

    # When: Apply function
    res_filepath = PCon.convert(in_filepath, out_filepath)

    # Then: Result is as expected
    df_reload_01 = PCon.load_formatted_file(res_filepath)
    assert PCon.formatted_dfs_are_equal(
        df_reload_01,
        df_expected_tests[expected_label].iloc[idx_ordered, :].reset_index(
            drop=True).pipe(add_one_to_index).rename_axis(
                index=PCon.ROW_ID_NAME))
    print(
        "Correct: The reloaded values are equal, up to floating point tolerance"
    )
Exemplo n.º 2
0
def test_mod20_include_factors(
    tmp_dir_path,
    input_rows_lst,
    df_expected_tests,
    nrows,
    include_factors,
    expected_label,
):
    """Check that the `include_factors` argument produces the desired outcome"""
    # Setup
    in_filepath = tmp_dir_path / 'tmp_input.csv'
    out_filepath = tmp_dir_path / 't10_output.csv'

    # Given: Input data
    _ = generate_input_data_csv(input_rows_lst, in_filepath)

    # When: Apply function with limited rows and specify factors to include
    res_filepath = PCon.convert(in_filepath,
                                out_filepath,
                                nrows=nrows,
                                include_factors=include_factors)

    # Then: Result is as expected
    df_reload_01 = PCon.load_formatted_file(res_filepath)
    assert PCon.formatted_dfs_are_equal(df_reload_01,
                                        df_expected_tests[expected_label])
    print(
        "Correct: The reloaded values are equal, up to floating point tolerance"
    )
Exemplo n.º 3
0
def test_CLI11_nrows(tmp_dir_path, input_rows_lst, df_expected_tests, nrows):
    """Give the argument to limit the number of rows"""
    # Setup
    in_filepath = tmp_dir_path / 'tmp_input.csv'
    out_filepath = tmp_dir_path / 't05_output.csv'

    # Given: Input data
    _ = generate_input_data_csv(input_rows_lst, in_filepath)

    # When: We run the CLI with option for limited number of rows
    runner = CliRunner()
    result = runner.invoke(PCon.cli, [
        str(in_filepath), str(out_filepath),
        '-r', nrows,
    ])

    # Then: The CLI command completes successfully
    # and the resulting output data is as expected
    assert result.exit_code == 0
    assert f"Output saved here: {out_filepath.absolute()}\n" in result.output
    print("Correct: CLI has completed without error and with correct message")

    df_reload_01 = PCon.load_formatted_file(out_filepath)
    assert PCon.formatted_dfs_are_equal(
        df_reload_01,
        df_expected_tests[min(nrows if nrows is not None else 100, 5)]
    )
    print("Correct: The reloaded values are equal, up to floating point tolerance")
Exemplo n.º 4
0
def test_CLI10_default_arguments(tmp_dir_path, input_rows_lst, df_expected_tests):
    """Default arguments"""
    # Setup
    in_filepath = tmp_dir_path / 'tmp_input.csv'
    out_filepath = tmp_dir_path / 't04_output.csv'

    # Given: Input data
    _ = generate_input_data_csv(input_rows_lst, in_filepath)

    # When: We run the CLI with default arguments
    runner = CliRunner()
    result = runner.invoke(
        PCon.cli,
        [str(in_filepath), str(out_filepath)]  # Default arguments
    )

    # Then: The CLI command completes successfully
    # and the resulting output data is as expected
    assert result.exit_code == 0
    assert f"Output saved here: {out_filepath.absolute()}\n" in result.output
    for step_num in range(1, 6):
        assert f"Step {step_num}" in result.output
    print("Correct: CLI has completed without error and with correct message")

    df_reload_01 = PCon.load_formatted_file(out_filepath)
    assert PCon.formatted_dfs_are_equal(df_reload_01, df_expected_tests[5])
    print("Correct: The reloaded values are equal, up to floating point tolerance")
Exemplo n.º 5
0
def test_mod10_force_overwrite(tmp_dir_path, input_rows_lst,
                               df_expected_tests):
    """
    Check that an existing file will not be overwritten unless force
    is explicitly stated.
    """
    # Setup
    in_filepath = tmp_dir_path / 'tmp_input.csv'
    out_filepath = tmp_dir_path / 't03_output.csv'

    # Given: Input data and a file already exists in the output location
    _ = generate_input_data_csv(input_rows_lst, in_filepath)

    out_file_str = 'Some basic file contents'
    _ = out_filepath.write_text(out_file_str)
    assert out_filepath.read_text() == out_file_str  # Check it has worked

