Exemplo n.º 1
0
def button_train(name):
    scale_img = prepro.collect_data(
        os.path.join(os.getcwd(), 'avengers/' + name + '/' + name + '_p.jpg'))
    obj = training(modeldir, scale_img, name)
    emb_array = obj.main_train()
    emb_list = list(map(list, emb_array))
    return jsonify({name: emb_list})
Exemplo n.º 2
0
def visualization():
    for idx, stock in enumerate(config.stock_names):
        timestamps = get_timestamps(config.yrs, config.mths, config.dys)
        df = collect_data(timestamps, stock, config.moving_averages, True)
        fig1 = plot_closing(df, moving_averages=True, intervals=None)
        fig1.show()
        fig2 = plot_gain(df)
        fig2.show()
        daily_returns, fig1_c, fig2_c = compare_stocks(config.stock_names_compare, timestamps)
Exemplo n.º 3
0
def button_train(name):
    img = cv2.imread(
        os.path.join(os.getcwd(), 'avengers/' + name + '/' + name + '_p.jpg'))
    scale_img = prepro.collect_data(img)
    obj = training(modeldir, scale_img, name)
    emb_array = obj.main_train()
    feature_list.append(feature_map(name, emb_array))

    return "Success!"
Exemplo n.º 4
0
def get_data(csv):
    if csv:
        df = pd.read_csv(csv)
        df = df.set_index('Date')
        return df
    else:
        timestamps = preprocess.get_timestamps(preprocess.config.yrs,
                                               preprocess.config.mths,
                                               preprocess.config.dys)

        df = preprocess.collect_data(
            timestamps,
            preprocess.config.stock_names[0],
            moving_averages=preprocess.config.moving_averages,
            include_gain=True)
        return df
Exemplo n.º 5
0
def make_predictions(features):
    timestamps = get_timestamps(config.yrs, config.mths, config.dys)
    if len(config.stock_names) == 1:
        for feature in features:
            df = collect_data(timestamps, config.stock_names[0], moving_averages = config.moving_averages, include_gain=True)
            dataset = Dataset(df, feature = feature)
            dataset.get_dataset(scale=True)
            train_data, test_data, train_data_len = dataset.split(train_split_ratio = 0.8, time_period = 30)
            x_train, y_train = train_data
            x_test, y_test = test_data
            model = keras_lstm(x_train)
            pred = Predict()
            pred.train([x_train, y_train], model, show_progress=True)
            scaler = dataset.scaler
            predictions= pred.predict([x_test, y_test], scaler, data_scaled=True, show_predictions=True)
            plot_predictions(df, train_data_len, predictions)
Exemplo n.º 6
0
 def click2():
     """
     respond to the button2 click
     """
     # toggle button colors as a test
     if (button_flag[2] % 2 ==1):
         button2.config(bg="white")
         button_flag[2] +=1
         if button_flag[2] == 1:
             #pre_image.append(aug_img)
             print ("Training Start")
             scale_img = prepro.collect_data(os.path.join(os.getcwd(),'avengers/hermsworth/hermsworth_p.jpg'))
             obj = training(modeldir, scale_img, "hermsworth")
             get_feature = obj.main_train()
             feature_list.append(get_feature)
             print('Getting feature map succeed')
         
     elif(button_flag[2] %2 ==0):
         button2.config(bg="green")
         button_flag[2] += 1