    # When: Apply function with default arguments (i.e. not force overwrite)
    # Then: It throws an error and does not change the existing file
    with pytest.raises(FileExistsError) as err:
        PCon.convert(in_filepath, out_filepath)
    assert err is not None  # An error was thrown...
    assert isinstance(err.value, FileExistsError)  # ...of this specific type
    assert 'File already exists' in str(
        err.value)  # The error message contains is helpful...
    assert str(out_filepath.absolute()) in str(
        err.value)  # ...and contains the filepath
    assert out_filepath.read_text(
    ) == out_file_str  # The file contents are unchanged
    print(
        "Correct: File was not overwritten and helpful error message was thrown"
    )

    # When: Apply function force overwrite
    res_filepath = PCon.convert(in_filepath,
                                out_filepath,
                                force_overwrite=True)

    # Then: Result is as expected
    df_reload_01 = PCon.load_formatted_file(
        res_filepath)  # Reload resulting data from workbook
    assert PCon.formatted_dfs_are_equal(df_reload_01, df_expected_tests[5])
    print(
        "Correct: The reloaded values are equal, up to floating point tolerance"
    )
Exemplo n.º 6
0
def test_mod01_nrows(tmp_dir_path, input_rows_lst, df_expected_tests, nrows):
    """Give the argument to limit the number of rows"""
    # Setup
    in_filepath = tmp_dir_path / 'tmp_input.csv'
    out_filepath = tmp_dir_path / 't02_output.csv'

    # Given: Input data
    _ = generate_input_data_csv(input_rows_lst, in_filepath)

    # When: Apply function with limited rows
    res_filepath = PCon.convert(in_filepath, out_filepath, nrows=nrows)

    # Then: Result is as expected
    df_reload_01 = PCon.load_formatted_file(res_filepath)
    assert PCon.formatted_dfs_are_equal(
        df_reload_01,
        df_expected_tests[min(nrows if nrows is not None else 100, 5)])
    print(
        "Correct: The reloaded values are equal, up to floating point tolerance"
    )
Exemplo n.º 7
0
def test_mod00_default_arguments(tmp_dir_path, input_rows_lst,
                                 df_expected_tests):
    """Default arguments"""
    # Setup
    in_filepath = tmp_dir_path / 'tmp_input.csv'
    out_filepath = tmp_dir_path / 't01_output.csv'

    # Given: Input data
    _ = generate_input_data_csv(input_rows_lst, in_filepath)

    # When: Apply function
    res_filepath = PCon.convert(in_filepath, out_filepath)

    # Then: Result is as expected
    df_reload_01 = PCon.load_formatted_file(
        res_filepath)  # Reload resulting data from workbook
    assert PCon.formatted_dfs_are_equal(df_reload_01, df_expected_tests[5])
    print(
        "Correct: The reloaded values are equal, up to floating point tolerance"
    )
Exemplo n.º 8
0
def test_CLI20_force_overwrite(tmp_dir_path, input_rows_lst, df_expected_tests):
    """
    Check that an existing file will not be overwritten unless force
    is explicitly stated.
    """
    # Setup
    in_filepath = tmp_dir_path / 'tmp_input.csv'
    out_filepath = tmp_dir_path / 't07_output.csv'

    # Given: Input data and a file already exists in the output location
    _ = generate_input_data_csv(input_rows_lst, in_filepath)

    out_file_str = 'Some basic file contents'
    _ = out_filepath.write_text(out_file_str)
    assert out_filepath.read_text() == out_file_str  # Check it has worked

    # When: We run the CLI with default arguments (i.e. not force overwrite)
    runner = CliRunner()
    result = runner.invoke(PCon.cli, [str(in_filepath), str(out_filepath)])

    # Then: The CLI command exits with an error
    assert result.exit_code == 1
    assert result.exception  # An error was thrown...
    assert isinstance(result.exception, FileExistsError)  # ...of this specific type
    assert 'File already exists' in str(result.exception)  # The error message contains is helpful..
    assert str(out_filepath.absolute()) in str(result.exception)  # ...and contains the filepath
    assert out_filepath.read_text() == out_file_str  # The file contents are unchanged
    print("Correct: File was not overwritten and helpful error message was thrown")

    # When: Run the CLI with force overwrite
    result = runner.invoke(
        PCon.cli, [str(in_filepath), str(out_filepath), '--force']
    )

    # Then: Result is as expected
    df_reload_01 = PCon.load_formatted_file(out_filepath)  # Reload resulting data from workbook
    assert PCon.formatted_dfs_are_equal(df_reload_01, df_expected_tests[5])
    print("Correct: The reloaded values are equal, up to floating point tolerance")